Lexical Analysis

For the first portion of your assembler project you will create a Finite State Machine to identify tokens in a mini pseudo-language. Your program should identify several types of tokens:

variables

numbers

math and relational operators

special characters

reserved words

In order to test your lexical analyzer, your program will output specific values for each type of token.

Program Input

Your program should read from standard input. All input will be in capital letters. You can assume, for now, syntactically correct input. For example, 12BOB is an incorrect variable. Your program will probably indicate that this is a number followed by a variable. For now, your program should not indicate such errors.
Program Output

Your program should output a series of token values, one per line with no blank lines or extra spaces.

Output a 100 for all variables. A variable begins with a letter followed by zero or more letters, numbers, underscores, % or & .

Output a 200 for all numbers. The input will contain only integers and floats. There are no hex numbers.

Our mini-language will contain the following math and relational operators, and your lex program should output the corresponding code number:

+
301

-
302

<
303

>
304

=
305

!=
306

<=
307

>=
308

&&
309

||
310

The following miscellaneous characters should also be searched for:

;
401

,
402

:=
403

:
404

?
405

^
406

The following is a list of our mini-language's reserved words and output codes:

program
501

begin

502

end

503

if

504

then

505

else

506

while

507

integer
508

REAL

509

FOR

510

Anything other than the tokens listed above, except whitespace, should return a code of 600.

Example Run of Part One

Given the following input:

PROGRAM

 A : INTEGER;

BEGIN

 IF A < 50 THEN

 A := 99;

 END IF;

END PROGRAM; **

Your program should produce the following output:

501

100

404

508

401

502

504

100

303

200

505

100

403

200

401

503

504

401

503

501

401

600

600

