A Partial Compiler of a Mini-Language

Project Description

Introduction to Lex and YACCPRIVATE

"Lex and yacc are tools that help you create C routines that analyze and interpret an input stream. They can be used to help write compilers and interpreters or any program whose input has a well-defined structure." We will be using lex (or flex on Ubuntu) to generate a lexical analyzer YACC is a standard unix tool to create a parser (we will use this tool next semester).

Regular Expressions

Lex creates C source code made up of if statements, cases, and loops to scan input and look for specific patterns of characters. A user specifies what to look for using regular expressions. Suppose we want to find all A's and a's in a file. The regular expression [Aa] would match what we want. The brackets enclose a set of exclusive choices. The regular expression [a-zA-Z] would match any small or capital letter.

Suppose we want to find a series of letters. The symbol * means match zero or more of the previous, + means match one or more, and ? means match zero or one of the previous. Thus, the expression A[AB]? would match only the character strings AA, AB, or A. The regular expression [a-zA-Z]+ would match all words, while [A-Z][a-zA-Z]* would match all words that begin with a capital letter. The expression [a-zA-Z]+ can be read as “one or more letters”. The expression [A-Z][a-zA-Z]* can be read as “a capital letter along with any letters that may follow it”.

Other special symbols are:

.
everything except a return character

\n
the return character

\.
the period character

^
beginning of a line

$
end of a line

So, the expression ^..$ matches all lines in the input that have two, and only two, characters. The regular expression ^(.)+$ matches all lines that are not blank. The regular expression ([0-9]*\.)?[0-9]+ would match ".12", "2.9999", and "4", but not "1234.". Note: the parenthesizes differ from the brackets in that brackets indicate a choice, where as parenthesis are used along with ?, +, or * for groups of expressions.

Lex Specification File

A lex specification file is composed of three sections. The sections are divided by the %% symbol (which is not optional). The first section contains definitions and may be left empty. A definition for white space might be

ws [\t\n]+

A programmer can also place in this section C code for global variable definitions, compiler directives, and definitions of constants.

The second section of a lex specification file contains the regular expressions along with C code to be executed when a matching pattern is found. The regular expression is followed by a block of C code that will be executed every time that pattern is found. For example:

{ws}aardvark{ws}
{ printf("found ardvark\n"); }

.

;

\n

;

The first rule causes a message to print when the word aardvark is found in the input stream. The message is not printed when Aardvark or aardvarks is found.

The default action for characters not matched by any rule is to echo the character. So, if we want our lex program to ignore all the extra characters (everything that is not aardvark) we must supply rules to catch all the extra unmatched characters. The regular expressions . and \n combined will match anything. In the above example, the action for these two expressions is the semicolon, which is the C statement for “do nothing”.

A question that probably came to your mind is “If the period matches everything, how come it does not match each of the letters in aardvark?” Part of the answer is that when more than one rule can match a string, the rule that can match the longest string takes precedence. The period expression would only match a single letter, but the first rule matches at least 10 characters, so the first rule takes precedence. Your thought now is probably either "So what happens when two rules match an equal number of characters?" The answer to the question is "The top most rule wins when there is a tie in the number of characters matched."

The third section of a lex specification file contains any necessary C functions. For Part One of your project you will need a very simple main() in this section. After Part One, main() will be in another file, so this section may be blank.

Example

The following lex specification file will sum up a list of integers and real numbers from the input stream, then output the two sums. The definition section contains C code for a couple of include files that the main() function will need. Everything between the %{ and the %} is placed at the top of the C source code file produced by the lex program.

The rules section contains three rules: one to match integers, one to match real numbers, and one rule to match everything else. The C code inside the {}s is placed directly into the C code produced by lex. Therefore, be sure that code is syntactically correct.

The code section of this example contains the main() function for this simple scanner program. (Every C program must have a main().) The while loop repeatedly calls the function yylex(). yylex is the function written by the lex program. yylex simply reads characters and matches them to the rules. When it finds a string of characters that matches a rule, it executes the action that was in the {}s next to the rule. The yylex function always returns an integer. A zero is returned when the end of input is reached.

%{

#include <stdio.h>

#include <stdlib.h>

%}

%%

[0-9]+

{ return 1; }

[0-9]+\.[0-9]+
{ return 2; }

. |

\n

;

%%

int main()

{

 int tokentype, int_sum = 0;

 float real_sum = 0.0;

 while (tokentype = yylex())

 switch (tokentype)

 {

 case 1 : int_sum += atoi (yytext);

 break;

 case 2 : real_sum += atof(yytext);

 }

 printf("\n\nSum of Integers = %d \n", int_sum);

 printf("Sum of Reals = %.2f \n", real_sum);

}

In this example, when a string such as 123 is found, the C code from rule one "return 1;" is executed. Main places the 1 in the variable tokentype. The switch statement uses the value in tokentype to determine what type of number was found; either an integer or real.

The string variable yytext is a global variable declared by the lex program, which contains the characters that were matched. In other words yytext will have the characters 1, 2 and 3. In order for this example code to determine the value of the token found, not what type of token was found, main converts yytext into either an int or float.

Running Just Lex Code

If the specification in the above example was in the file spec.l it could by executed by:

lex spec.l

cc -o scanner lex.yy.c -lfl

scanner < data

The first command executes the lex generator that creates a C source code file named lex.yy.c. (Actually, on a Linux machine the version of lex is called "flex".) The second line compiles this code using the flex library, fl, and outputs an executable named scanner. The third line runs the scanner program with input from the data file named data. (Note: some of you may not have the current directory in your PATH shell variable, so you may have to type ./scanner)

Part One
Lexical Analysis

For the first portion of your assembler project you will create a LEX specification to identify tokens in a mini pseudo-language. Your lex program should identify several types of tokens:

variables

numbers

math and relational operators

special characters

reserved words

In order to test your lexical analyzer, your program for part one will output specific values for each type of token. For Part Two, the actions for each regular expression will be modified slightly to return tokens defined by YACC instead of the codes listed below. But, the regular expressions themselves will remain unchanged.

Program Input

Your program should read from standard input. All input will be in capital letters. You can assume, for now, syntactically correct input. For example, 12BOB is an incorrect variable. Your program will probably indicate that this is a number followed by a variable. For now, your program should not indicate such errors (this will be caught in Part Two.)

Program Output

Your program should output a series of token values, one per line with no blank lines or extra spaces.

Output a 100 for all variables. A variable begins with a letter followed by zero or more letters, numbers, underscores, % or & .

Output a 200 for all numbers. The input will contain only integers and floats. There are no hex numbers.

Our mini-language will contain the following math and relational operators, and your lex program should output the corresponding code number:

+
301

-
302

<
303

>
304

=
305

!=
306

<=
307

>=
308

&&
309

||
310

The following miscellaneous characters should also be searched for:

;
401

,
402

:=
403

:
404

?
405

^
406

The following is a list of our mini-language's reserved words and output codes:

program
501

begin

502

end

503

if

504

then

505

else

506

while

507

integer
508

REAL

509

FOR

510

Anything other than the tokens listed above, except whitespace, should return a code of 600.

Example Run of Part One

Given the following input:

PROGRAM

 A : INTEGER;

BEGIN

 IF A < 50 THEN

 A := 99;

 END IF;

END PROGRAM; **

Your program should produce the following output:

501

100

404

508

401

502

504

100

303

200

505

100

403

200

401

503

504

401

503

501

401

600

600

Submitting Your Work

Email just your lex specification file to me at thackerw@winthrop.edu by noon of the due date. I will run your specification file through lex then compile and execute the resulting lex.yy.c file. Please send your message as readable ASCII text (i.e. probably created in vi, emacs, notepad …)

It would be a really good idea to send the message to yourself also to make sure it is being sent okay.

Hints

· The following is the code for main() everyone will need to use for Part One.

void main()

{

 int tokentype;

 while (tokentype = yylex())

 printf("%d\n", tokentype);

}

· There is no need to use a definition of whitespace. Create a rule that eats spaces and tabs; i.e. its action should be ";".

