SPSS Guide: Correlation \& Regression

	testscr	studying	SAT	absences
1	40	6.0	510	5
2	50	12.5	490	3
3	70	12.0	510	2
4	70	19.5	600	3
5	75	13.5	500	2
6	75	16.0	550	2
7	80	14.5	450	3
8	80	18.5	490	1
9	80	15.0	500	0
10	85	14.5	550	1
11	90	22.5	600	3
12	90	18.5	610	2
13				

Once the data are entered, go to Analyze, Correlation, Bivariate to get this dialogue box.

Move the variables (quantitative only) that you wish to correlate into the variables box and hit OK.

This is a correlation matrix. It gives results

Correlations

		testscr	studying	SAT	absences
testscr	Pearson Correlation Sig. (2-tailed) N				
studying	Pearson Correlation Sig. (2-tailed) N	$\begin{array}{r} \hline .775^{*+} \\ .003 \\ 12 \end{array}$	12		
SAT	Pearson Correlation Sig. (2-tailed) N	$\begin{array}{r} .368 \\ .239 \\ 12 \end{array}$	$\begin{array}{r} .585^{*} \\ .046 \\ 12 \end{array}$		
absences	Pearson Correlation Sig. (2-tailed) N	$\begin{array}{r}-.637 * \\ .026 \\ 12 \\ \hline\end{array}$	$\begin{array}{r} -.360 \\ .251 \\ 12 \\ \hline \end{array}$.855 .866 12	14

${ }^{* *}$. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (\&-tailed).
You can ignore info above the diagonal. It's redundant.

The r-value. Indicates strength and direction (\pm) of the correlation. Bigger is better. The "*" means we can reject the null hypothesis (Ho).

The p-value. Probability that you'd see an r-value of this size just by chance. Smaller is better. Reject Ho if $\mathrm{p} \leq .05$ [e.g., . 046 is $\leq .05$, so Reject.]

Number of pairs in sample. Degrees of freedom (df) equals n-2.

In this case, the p -value is below the magic .05 so we REJECT the Ho. [We think absences really do correlate negatively with test score].

We're HAPPY!! :)

In this case, the p-value is NOT below the magic .05 so we RETAIN the Ho. [We are NOT confident that there is a correlation between SAT and test score].

We're SAD!! (2)

Statistical Hypotheses

Every r value (a sample statistic) strives to represent ρ (The actual correlation value in the population).
When r gets bigger, we get more confident that there really is a correlation. We know one of two things must be true.
$\mathrm{H}_{0}: \rho=0 \quad$ [There is $N O$ actual correlation]
$\mathrm{H}_{\mathrm{A}}: \rho \neq 0 \quad$ [This is a correlation]

KEY POINT: If p (the middle number) drops below .05, we REJECT the Ho. This makes us happy. We want to reject the null hypothesis because it means we have evidence that we found a true relationship.

We explain a finding as follows: The [research] hypothesis was supported. Absences correlate significantly with Test Score, $\mathrm{r}(10)=-.637, \mathrm{p} \leq .05$. Note: More on this later. Degrees of freedom $(d \boldsymbol{f})=\boldsymbol{n - 2}$.

Scatterplot \& Regression (using the same data)

Scatterplot: Once the data are entered, go to Graphs, Scatter, [leave on Simple] to get to this box. Put the criterion (the variable you will predict) on the y-axis and the predictor (the variable to predict with) on the x -axis. To add a regression line...

- Double click the graph to open the Chart Editor
- Go to Elements, Fit Line at Total [change nothing]
- Close the Fit Line box \& close the Chart Editor

TO DO REGRESSION: go to Analyze, Regression, Linear to get to this box.

Criterion (y): What you predict.

Predictor (x): What you predict with, what you already know.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.775^{\mathrm{a}}$.600	.560	10.012

a. Predictors: (Constant), studying

a. Dependent Variable: testscr

You will get four tables, but you need only these two.

Model Summary: gives you the rvalue, the r^{2} value.

Coefficients: gives you the a \& b values, and the p-value to check for significance. We reject Ho if $\mathrm{p} \leq .05$. This means the relationship is reliable and can be used to make predictions. [Note: It's the same p value you see on the correlation matrix for these two variables.]

- In this case, our regression equation $\left[y^{\prime}=b x+a\right]$ becomes........ $\mathbf{y}^{\prime}=\mathbf{2 . 7 4 0}(\mathbf{x})+\mathbf{3 1 . 9 6 0}$.
- We can now predict test score (y) given any value of studying (x).

