SPSS Guide: 1-Way ANOVA

Problem: Does caffeine help or hinder performance? A researcher administers varying levels of caffeine $(0,10$, or 20 mg) to lab rats and then measures number of food pellets found. Is there a significant difference in food found?

Why a l-way ANOVA? We have $3+$ levels of an independent variable and only one independent variable.

Caffeine Level (IV)						
0 mg						
10 mg				2	1	4
:---:	:---:	:---:				
Food	3	2				
Found	1	3				
(DV)	4	1				
2	2	4				
		5				

DATA ENTRY: \#1: Indicate the group in the first column $(1,2$, or 3$)$ and then the number of food pellets found by each rat in the second column.

\#2: Switch to variable view mode (bottom of screen), and then click on the values column.

\#3: Now label the group values. [Type " 1 " TAB, "0mg", then click ADD.] Label each value of the variable (in this case 1,2 , and 3).

DATA ANALYSIS:

\#1: Go to analyze, compare means, one-way ANOVA

Hypotheses:

Ho: $\mu_{1}=\mu_{2}=\mu_{3} \quad$ [Caffeine (the IV) has no effect.]
Ha: Not all μ 's equal [Caffeine caused some difference.]
\#2: Click on Post-Hoc, then check $\boldsymbol{S}-\boldsymbol{N}$-K.
One-Way ANOVA: Post Hoc Multiple Comparisons

\#3: Click on Options, then check Descriptives and Means plot.

SPSS OUTPUT

Descriptive Statistics

	N	Mean	Std. Deviation	Std. Error
0 mg	5	2.40	1.140	. 510
10 mg	5	1.80	. 837	. 374
20 mg	6	4.33	. 516	211
Total	16	2.94	1.389	347

The first table shows descriptive statistics. For example, it shows that rats on 10 mg of caffeine found only 1.8 food pellets on average whereas rats on 20 mg found 4.33 - more than twice as many.
So is this a significant difference? One we can trust? Conduct the F-test to find out.

The Post-Hoc Test			
Student-Newman-Keuls ${ }^{\text {a,b }}$			
GROUP	N	Subset for alpha $=.05$	
		1	2
10 mg	5	1.80	
0 mg	5	2.40	
20 mg	6		4.33
Sig.		. 270	1.0

The F-test tells us at least one pair of means differs significantly - the Post Hoc tells us which ones. Means differ if they occupy separate columns. Here the 4.33 differs from both the 1.8 and the 2.4.

Summary of the Statistic

$F(2,13)=13.65, p \leq .05$
The degrees of freedom represent df between groups (2) and df within groups (13).

Source of Variation Table - shows the F-Test

FOOD_FND

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	19.604	2	9.802	13.65	.001
Within Groups	9.333	13	.718		
Total	28.937	15			

Yes! Because the p-value ("Sig") is below .05, we reject the Ho and conclude that there is a significant difference between the groups (i.e., caffeine causes rats to find more food). Note: Mean Square is just another name for variance. An ANOVA partitions (divides up) variance into between group ($B G$) and within group $(W G)$.

The underlying Formula:

$$
F=\frac{M S_{B G}}{M S_{W G}}=\frac{9.802}{.718}=13.65
$$

The larger this gets, the greater the chance for a significant difference.

If conducting an F-test by
hand:
$\mathrm{df}_{\mathrm{BG}}: \mathrm{K}-1=3-1=2$
$\mathrm{df}_{\mathrm{WG}}: \mathrm{N}_{\mathrm{T}}-\mathrm{K}=16-3=13$
$\mathrm{df}_{\text {TOTAL }}: \mathrm{N}_{\mathrm{T}}-1=16-1=15$
$N_{T}=$ Total number of subjects
$K=$ Number of groups
$\mathrm{MS}=\mathrm{SS} / \mathrm{df}$

Means Plot

The Means Plot helps visualize the relation among the means. Compare this to the information shown in the post-hoc test.

Explanation of Study Outcome

The hypothesis was largely supported. Rats found significantly more food on 20 mg of caffeine ($\mathrm{M}=$ 4.33) than on $0 \mathrm{mg}(\mathrm{M}=2.40)$ or $10 \mathrm{mg}(\mathrm{M}=1.80)$, $\mathrm{F}(2,13)=13.65, \mathrm{p} \leq .05$. Caffeine has a large effect on food finding behavior, accounting for about 68% of the variance, $\eta^{2}=.6776$.

Guide to Write-ups

(standard format)

1. State whether research hypothesis was supported.
2. Summarize the stat. test.
3. Summarize the practical significance (if appropriate).
