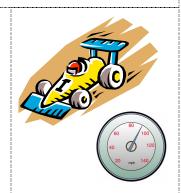
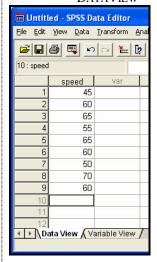
SPSS Guide: One-sample t-test (*Outcome:* H_0 *Retained*)

The Government claims cars traveling past your house average **55 mph**, but you think they are actually traveling much faster. You steal a police radar gun and record the speed of the next nine cars that pass your house: 45,60,65,55,65,60,50,70,60.

Why a one-sample t-test? You have only one sample, a claimed population average (55 mph), and no information about the standard deviation in the population (σ_x).

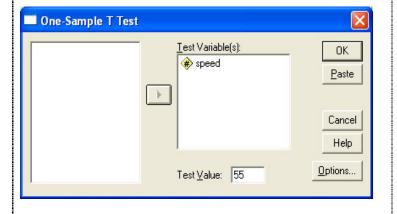


DATAVIEW



VARIABLEVIEW III Untitled - SPSS Data Editor File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help Missing Columns Align Measure Width Decimals Label Values Туре speed Numeric None None Right Scale ↓ Data View \ Variable View / SPSS Processor is ready

You have data on only 1 variable, all from the same group, so you'll use just one column. Switch to **VARIABLE VIEW** to name your variable "speed" and to set the number of decimals to "0". Hint: Use the tabs at the bottom of the screen to switch back and forth between the DATA VIEW and VARIABLE VIEW when working with your data.

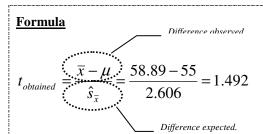


- 1. Go to the **Analyze Menu**, select **Compare Means**, then choose **One sample t-test**.
- 2. Select the variable "speed."
- 3. Set Test Value equal to μ (in this case 55). You're testing to see if the data you have could really come from a population with a mean of 55.

Statistical Hypotheses

 H_0 : $\mu = 55$ This guess says any difference is just due to sample error

 H_A : $\mu \neq 55$ This guess says any difference is due to a treatment effect (e.g., if you kept measuring, you'd eventually see a clear partner in which the cars are going faster than 55 on average)



 $t_{critical} = \pm 2.306$ (from t-test table; df=n-1, two-tailed, α =.05)

Definitions

 \bar{x} = sample mean

 μ = population mean

 $\hat{s}_{\bar{x}} = \text{standard error of the mean (as an est.)}$

N = number of subjects in sample

 $Mean = \overline{x} (or M) (sample mean)$

Std. Deviation = \hat{s}_x (standard deviation as an estimate.)

Std. Error Mean = $\hat{s}_{\bar{x}}$ (standard error of the mean as an est.)

SPSS Output

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
speed	9	.58.89∙	7.817	2.606

One-Sample Test

difference to sampling error.

Comparing to this hypothesized μ

Chance that we'd see a difference between the means just by luck. Because it's not less than 5%, we retain Ho and attribute the

	Test Value = 55 .							
			Sig.	Mean	95% Confidence Interval of the Difference			
	t	df	(2-tailed)	Difference	Lower	Upper		
speed	1.492	8	(.174)	3.889	-2.12	9.90		

Test Value = μ (the value you selected)

t = t obtained

df = degrees of freedom = n - 1

 $sig = p_{obt} = chance diff due to sampling error$

Mean Diff = $\bar{x} - \mu$

d = effect size, a measure of practical signif.

Practical Significance

$$d = \frac{\left| \overline{x} - \mu \right|}{\hat{s}_x}$$

[Do only if t obtained exceeds t critical. Here we cannot reject the Ho (we can't say there is a treatment effect), so it makes no sense to calculate practical significance (a measure of how big any treatment effect is).]

Summary of Statistic:

Retain Ho t(8) = 1.492, n.s.

This says that the t-test with 8 degrees of freedom was not significant.

Explanation of Study Outcome: The (research) hypothesis was not supported. The average speed of the cars (M = 58.89) did not differ significantly from the stated speed (μ = 55), t (8) = 1.492, n.s.

Guide to write-ups:

- 1. State whether the research hypothesis was supported.
- 2. Summarize the statistical test
- 3. Summarize the practical significance (if appropriate).