KEY Homework #7b: One-sample t-test

For each of the following, complete hypotheses testing steps 1-5, giving special attention to the paragraph write-ups.

Q1. Punishment : The researcher predict 2 minutes of loud noise to punish the che	ed particip ating oppo	oants in t onent (x=	the "se =2,3,4,2	vere veng 2,3,4,4,2,5	eance 5,3,4).	e" condition w	ould recomn	nend more than	
Hypothesis testing steps:	One-Sample Statistics								
1. <mark>cf. M and μ</mark>		1	J	Mean	SI	td. Deviation	Std. Erro Mean	or	
2 + - 2 + - 2 + 2	duratior	1	11	3.27	7	1.009		304	
2. $10. \mu = 2, 11_{\text{A}}, \mu \neq 2$	Test Value = 2								
3. 2-tailed, α =.05, df= 10, t _{crit} = ± 2.228							95% Confide Dif	95% Confidence Interval of the Difference	
		t	df	Sig. (2	-tailed)	Mean Difference	Lower	Upper	
4. t _{obt} = 4.183	duration	4.183		10	.002	1.273	.5	3 1.95	
 =2), t(10) = 4.183, p≤.05. The effect of co d = 1.2616. a. What type of hypothesis testing error is 	ndition on	punishr	nent wa	b. Samp	d =	1.273/1.009	=1.2616 c. μ =	_2	
c. What's the chance you would see this c	lifference	betweer	n the sa	mple & p	op. m	eans just by c	hance <mark>?2</mark>	%	
d. State the symbol and value for std erro	r <mark>ŝ_{xbar} = .</mark>	<mark>304</mark>		d. "	differ	ence observe	d″ <u> </u>	μ = 1.273	
f. Summarize the statistic: <mark>t(10) =4.18</mark>	<mark>33, p≤.05</mark> g. ŝ _x =			1.00	1.009 g. p =002				
Q2. Giving: The researcher predicted participants in the "crushing guilt" condition would offer more than the typical \$10 charity gift. (x=\$8, 10, 5, 7, 20, 7, 12, 9, 20, 12, 4, 3).									
One-Sample Statistics									
1. $\frac{\text{cf. M and }\mu}{\mu}$		N		Mean	Sto	1. Deviation	Std. Error Mean		
2. <mark>H₀: μ = 10, H_A: μ ≠ 10</mark>	dollars		12	9.75		5.562	1.6	06	
3. $\frac{2-tailed}{\alpha}$ = .05, df = 11, t_{crit} = ± 2.201	Test Value = 10								
4. <mark>t_{obt} = -0.156.</mark>	95% Confidence Interva Difference				e Interval of the ence				
		t	df	Sja. (2-t:	ailed)	Mean Difference	Lower	Upper	
	dollars	156	1	1	.879	250	-3.78	3.28	
5. The hypothesis was not supported. Participants in the guilt condition did not give sig. more or less (M = 9.75) than normal ($\mu = 10$), $t(11) = -0.156$, n.s.									
								···/	

	Homewor							
a. What type of hypothesis testing error is possible? Type II b. Sample mean 9.75 c. $\mu = 10$								
c. What's the chance you would see this difference between the sample & pop. means just by chance? 87.9%								
d. State the symbol and value for std error. \hat{s}_{xbar} = .1.606 d. "difference observed"250								
f. Summarize the statistic: $t(11) =156$, n.s. g. $\hat{s}_x = 5.562$ g. $p = .879$								
Q3. The researcher predicted the attractiveness ratings of dates in the "rollercoaster" condition would exceed the normal rating of	5.							
	-							
a. What type of hypothesis testing error is possible? Type I b. Sample mean $5.40 \text{ c. } \mu = 5$	10 /							
c. What's the chance you would see this difference between the sample & pop. means just by chance? 3.3	, <mark>%</mark>							
a. State the symbol and value for std error. $s_{xbar} = .180$ d. "difference observed" .400								
T. Summarize the statistic: $t(34) = 2.227$, $p \le .05$ g. $s_x = 1.063$ g. $p = .033$								
Q4. Indicate the types of hypothesis testing error that might be made if you Type								

- Indicate the types of hypothesis testing error that might be r a. ___I___ Decide the debate team is smarter than normal
- b. ____ Decide the sky is falling
- c. __II___ Decide global warming is not occurring
 d. __I___ Decide your wait time at the store is greater than the 3 minutes promised.
- e. __I___ Decide the extraversion scores of the sales people are higher than normal.