Homework #6: t-scores - Key

These questions accompany Lecture Video 5.1, One Sample T-tests.

slides 1-6.	 Whereas the z-formula utilizes the symbolσ_{xbar} in the denominator, the t-test utilizes the symbols_{xbar} With a t-test, instead of <u>knowing</u> standard error as a population parameter, we mustestimate it. In both the z and t formulas the top portion is unchanged:x_{bar} - μ (write out the symbols) To calculate standard error of the mean as an estimate, we divide _s [symbol] by _sqrt n [symbol].
slides 7 & 8	 Compared to a z-distribution, a t-distribution is <u>shorter</u> in the middle and <u>fatter</u> at the tails. The <u>t</u> (z or t) distribution shows more error. As the size of the sample increases, t-critical gets <u>smaller</u> and approaches the shape of the <u>z</u> distribution. Using the table in the back of the book, assume α = .05, and then determine the value of t-critical for the following sample sizes 4: <u>3.1824</u>, 7: <u>2.4469</u>, 20: <u>2.0930</u> and 120: <u>1.9801</u>.
slides 9 & 10	 <u>Car Speed Problem by hand: Are cars traveling slower/faster than 55 mph?</u> 9. What was the <u>observed difference</u> between the sample mean and the population mean? <u>3.889</u> 10. What was the <u>expected difference</u> based just on standard error ? <u>2.606</u> 11. Would the obtained t-value been large enough for rejection if you were doing a <u>z-test</u>? <u>no</u> 12. When doing a z- or t-test, hypothesis testing step #1 states you are comparing <u>xbar</u> and <u>μ</u>.
Slides 13-18	 Example #3: Critical Thinking Test Problem: Do college graduates score lower/higher than 45 on the test? 13. What was the observed difference between the sample mean and the population mean?1.6667 14. What was the expected difference based just on standard error?3.5355 15. Would the obtained t-value have been large enough for rejection if you were doing a z-test? _no 16. What key value do we determine in third step of hypothesis testing?tcritical
Slides 22-23	 Car Speed Problem on SPSS: Are cars traveling slower/faster than 55 mph? 17. What would t-obtained equal if the cars in the sample had been going 54 mph and standard error had been equal to 3? Could you have rejected the null then?no(t_{crit} = 2.306) 18. What would t-obtained equal if the cars in the sample had been going 49 mph and standard deviation had been equal to 3? Could you have rejected the null then?yes_(t_{crit} = 2.306) 19. Write out the t formula with the original values from the SPSS output and then calculate it, making sure you get the same answer. 20. What's the chance you'd get a t-value of this size just by chance?17.4% t = (x̄ - μ)/(s̄_{x̄}) = (58.89 - 55)/(2.606) = 1.492 21. What was the sample mean with the first set of data?58.89 With the second?61.11 22. An increase in the sample mean reflects an increase in (circle one) treatment effect or sampling error.
New Applied Problem	 23. The tables to the right test whether people working at the factory 2 or more years average \$10/hour. Label each of the SPSS table values with the correct symbol. → 24. What the null hypothesis?Ho: μ = 10 25. What's the difference observed?1.333 26. What's the difference expected?0.527 27. Do your reject or retain the Ho?Reject 28. What percent of time would you see a difference between the means this large just by chance?3.5%