Homework 1.1: Quant/ Qual, Freq. Distribution, Graphs, Levels of M easurement 3
Homework 1.1: Quant/ Qual, Freq. Distribution, Graphs, Levels of M easurement- Key. 5
Homework 1.2: Experimental Terminology, Treatment Effect, Sampling Error 7
Homework 1.2: Experimental Terminology, Treat. Effect, Sampling Error-Key 9
Homework 2.1: MCT vs. MV, Measures of Central Tendency, Samples vs. Populations 11
Homework 2.1: MCT vs. MV, Measures of Central Tendency, Samples vs. Populations-Key 13
Homework 2.2: M easures of Variability 15
Homework 2.2: Measures of Variability - Key 17
Homework 3.1: Correlation \& Regression 19
Homework 3.1: Correlation \& Regression - Key 22
Homework 3.2: Correlation \& Regression Practice 25
Homework 3.2: Correlation \& Regression Practice 28
Homework 3.3: Conceptual Review (closed book) 29
Homework 3.4: Computational Review \#1 (open-book) 33
Homework 3.4: Computational Review \#1 (open-book) -key 36
Homework 3.5: Computational Review \#2 (open book) 39
Homework 3.5: Computational Review - Key , Test \#1 (open book) 42
Homework 3.6 - Correlation \& Regression Review 46
Homework 3.6: Correlation \& Regression Review - Key 47
Homework 4.2: Z-scores, Sampling Distributions, Hypothesis Testing 52
Homework 4.2-Z-scores, Sampling Distributions, Hypothesis Testing 54
Homework 4.1: Z-scores for scores. 56
Homework 4.1: Z-scores 59
Homework 5.1: t-scores 62
Homework 5.1: t-scores - Key 62
Homework 5.2: Hypothesis Testing with T-Scores 64
Homework 5.2: Hypothesis Testing with T-Scores - Key 66
Homework 5.3: One-sample t-test 69
Homework 5.3: One-sample t-test_K Key 71
Homework 6.1: Questions about Independent t-test 77
Homework 6.2 - Independent t-test practice 78
Homework 6.2 - Independent t-test practice- Key 79
Homework 6.3-Dependent t-tests 80
Homework 6.3 - Dependent t-tests- Key 81
Homework 6.3A - Annotating Output 82
Homework 6.3A - Annotating Output-Key 83
Homework 6.4: Independent \& Dependent T-tests. 84
Homework 6.4: Independent \& Dependent T-tests- Key 88
Homework 6.6 - Conceptual Review 92
Homework 6.6-Conceptual Review - KEY 94
Homework 6.7 Computational Review (Test 2) 96
Homework 6.7 Computational Review (Test 2) - Key 98
Homework 6.8: Conceptual Review T2 (closed book) 100
Homework 6.9 Practice Test for Test \#2 -- (Excluding Essay)-Key 103
Homework 6.9 Practice Test for Test \#2 -- (Excluding Essay)-Key 107
Homework 6.9A: Overview of z-tests and t-tests. 111
Homework 7.1a: 1-way ANOVA 112
Homework 7.1b: 1-way ANOVA 113
Homework 7.1a: 1-way ANOVA 114
Homework 7.1b: 1-way ANOVA 115
Homework 7.2-1-Way ANOVA 116
Homework 7.2-1-Way ANOVA *****KEY***** 118
Homework 7.3: Statistics for Breakfast!!! 120
Homework 7.3: Statistics for Breakfast!!!- Key 121
Homework 8.1: 2-Way ANOVA 122
Homework 8.1: 2-Way ANOVA -- Key. 124
Homework 8.2: Setting up Data for 2-way ANOVA 126
Homework 8.2B: 2-way ANOVA Annotation Exercise 128
Homework 8.2B: 2-way ANOVA Annotation Exercise - KEY 131
Homework 8.3: 2-Way ANOVA Write-ups 134
Homework 8.3: 2-way ANOVA Write-ups - Key 135
Homework 8.4: Paragraphs \& Name that Stat Review. 136
Homework 8.4 Paragraphs \& Name that Stat Review Key 137
Homework 8.5: Practice Quiz \#1 140
Homework 8.6: Practice Quiz \#2 141
Homework 9.1- χ^{2} "Chi Squared" 142
Homework 9.1- χ^{2} "Chi Squared" Key 143
Homey Work 9.4: Conceptual Review for Final. 144
Homey Work 9.4: Conceptual Review for Final - Key 146
Homework 10.1: Journal Reading 148
Homework 10.1: Journal Reading -Key. 151
Homework 10.2: Conceptual Final Review, MC \& FIB practice 154
Homework 10.2 Conceptual Final Review, MC \& FIB practice - Key 156

Homework 1.1: Quant/ Qual, Freq. Distribution, Graphs, Levels of M easurement

1. Indicate if the following variables are Qualitative (QL) or Quantitative (QN):

\qquad height \qquad religion (type of) religiosity (level of involvement with)
\qquad
\qquad region (e.g., South, North)
\qquad marital status (single, etc.)
\qquad gender
\qquad ethnicity (Black, White, M artian)
grade in a class (e.g., A, B, C) self-esteem mat
2. For each of the following data sets, determine if the data are Qualitative or Quantitative then construct an appropriate frequency table and histograms or bar graph (whichever is appropriate).

MINORITY Minority Classification					
Cumulative Valid 0 No No Percent Valid Percent Percent 1 Yes 104 78.1 78.1 78.1 Total 474 100.0 21.9 100.0					

f. What percent of employees are minorities?
g. How many employees are not minorities?
h. Are these data qualitative or quantitative?

EDUC Educational Level (years)					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	8	53	11.2	11.2	11.2
	12	190	40.1	40.1	51.3
	14	6	1.3	1.3	52.5
	15	116	24.5	24.5	77.0
	16	59	12.4	12.4	89.5
	17	11	2.3	2.3	91.8
	18	9	1.9	1.9	93.7
	19	27	5.7	5.7	99.4
	20	2	. 4	. 4	99.8
	21	1	. 2	. 2	100.0
	Total	474	100.0	100.0	

i. How many employees appear to have a high school education but not more than that?
j. What percent of people might have done graduate level work, assuming they spent 12 years in primary education and 4 years in college?
4. Level/scale of measurement: (a) Identify the defining characteristics of each scale of measurement (b) sort the following four scales appropriately: years of age, Celsius temperature scale, top 10 finishing times in a race, the State you were born in

Nominal	Ordinal	Interval	Ratio
a.			
b.			

5. Identify the levels of measurement used in the following examples: (NOIR)

a. Group your friends in to the categories (a) best friends, (b) good friends, (c) expendable in a crisis.
b. Time (measured in seconds) required to duck after yelling "fore!" in a golfer's ear.
c. Teaching effectiveness, summing responses across a five-item scale. Each item is on a 1-7 scale.
d. Ask students to self-assess their procrastination ability on a 1-5 scale.
e. Dividing people into males, females, and other.
f. Ranking of 10 possible heroes
(Abraham Lincoln, M artin Luther King, Jr., your stats instructor, etc.) from best to worst.
g. The number of times a Soap Opera star is depicted sleeping with someone other than his/ her spouse.
h. Level of understanding after a statistics course measured in length of groans using a stopwatch.
i. A survey instrument with 15 items assessing the extent to which someone endorses Right Wing Authoritarianism. Each item is on a 1-10 scale.

6. See instructions for problem 2 above:

a. People identified the political affiliation ($R=$ Republican,
$D=$ Democrat, I=Independent) as follows: RIRRDDRDRRDRIR

Qualitative or Quantitative? (circle)

Graph of this distribution:
b. Students reported the following scores on the ACT: $16,32,34,25,18,20,24,23$,
$26,25,27,26,23$
Qualitative or Quantitative? (circle)

$15-19$	
$20-24$	
$25-29$	
$30-34$	

Graph of this distribution:

1. Indicate if the following variables are Qualitative (QL) or Quantitative (QN):

_QN__ height	_ QL__ religion (type of)	_ QN_ religiosity (level of involvement with)
_QL__ gender	_ QL___ region (e.g., South, North)	_ QN _ grade in a class (e.g., A, B, C)
_QN__ self-esteem	_ QL__ marital status (single, etc.)	_ QL__ ethnicity (Black, White, M artian)

2. For each of the following data sets, determine if the data are Qualitative or Quantitative then construct an appropriate frequency table and histograms or bar graph (whichever is appropriate).
a. On the seven item quiz people scored
as follows: $6,2,5,4,6,7,4,4,3,5,0,4$,
$3,5,2,3,5,7,4,6,3,3,5,4,2,4$
Qualitative or Quantitative? circle)

Score___	Freq___
0	1
1	0
2	3
3	5
4	7
5	5
6	3
7	2

Note: On this and other problems, scores can go from high to low or viceversa, same on corresponding graphs.

b. On a measure of social anxiety people scored: $35,40,45,40,40,35,45,50,50,60$, $60,70,70,30,40,45,50,40,40,30$ Qualitative o, Quantitative?

Score_______req___	2
70	0
65	2
60	0
55	3
50	3
45	6
40	2
35	2
30	

Graph of this distribution:

c. Survey participants indicated their religious beliefs as follows: Christian (X), Atheist (A), Agnostic (G), or Foodie (F): C A GCFCGACGCAGCCFFACCC
Qualitative r Quantitative?

Score	Freq
Christians	10
A theists	4
A gnostic	4
Foodie	3

Graph of this distribution:

Test2					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	45	1	6.7	6.7	6.7
	60	1	6.7	6.7	13.3
	65	1	6.7	6.7	20.0
	70	3	20.0	20.0	40.0
	1	6.7	6.7	46.7	
	80	2	13.3	13.3	60.0
	1	6.7	6.7	66.7	
	90	1	6.7	6.7	73.3
	45	26.7	26.7	100.0	
	100	15	100.0	100.0	

3. Reading Frequency Tables:

a. How many people got a 60 on Test 2? 1
b. What percent of people got a 70 ? 20
c. What percent of people scored a 70 or below? 40
d. What percent of people scored between 45 and 100? 100
e. What's a bit odd or unusual about this distribution of scores?

MINORITY Minority Classification					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0 No	370	78.1	78.1	78.1
	1 Yes	104	21.9	21.9	100.0
	Total	474	100.0	100.0	

f. What percent of employees are minorities? 21.9\%
g. How many employees are not minorities? 370
h. Are these data qualitative or quantitative? Qualitative
i. How many employees appear to have a high school education but not more than that? 190
j. What percent of people might have done graduate level work, assuming they spent 12 years in primary education and 4 years in college?
10.5\%
4. Level/scale of measurement: (a) Identify the defining characteristics of each scale of measurement (b) sort the following four scales appropriately: years of age, Celsius temperature scale, top 10 finishing times in a race, the State you were born in

Nominal			
a. Categorized	Ordinal Categories in order	Interval Equal intervals	True zero

5. Identify the levels of measurement used in the following examples: (NOIR)

a. Group your friends in to the categories (a) best friends, (b) good friends, (c) expendable in a crisis. 0
b. Time (measured in seconds) required to duck after yelling "fore!" in a golfer's ear. R
c. Teaching effectiveness, summing responses across a five-item scale. Each item is on a 1-7 scale. I
d. Ask students to self-assess their procrastination ability on a 1-5 scale. I
e. Dividing people into males, females, and other. N
f. Ranking of 10 possible heroes (Abraham Lincoln, M artin Luther King, Jr., your stats instructor, etc.) from best to worst. 0
g. The number of times a Soap Opera star is depicted sleeping with someone other than his/her spouse. R
h. Level of understanding after a statistics course measured in length of groans using a stopwatch. R
i. A survey instrument with 15 items assessing the extent to which someone endorses Right Wing Authoritarianism. Each item is on a 1-10 scale. I

6. See instructions for problem 2 above:

a. People identified the political affiliation ($R=$ Republican, $D=$ Democrat, I=Independent) as follows: RIRRDDRDRRDRIR

Qualitative or Quantitative? (circle)

b. Students reported the following scores on the ACT: $16,32,34,25,18,20,24,23$, $26,25,27,26,23$

Qualitative or Quantitative? circle)

Homework 1.2: Experimental Terminology, Treatment Effect, Sampling Error

1. Terminology for Experiments: For each of the following research designs, draw a diagram (like those shown in class) that identifies the independent variable, the levels of the independent variable (e.g., wings bent up vs. wings straight), the dependent variable, and two possible extraneous variables (other things that affect the dependent variable). Here's an example from the airplane demonstration in class:	
a. A developmental psychologist wants to know if type of setting for care (day-care vs. stay at home) affected childrens' aggression levels. (For DV you might think about counting certain types of behaviors during an observation period. For extraneous variables, you might think of genetics, overall quality of care, number of children per adult, etc.)	
b. A social psychologist manipulates appearance of job applicants to see if it affects raters' perceptions of the applicant's qualifications: The experimenter uses identical resumes, but switches pictures that supposedly show the applicant, showing half the participants attractive people, and half the subjects unattractive people.	
C. A class of students decides to see if they can control a professor's lecture habits. Whenever the professor moves to the left side of the room, the students act interested and awake. When the professor moves to the right side of the room, the students act bored and some pretend to be drifting off to sleep.	
d. A researcher hypothesizes that participants subtly primed with the words of "sacrifice and "generous" would donate more to a charity when propositioned. She gave word puzzles to participants that either primed key words or neutral words. She then recorded amount given to charity (\$1-10) in a purportedly unrelated task.	

2. For each study above, assume a treatment effect was discovered. Explain what that means in terms of the IV and DV (i.e., which variable affected which other variable).

a.	type of setting: (day vs home-care) affected			
b. the ratings given to the job applicants.			
c.				
d.				
3. For each of the following, identify two sources of sampling error (hint: same as asking for extraneous variables):				
a. Our ability to control our behavior tends to degrade as we get more tired. A researcher examined whether time of day (morning vs. late afternoon) affected the extent of cheating on a supposed IQ test.			$\begin{aligned} & \# 1 . \\ & \# 2 . \end{aligned}$	
b. Terror management theory predicts signs of destruction cause us to feel under threat and more likely to display aggression. Researchers examined whether pictures of buildings (intact or destroyed) affected support for military action against Iran.			$\begin{aligned} & \# 1 \\ & \# 2 . \end{aligned}$	
c. A researcher examined whether recent exposure to the US flag affected their belief that the "US healthcare system is the best in the world."			$\begin{aligned} & \text { \#1 } \\ & \# 2 \end{aligned}$	
4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from normality.				
a. b. c. d. e. f. g.				 Educational Level (years)
 5. In the space to the right, draw a normal distribution of human height. Label where the most common scores fall, the 5% tallest, the 5% shortest. Give one reason why someone might be on the far left and one reason they might be on the far right.				

Homework 1.2: Experimental Terminology, Treat. Effect, Sampling Error-Key

1. Terminology for Experiments: For each of the following research designs, draw a diagram (like those shown in class) that identifies the independent variable, the levels of the independent variable (e.g., wings bent up vs. wings straight), the dependent variable, and two possible extraneous variables (other things that affect the dependent variable). Here's an example from the airplane demonstration in class:

a. A developmental psychologist wants to know if type of setting for care (day-care vs. stay at home) affected childrens' aggression levels. (For DV you might think about counting certain types of behaviors during an observation period. For extraneous variables, you might think of genetics, overall quality of care, number of children per adult, etc.)

Day Care
Parental Behaviors (EV)

2. For each study above, assume a treatment effect was discovered. Explain what that means in terms of the IV and DV (i.e., which variable affected which other variable).

| a. | type of setting: (day vs home-care) affected | $\ldots . .$. | levels of aggression |
| :---: | :---: | :---: | :---: | :---: |
| b. | Attractiveness of "applicant" affected | $\ldots \quad$ the ratings given to the job applicants. | |
| c. | Class behavior (i.e., shown interest) affected the professor's left-right position in the room | | |
| d. | Primed concept (generosity vs. something neutral) affected amount given to charity | | |

3. For each of the following, identify two sources of sampling error (hint: same as asking for extraneous variables):
a. Our ability to control our behavior tends to degrade as we get more tired. A researcher examined whether time of day (morning vs. late afternoon) affected the extent of cheating on a supposed IQ test.
b. Terror management theory predicts signs of destruction cause us to feel under threat and more likely to display aggression. Researchers examined whether pictures of buildings (intact or destroyed) affected support for military action against Iran.
c. A researcher examined whether recent exposure to the US flag affected their belief that the "US healthcare system is the best in the world."
\#1. test taking ability
\#2. fatigue or lack of sleep
\#1 personal military experience
\#2. xenophobia (fear of foreigners)
\#1 personal health care experiences
\#2 knowledge re: other systems
4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from normality.

a. positive skew b. negative skew c. bimodal (12 \& 16 years) d. bimodal	
5. In the space to the right, draw a normal distribution of human height. Label where the most common scores fall, the 5% tallest far right, the 5% shortest far left. Give one reason why someone might be on the far left (poor nutrition) and one reason they might be on the far right (genetic predisposition).	

Homework 2.1: MCT vs. MV, M easures of Central Tendency, Samples vs. Populations

1. Calculate the M ean (M), M edian (Md), and Mode (Mo) for the following distributions (or state not appropriate)	$\begin{aligned} & \hline 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{gathered} 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 14 \\ 26 \end{gathered}$	$\begin{gathered} 3 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 12 \\ 12 \\ 14 \\ 14 \\ 14 \end{gathered}$	$\begin{gathered} \hline 20 \\ 22 \\ 23 \\ 24 \\ 24 \\ 24 \\ 25 \\ 30 \\ 40 \\ 80 \\ 100 \end{gathered}$	$\begin{aligned} & 30 \\ & 40 \\ & 40 \\ & 50 \\ & 50 \\ & 50 \\ & 60 \\ & 70 \\ & 75 \\ & 75 \end{aligned}$	Duck Dynasty Duck Dynasty How I met your M other How I met your M other How I met your M other Breaking Bad Walking Dead Walking Slightly Impaired
M ean						
M edian						
Mode						

2. Circle best MCT for each
3. Which measure of central tendency (Mean, Median, or M ode is appropriate, and why?

| a. A distribution of reading speed
 scores for a class of third graders. | b. The most popular major at Winthrop. | c. The typical income of people in a bar after Bill
 Gates walks in. |
| :--- | :--- | :--- | :--- |
| d. The number of hours students
 typically study for a stats test,
 knowing that Susie Studiaholic
 studies way more than anyone
 else. | e. Number of greeting cards sent from
 sample including 1000 M en and 1000
 Women. [M en tend to send far fewer
 cards than women]. | f. The typical length of a baby born at St.
 Snufalufagus. Some of the babies are Irish, and
 others have statisticians for parents. |

5. Imagine a distribution of extraversion scores based on a set of Likert scales. The scores can be ranked so the data must be \qquad and the level of measurement is \qquad . If the distribution is symmetrical then the distribution is NOT \qquad . If we have the entire population of scores then both the mean and the standard deviation will be considered \qquad rather than \qquad . Now assume that we have a sample of sales people who are more extraverted than the normal population. If we compare the mean of this sample ()[symb.] to the mean of the population (\qquad) [symb.] we would expect the sample mean to fall to the \qquad of the population mean. The farther the sample mean of sales people falls from the population mean (the farther into the tail it goes) the more likely we would be to assume that sales people come from a(n) \qquad distribution with a higher population mean. The South Carolina grocery store with the best name is \qquad
\qquad . [2-words].
statistics right alternative parameters ordinal Piggly Wiggly interval skewed M quantitative qualitative razzle dazzle bimodal
6. Which would have greater variability? Circle the correct answer.

7. Assume a researcher administers a drug thought to lower anxiety to an intervention group ($n=10$) and gives a placebo drug (i.e., a sugar pill that does nothing) to the control group ($n=10$). After six weeks she measures anxiety levels in both groups and finds the intervention group has a lower anxiety score on average (41) than the control group (49).
a. The 41 and 49 are sample means or population means? So the correct symbol for each should be $\underline{\mathbf{M}}$ or $\underline{\boldsymbol{\mu}}$?
b. We can think about the sample mean of 41 as striving to represent the \qquad mean of all the people in the world that might take the drug or not take the drug? The 41 will likely not perfectly represent the population mean because of
\qquad _.
c. The difference we observe between a statistic and the parameter it is trying to represent is called \qquad _.
d. If the people who took the drug now really do on average have lower anxiety scores then we can say that the IV affected the DV and that means there was a \qquad _.
e. The difference observed between 41 and 49 may be due to either a \qquad or \qquad .
f. If the population means of the two conditions really do differ then that means there was a
g. We can be more confident that there really is a significant difference between the sample means if the variability in the sample scores is \qquad (high/low)?
Homework 2.1: MCT vs. MV, Measures of Central Tendency, Samples vs.
Populations-Key

8. Which measure of central tendency (Mean, M edian, or M duets appioprace, and why?

a. A distribution of reading speed scores for a class of third graders. Mean - no skew or multimodality indicated.	b. The most popular major at Winthrop. M ode- qualitative data.	c. The typical income of people in a bar after Bill Gates walks in. Median positively skewed.	
d. The number of hours students typically study for a stats test, knowing that Susie Studiaholic studies way more than anyone else. Median - Susie will create an extreme score, which causes skew.	e. Greeting cards sent by sample including 1000 M en and 1000 W omen. [M en tend to send far fewer cards than women]. Mode - we will likely see a bimodal distribution - say maybe a mode of 4 for men and 10 for women.	f. The typical length of a baby born at St. Snufalufagus. Some of the babies are Irish, and others have statisticians for parents. M ean no skew or multi-modality indicated.	
g. Length of incarceration. [A few prisoners serve life sentences, the vast majority typically severe between 2 \& 10 years]. Median the "lifers" will be extreme scores and skew the distribution.	h. Bench press strength with a sample including 50 college football players and 50 math majors. Mode - the weight training of football players will have a large effect on strength, thus causing a split into two distinct groups.	i. Number of movies watched per week, including a handful of people who work in movie theaters. . Median - the few movie workers will see many more; their extreme scores will fall high above where most people fall.	
4. In a normal population distribution the _mean_, media_, and _mode__ all fall in the exact center of the distribution. Scores that fall far from the middle of the distribution are considered _extreme__ scores ; scores falling near the mean are very \qquad common . The \qquad standard \qquad deviation_ [2 words] will tell you the overall spread of the scores and is the most precise measure of _variability_. In contrast, the mode, median, and mean are all measure of \qquad central tendency [2 words]. A normal curve is considered hypothetical because it is based on a(n) \qquad infinitely_ large sample. If you don't like someone, you serve them \square fruit \square _cake_ (2 words).			mean variability median fruit cake mode central tendency common standard deviation fashionable extreme infinitely insanely

5. Imagine a distribution of extraversion scores based on a set of Likert scales. The scores can be ranked so the data must be _Quantitative_ and the level of measurement is _interval_. If the distribution is symmetrical then the distribution is NOT _skewed_. If we have the entire population of scores then both the mean and the standard deviation will be considered _parameters_rather than _statistics_. Now assume that we have a sample of sales people who are more extraverted than the normal population. If we compare the mean of this sample (M) [symb.] to the mean of the population (μ) [symb.] we would expect the sample mean to fall to the _right_ of the population mean. The farther the sample mean of sales people falls from the population mean (the farther into the tail it goes) the more likely we would be to assume that sales people come from a(n)
_alternative_distribution with a higher population mean. The South Carolina grocery store with the best name is_Piggly Wiggly_ . [2-words].
statistics
right alternative parameters ordinal Piggly Wiggly interval skewed M quantitative qualitative razzle dazzle bimodal
identical
6. Which would have greater variability? Circle the correct answer.

1. The symbol for	The following symbol represents...
a. The standard deviation of a population:	d. ŝ:
b. The variance of population	e. σ :
c. The stand. dev. of a population as an estimate.	f. SS:

2. Contrasting measures of central tendency and variability

a. Assume you have one play left in the football game to score and thereby win. You need to move the ball 13 yards to score. You can give the ball either to Bruno (averages $\mathbf{1 0}$ yards, $\hat{\mathbf{s}}=\mathbf{1}$) or Rocky (averages 5 yards, $\hat{\mathbf{s}=10) . ~ W h o ~ s h o u l d ~ g e t ~ t h e ~ b a l l ? ~}$
b. Assume you need $\$ 700$ per month to cover your expenses and not get evicted. You have no savings and you will spend whatever you earn within the month. Would you rather work for tips at job A (average pay $\mathbf{\$ 1 0 0 0}, \mathbf{s}=500$) or job B (average pay $\mathbf{\$ 8 0 0}, \hat{s}=\mathbf{1 0 0}$)?
Note: For guidance on the following problems, find in your course-pack a page of example standard deviation problems.

3. Calculate standard deviation: 3, 6, 3, 7 $\underline{x} \quad \underline{x}^{2}$	$\hat{s}_{x}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$	4. Calculate standard deviation: 7, 7, 6, 6, 5 $\underline{x} \quad \underline{x}^{2}$
5. Calculate standard deviation: 4, 5, 4, 5 $\underline{x^{2}}$		6. Calculate standard deviation: 1, 6, 2, 3, 7 $\underline{\underline{x}} \quad \underline{x}^{2}$
5. A group of students indicate how many videos they rent in a two week period: $2,0,2,1,3$. Find the sum of squares (i.e., the sum of the squared deviation scores) and the standard deviation as a population estimate. (Note: you should get a \hat{s} of 1.1402)		
SS		st

10. Assume you're trying predict how students will score on a reading ability test. Students in class \#1 score $8,10,5,8,2,3,6$. Students in class \#2 score $13,9,10,10,10,8,10$. Calculate M and s_{x} for both.
11. Consider the results for the previous problem. For which class you more likely to be able to make a more accurate prediction about additional scores. Why? What piece of information is irrelevant for this question?
12. Using these same results, calculate the $\mathbf{6 8 \%}$ confidence interval for each class. That is, take the mean for each group, then subtract and add the standard deviation to get the range of scores in which the mean will fall 68% of the time.

1. The symbol for	The following symbol represents...
a. The standard deviation of a population: σ_{x}	d. s.: Estimate of the std. dev. of a population
b. The variance of population $\sigma^{2} x$	e. σ_{x} : $=$ The std. dev. of a population.
c. The stand. dev. of a population as an estimate. $\hat{\mathbf{S}}_{\mathrm{x}}$	f. SS: _ Sum of Squares

2. Contrasting measures of central tendency and variability

a. Assume you have one play left in the football game to score and thereby win. You need to move the ball 13 yards to score. You can give the ball either to Bruno (averages $\mathbf{1 0}$ yards, $\hat{s}=1$) or Rocky (averages 5 yards, $\hat{s}=10$). Who should get the ball? Rocky. You'd go with Bruno on a typical play, since you'd expect a reliable 10 ± 1 yards (9 to 11 yards). But he probably won't get the necessary 13 yards. Rocky will get 5 ± 10 yards (-5 to 15 yards). Though he might even lose yardage, 13 yards is clearly within the expected outcome.
b. Assume you need to earn at least $\$ 700$ per month to cover your expenses and not get evicted. You have no savings and you will spend whatever you earn within the month. Would you rather work for tips at job A (average pay $\$ \mathbf{1 0 0 0}, \hat{s}=500$) or job \mathbf{B} (average pay $\$ 800, \hat{s}=100$)? You'd expect to earn $\$ 1000 \pm 500(\$ 500$ to $\$ 1500)$ with job A, and $\$ 800 \pm \$ 100(\$ 700-\$ 900)$ with job B. It's more likely you'd make your minimum of $\$ 700$ with job B.

3. Calculate standard deviation: 3, 6, 3, 7		$\begin{aligned} & \hat{s}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)}{n}}{n-1}} \\ & \hat{s}=\sqrt{\frac{103-\frac{361}{4}}{4-1}} \\ & \hat{s}=2.0616 \\ & \hline \end{aligned}$	3. Calculate standard deviation: 7, 7, 6, 6, 5		$\begin{aligned} & \hat{s}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}} \\ & \hat{s}=\sqrt{\frac{195-\frac{961}{5}}{5-1}} \\ & \hat{s}=0.8367 \end{aligned}$
\underline{x}	$\underline{x^{2}}$		\underline{x}	$\underline{x^{2}}$	
3 6 3 7 $7 x=19$ $(\Sigma x)^{2}=361$	9 36 9 49 $\Sigma x^{2}=103$		7 7 7 6 6 5 $\sum x=31$ $\left(\sum x\right)^{2}=961$	$\begin{gathered} 49 \\ 49 \\ 36 \\ 36 \\ 25 \\ \Sigma x^{2}=195 \end{gathered}$	
5. Calculate standard deviation: 4, 5, 4, 5		$\begin{aligned} & \hat{s}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}} \\ & \hat{s}=\sqrt{\frac{82-\frac{324}{4}}{4-1}} \\ & \hat{s}=0.5774 \end{aligned}$	6. Calculate standard deviation: 1, 6, 2, 3, 7		$\sum x^{2}-\left(\sum x\right)^{2}$
\underline{x}	$\underline{x^{2}}$		\underline{x}	$\underline{x^{2}}$	$\hat{s}=\sqrt{\frac{L^{n}}{}}$
4 5 4 5 $\sum x=18$ $(\Sigma x)^{2}=324$	$\begin{gathered} 16 \\ 25 \\ 16 \\ 25 \\ \boldsymbol{\Sigma x ^ { 2 }}=\mathbf{8 2} \end{gathered}$		1 1 6 2 3 7 $\mathbf{x x}=\mathbf{1 9}$ $(\Sigma x)^{2}=\mathbf{3 6 1}$	$\begin{gathered} 1 \\ 36 \\ 4 \\ 9 \\ 49 \\ \sum x^{2}=99 \end{gathered}$	$\begin{aligned} & \hat{s}=\sqrt{\frac{99-\frac{361}{5}}{5-1}} \\ & \hat{s}=2.5884 \end{aligned}$

5. You ask a group of students how many videos they rent in a two week period and get the following data: $2,0,2,1,3$. Find the sum of squares (i.e., the sum of the squared deviation scores) and the standard deviation as a population estimate. (Note: you should get a \hat{s} of 1.1402)

SS		
$\underline{ }$	\underline{x}^{2}	$S S=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}$
2	4	
0	0	
2	4	$\begin{aligned} & S S=18-\frac{64}{5} \\ & S S=18-12.8=5.2 \end{aligned}$
1	1	
3	9	
$\begin{aligned} & \Sigma x=8 \\ & (\Sigma x)^{2}=64 \end{aligned}$	$\Sigma x^{2}=18$	

$$
\begin{aligned}
& \underline{\hat{s}} \\
& \hat{s}=\sqrt{\frac{S S}{n-1}} \\
& \hat{s}=\sqrt{\frac{5.2}{5-1}} \\
& \hat{s}=\sqrt{1.3} \\
& \hat{s}=1.1402
\end{aligned}
$$

6. Assume a group of 10 depressed people have a SS of
7. Calculate standard deviation.

$$
\begin{aligned}
& \hat{s}=\sqrt{\frac{S S}{n-1}} \\
& \hat{s}=\sqrt{\frac{81}{9}} \\
& \hat{s}=3
\end{aligned}
$$

8. A class of six stats students reports having $3,4,5,6$, $7, \& 1$ nightmares the night before a stats test.
Calculate variance.

9. A group of computer geeks report how many times they check their email in a 4 hour period: $4,19,3,0,14$. Calculate
SS.

10. Assume $S S$ equals $10,000, n=1,000$. Calculate σ.

$$
\begin{aligned}
& \sigma=\sqrt{\frac{S S}{n}} \\
& \sigma=\sqrt{\frac{10,000}{1,000}} \\
& \sigma=3.1623 \\
& \hline
\end{aligned}
$$

10. Assume you're trying predict how students will score on a reading ability test. Students in class \#1 score $8,10,5,8,2,3,6$. Students in class \#2 score $13,9,10,10,10,8,10$. Calculate M and s_{x} for both.

$$
\begin{aligned}
& \hat{s}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}} \hat{s}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}} \\
& \hat{s}=\sqrt{\frac{302-\frac{1764}{7}}{6}} \quad \hat{s}=\sqrt{\frac{714-\frac{4900}{7}}{6}} \quad \mathbf{M}_{\mathbf{1}}=\mathbf{6} \quad \mathbf{M}_{2}=\mathbf{1 0} \\
& \hat{s}=2.8868
\end{aligned}
$$

11. Consider the results for the previous problem. For which class you more likely to be able to make a more accurate prediction about additional scores. Why? What piece of information is irrelevant for this question?

Class \#2, less variability, mean

12. Using these same results, calculate the 68% confidence interval for each class. That is, t subtract and add the standard deviation to get the range of scores in which the mean will fall 68
$68 \% \mathrm{Cl}=\mathrm{M} \pm 1 \mathrm{SD}=6 \pm 2.8868=\mathbf{3 . 1 1 3 2}, \mathbf{8 . 8 8 6 8}$

Homework 3.1: Correlation \& Regression

This study tries to predict how persuasive someone is based on several factors. Imagine that you watched people with varying levels of expertise, attractiveness, LIKABILTY, \& BELIGENERENCE (hostility in argumentation) try to persuade someone to change their mind, and that you then measure the resulting amount of attitude-change. You have data from 20 such observations.

國 persuasion, correlation \& regression hw. say - SPSS Data Editor											- - - ${ }^{\text {x }}$
	Name	Type	Wi	De		Label	Value	Miss		Align	Measur -
1	id	Numeric	8	0	ID	D	None	None		Right	Scale
2	att_chng	Numeric	8	0		Attitude Change	None	None		Right	Scale
3	attract	Numeric	8	0		Attractiveness	None	None		Right	Scale
4	expertis	Numeric	8	0		Expertise	None	None		Right	Scale
5	likabil	Numeric	8	0		ikability	None	None		Right	Scale
6	beleger	Numeric	8	0		Belligerence	None	None		Right	Scale
7											
1. \Data View λ variable View/					1]						$\stackrel{\rightharpoonup}{ }$
SPSS Processor is ready											

1. Correlations:

a. We call the thing to the right a
b. The strongest correlation is between
\qquad \& \qquad , with an r
value of \qquad .
c. The weakest correlation is between
\qquad \& \qquad , with an r value
of \qquad _.
d. The biggest inverse relationship is between \qquad \& \qquad .
e. What is the p-value for the weakest correlation? \qquad . What is the standard cut-off level we use? \qquad
f. Check all the correlations that are significant.
g. Explain the difference between negative and positive correlations.
h. Explain what the p-value means.
i. Explain the difference between r and ρ.
j. Why can't we say likeability causes attitude change?

a. Dependent Variable: ATT_CHNG Attitude Change

3. Using the regression formula:

a. label $\mathrm{r} 2, \mathrm{a}, \mathrm{b}$, the criterion, $\&$ the predictor.
b. Define:

$$
y^{\prime}:
$$

a:
b:
$\mathrm{x}:$
c. Write the regression equation:
d. Draw the regression line on the appropriate graph
e. Is the regression coefficient significant? What's the p-value?
f. What amount of attitude change would you predict with a likeability score of 4 ? (Use your regression equation and plug in 4.)

a. Predictors: (Constant), BELEGER Belligerence

Coefficients ${ }^{\text {a }}$						
Model		Unstandardized Coefficients		Stan dardi zed Coeff icient s	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	17.033	2.409		7.070	. 000
	BELEGER Belligerence	-. 174	. 070	-. 506	-2.491	. 023

a. Dependent Variable: ATT_CHNG Attitude Change

4. Integrative Wrap-up. Important!

Which predictors of attitude change can you safely use? Why?

Which is the best predictor? Why?

With this predictor, how much more accurate are you relative to just guessing the mean of y ?

Homework 3.1: Correlation \& Regression - Key

This study tries to predict how persuasive someone is based on several factors. Imagine that you watched people with varying levels of EXPERTISE, attractiveness, likabilty, \& beugenerence (hostility in argumentation) try to persuade someone to change their mind, and that you then measure the resulting amount of ATIITUDE-CHANGE. You have data from 20 such observations.

乪persuasion, correlation \& regression hw. sav - SPSS Data Editor											- - - ${ }^{\text {x }}$
	Name	Type	Wi	De		Label	Value	Miss	Col	Align	Measur -
1	id	Numeric	8	0	ID	D	None	None		Right	Scale
2	att_chng	Numeric	8	0		Attitude Change	None	None		Right	Scale
3	attract	Numeric	8	0		Attractiveness	None	None		Right	Scale
4	expertis	Numeric	8	0		Expertise	None	None		Right	Scale
5	likabil	Numeric	8	0		-ikability	None	None		Right	Scale
,	beleger	Numeric	8	,		Belligerence	None	None		Right	Scale
7											
											\downarrow

1. Correlations:

a. We call the thing to the left a

Correlation M atrix

b. The strongest correlation is between

Likeability_ \& Attitude Change \qquad , with an r value of __r=. 710 \qquad _.
c. The weakest correlation is between
_Belligerence _\& _Attractive,_, with an r value of __r=.055
\qquad _.

Correlations

	ATT_CHNG	ATTRACT	EXPERTIS	LIKABIL	BELEGER
ATT_CHNG Pearson Correlation	1.000	. 208	.511*	.710*	-.506*
Sig. (2-tailed)		. 378	. 021	. 000	. 023
N	20	20	20	20	20
ATTRACT Pearson Correlation	. 208	1.000	. 344	. 084	-. 055
Sig. (2-tailed)	. 378		. 138	. 724	. 819
N	20	20	20	20	20
EXPERTIS Pearson Correlation	.511*	. 344	1.000	.545*	-. 295
Sig. (2-tailed)	* $\quad .021$. 138		. 013	. 206
N	20	20	20	20	20
LIKABIL Pearson Correlation	. 710^{*}	. 084	.545*	1.000	-. 080
Sig. (2-tailed)	7.000	. 724	. 013		. 738
N	20	20	20	20	20
BELEGER Pearson Correlation	-.506*	-. 055	-. 295	-. 080	1.000
Sig. (2-tailed)	. 023	. 819	. 206	. 738	
N	20	- 20	20	20	20

*. Correlation is significant at the 0.05 level (2 -talled).
${ }^{* *}$. Correlation is significant at the 0.01 level (2 -tailed).
d. The one biggest inverse relationship is between _Belligerence__ \& _Attitude Change___.
e. What is the p-value for the weakest correlation? _ $\mathbf{p o b t}_{\text {or }}=\mathbf{8 1 9}$. What is the standard cut-off level we use? _ $\alpha \leq .05$
f. Check all the correlations that are significant.
g. Explain the difference between negative and positive correlations.

Positively correlated variables move in the same direction (e.g., SAT scores \& GPA). Negatively correlated variables move in opposite directions (e.g., as SAT scores increase, time spent watching TV decreases).
h. Explain what the p-value means.

The p-value indicates the percentage chance that the observed correlation (r) would occur just by chance (i.e., when in the population $\rho=0 \&$ the H_{0} hypothesis is true).
i. Explain the difference between r and ρ.

The sample statistic r gives the observed correlation in a give sample - the values shown in the correlation matrix. The population parameter ρ is the value we try to estimate with r. We are always want to reject the null hypothesis $H_{0}: \rho=0$, by getting an r large enough that we can "trust" it.
j. Why can't we say likeability causes attitude change?

Correlation only tests for relationship, not causality. Some other factor may be influencing both likeability and attitude change, making it appear one causes the other.

Descriptive Statistics

	N	Mean	SD
ATT_CHNG	20	11.35	3.91
Attitude Change	20		
Valid N (listwise)	20		

Note: Each scatterplot shows a flat, horizontal line intersecting the y axis at 11.35 - this represents the mean of y - not the regression line.

2. Scatterplots with Regression Lines:

a. Label the predictor, criterion, slope, and y-intercept, x-axis, and y axis.
b. What's the r value for the relationship graphed here? Is it significant? $\mathbf{r}(\mathbf{1 8})=\mathbf{2 0 8}$, n.s.
c. What's the r^{2} value? $\mathbf{r}^{\mathbf{2}=, 0433}$
d. What's the r value for the relationship graphed here? Is it significant? $\mathrm{r}(18)=.511, \mathrm{p} \leq .05$
e. What's the r^{2} value? $r^{2}=.2611$
f. Is this a better or worse predictor? M ore or less prediction error? better, less error
g. Label prediction error for the score of 80 Expertise.
h. What two things differ about this regression line and the one above? Greater slope, actual scores fall closer to regression line.
i. What's the r value for the relationship graphed here? Is it significant? $\mathbf{r (1 8) = 7 1 0 , ~} \mathbf{p} \leq \mathbf{0 5}$.
i. Is this a weaker or stronger relationship?

stronger

k. The actual y values now fall \qquad to the reg. line.

closer

I. This means there will be \qquad prediction error with the regression line.

less

m . How does the strength of the regression line impact the mean amount of attitude change? [Sneaky question!]

It doesn't. The mean of y (attitude change) stays the same regardless of what you use to try to predict it. (Note the read horizontal line is always at 11.35, because $M_{y}=11.35$).
Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.710^{\mathrm{a}}$.505	.477	2.83

a. Predictors: (Constant), LIKABIL Likability

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Stan dardi zed Coeff icient\qquad	t	Sig.
		B	Std. Error			
1	(Constant)	3.932	1.844		2.132	. 047
	LIKABIL Likability	2.182	. 510	. 710	4.282	. 000

a. Dependent Variable: ATT_CHNG Attitude Change
$y^{\prime}=2.182(x)+3.932$
$y^{\prime}=2.182(5)+3.932$
$y^{\prime}=14.82$

3. Using the regression formula:

a. label $\mathrm{r} 2, \mathrm{a}, \mathrm{b}$, the criterion, $\&$ the predictor.
b. Define:
y^{\prime} : predicted value of y
a: y-intercept b: slope of r. line
x: value of predictor you plug in
c. Write the regression equation:
$y^{\prime}=\mathbf{2 . 1 8 2}(x)+3.932$
d. Draw the regression line on the appropriate graph
e. Is the regression coefficient significant? What's the p-value?
yes, $p \leq .05 \quad p=000$
f. What amount of attitude change would you predict with a likeability score of 4 ? (Use your regression equation and plug in 4.)
$y^{\prime}=2.182(x)+3.932$
$y^{\prime}=2.182(4)+3.932$
$y^{\prime}=12.66$

a. Dependent Variable: ATT_CHNG Attitude Change

Pick a large number for belligerence (x), like 60
$y^{\prime}=-.174(x)+17.033$
$y^{\prime}=-.174(60)+17.033$
$y^{\prime}=6.593$
g. Whte the regression equation for this regression analysis.
$\mathbf{y}^{\prime}=-\mathbf{1 7 4 (x) + \mathbf { 1 7 . 0 3 3 }}$ h. ゆraw the regression line on the appropriate graph
i. Is the regression coefficient significant? What's the p-value?
yes, $p \leq .05 p=023$

4. Integrative Wrap-up. Important!

Which predictors of attitude change can you safely use? Why?

Expertise, Likeability, and Belligerence all produced significant regression coefficients for predicting Attitude Change.

Which is the best predictor? Why?

Likeability is the best predictor of Attitude Change because it had the highest r ($r=710$).

With this predictor, how much more accurate are you relative to just guessing the mean of y ?
You can explain about 50\% of the variability in Attitude Change ($\mathrm{r}^{2}=.505$).

Homework 3.2: Correlation \& Regression Practice

From the website, get Smoking \& Four Lung Cancers -- These are 1960s data relating Cigarettes smoked and deaths per 100k in 44 states.

1. Correlate Cigarettes Smoked \& the four kinds of cancer. Report the number of unique sig. correlations in the matrix.		2. For the relationship between Cig. and BCancer, summarize the stat.		
		3. Summarize th other relations cancers). \qquad	statistics for the three ps (between Cig and other	
4. How likely is it that the correlation between Lung-Cancer and K-Cancer is due to chance? What hypothesis testing conclusion do you reach?		5. How likely is it that the correlation between K-Cancer and B-Cancer is simply a fluke? What hypothesis testing conclusion do you reach?		6. What percent of variance in Lung-Cancer is explained by Cigarettes?
7. What percent of variance in B-Cancer is explained by K-Cancer?		8. If appropriate, state the regression formula for predicting B-Cancer based on Cigarettes.		9. How much more accurate are you using the regression formula in the previous problem?
10. If appropriate, state the reg. formula for predicting Lung-Cancer based on Cigarettes.		11. What percent of variance in LungCancer is explained by Cigarettes? What's the std err of the residual?		12. Predict Lung-Cancer deaths based on 40 Cigarettes per capita.
13. If appropriate, state the reg. formula predicting Leuk-Cancer based on Cigarettes.		14. Create a scatterplot with regression line predicting Lung-Cancer with Cigarettes. Sketch here \qquad		
Open the employee selection data file. Correlate (in this order) job perf, ass. center avg, cog abil, structured interview, \& handwriting analysis.		15. How many unique sig. correlations?		
		16. Summariz job performanc	he four correlations with here. \qquad \rightarrow	
17. How likely is it that the correlation between ass. center avg and job performance is due to chance? What hypothesis testing conclusion?				
18. How likely is it that the correlation between structured interview and job perf is due to chance? What hypothesis testing conclusion?				
19. What percent of variance in job perform explained by cog abil?	20. Percent of variance in structured int score explained by cog abil?		21. Explain to manager the problem with using Ass Cntr avg to predict job perf.	
22. If appropriate, state formula for predicting job perf based on cog ability.	23. Predict job perf with cog ability of 700 .			24. For prior problem, how much overall error in predictions? How much var accounted for in job perf?
25. If appropriate, state formula for predicting cog ability based on job perf.	26. Predict cognitive ability with job perf scr of 7.			27. If appropriate, state formula for predicting job perf based on assessment center average.

Output for HW \#3.2

From the website, get Smoking \& Four Lung Cancers -- These are 1960s data relating Cigarettes smoked and deaths per 100k in 44 states.

1. Correlate Cigarettes Smoked \& the four kinds of cancer. Report the number of unique sig. correlations in the matrix. 5		2. For the relationship between Cig. and B-Cancer, summarize the stat.		$\begin{aligned} & r(42)=.704, p \leq .05 \\ & r(42)=.697, p \leq .05 \end{aligned}$
		3. Summarize the statistics for the three other relationships (between Cig and other cancers). \qquad		$\begin{aligned} & r(42)=.487, p \leq .05 \\ & r(42)=-.068, \text { n.s. } \end{aligned}$
4. How likely is it that the correlation between Lung-Cancer and K -Cancer is due to chance? What hypothesis testing conclusion do you reach? 6.3\% chance, Retain Ho		5. How likely is it that the correlation between K-Cancer and B-Cancer is simply a fluke? What hypothesis testing conclusion do you reach? 1.7\%, Reject Ho.		6. What percent of variance in LungCancer is explained by Cigarettes? $r^{2}=.4858, \text { so } 48.58 \%$
7. What percent of variance in B-Cancer is explained by K-Cancer?$r^{2}=.1289, \text { so 12.89\% }$		8. If appropriate, state the regression formula for predicting B-Cancer based on Cigarettes.$y^{\prime}=b x+a=.122 x+1.086$		9. How much more accurate are you using the regression formula in the previous problem? $r^{2}=.495, \text { so } 49.5 \%$
10. If appropriate, state the reg. formula for predicting Lung-Cancer based on Cigarettes.$y^{\prime}=b x+a=.529 x+6.472$		11. What percent of variance in LungCancer is explained by Cigarettes? What's the std err of the residual?$r^{2}=.4858, \text { so } 48.58 \%, \text { Sy' }=3.0661$		12. Predict Lung-Cancer deaths based on 40 Cigarettes per capita. $y^{\prime}=.529(40)+6.472=27.632$
13. If appropriate, state the reg. formula predicting Leuk-Cancer based on Cigarettes. Not appropriate		14. Create a scatterplot with regression line predicting Lung-Cancer with Cigarettes. Sketch here\qquad		
Open the employee selection data file. Correlate (in this order) job perf, ass. center avg, cog abil, structured interview, \& handwriting analysis.		15. How many unique sig. correlations? 2		$\begin{aligned} & r(15)=.470, \text { n.s. } \\ & r(15)=.520, p \leq .05 \\ & r(15)=.367, \text { n.s. } \\ & r(15)=-.183, \text { n.s. } \end{aligned}$
		16. Summarize the four correlations with job performance here. \qquad		
17. How likely is it that the correlation between ass. center avg and job performance is due to chance? What hypothesis testing conclusion? \square				5.7\%, Retain Ho
18. How likely is it that the correlation between structured interview and job perf is due to chance? What hypothesis testing conclusion? \qquad				14.7\%
19. What percent of variance in job perform explained by cog abil? $r^{2}=.271$	20. Percent of variance in structured int score explained by cog abil?$r^{2}=.3457$		21. Explain to manager the problem with using Ass Cntr avg to predict job perf. Greater than 5% chance that correlation is a fluke (i.e., not reliable)	
22. If appropriate, state formula for predicting job perf based on cog ability. $y^{\prime}=b x+a=.009 x-1.160$	23. Predict job perf with cog ability of 700 .$y^{\prime}=\mathrm{bx}+\mathrm{a}=.009(700)-1.160=5.14$			24. For prior problem, how much overall error in predictions? How much var accounted for in job perf? $S y^{\prime}=1.303, r^{2}=.271$
25. If appropriate, state formula for predicting cog ability based on job perf. $y^{\prime}=29.832 x+444.781$	26. Predict cognitive ability with job perf scr of 7.$y^{\prime}=29.832(7)+444.781=653.605$			27. If appropriate, state formula for predicting job perf based on assessment center average. Not appropriate

Fold paper on middle line. Correct answers on right. Correct letter choice is second to last letter..

1) Having people rate their religiosity (how religious they are) on a 1-7 scale will produce data at what level of measurement?
a) Interval
b) Nominal
c) Ratio
d) Ordinal
dcae. Any Likert type scale (e.g., 1-7) produces interval data (i.e., equal intervals between rankings but no true zero).
2) It will be easiest to detect a correlation if \qquad and \qquad
a) $\rho=0 ; n=10$
b) $\rho \neq 1 ; n=10$
c) $\rho=87 ; \mathrm{n}=30$
d) $\rho=1.5 ; \mathrm{n}=30$
e) your teacher tells you the answer
3) As the correlation strength increases which 2 things occur?
a) the coefficient of determination increases; Sy' decreases
b) the coefficient of determination increases; n decreases
c) pobt increases; Sy' decreases
d) $p_{\text {obt }}$ decreases; Sy' increases
e) $p_{\text {obt }}$ increases; r^{2} increases
f) the price of orange juice concentrate tops $\$ 70$ per barrel
4) The coefficient of determination tells you
a) Whether the correlation is statistically significant
b) Whether regression is allowed
c) The increases in prediction accuracy
d) The amount of variance explained by y^{\prime}
e) The amount of variance explained by b
5) You collect data on the number of hours of TV children watch each night. For some reason, almost all of the children report watching between 80 and 90 minutes of television, with very, very few watching more or less than that. The distribution would likely be described as:
a) symmetrical
b) normally distributed
c) leptokurtic
d) skewed
e) mesokurtic
f) bimodal
6) We can define sum of squares as the
a) $\Sigma x^{2}+(\Sigma x)^{2}$
b) $\Sigma x^{2} / n+(\Sigma x)^{2}$
c) average squared deviation score
d) sum of the squared deviation scores
e) sum of the deviation scores squared
abce. A large ρ means a strong correlation, so it's easier to detect. A large n gives you more power to detect whatever is there.
afaf. coeff of determination (r^{2}) always increases as r increases, and the amount of prediction error (Sy') always goes down because your prediction ability is getting stronger.
aace. r^{2} (the coefficient of determination) tells you the increase in prediction accuracy, or the amount of variance in y accounted for by x.
cece. Low variability will produce a graph of the distribution that is "pointy" - Leptokurtic
abdb. Sum of squares is short for "sum of the squared deviation scores"
7) You want to predict test performance for a given student on a given U.S. History test. You would likely be most accurate under which of the following conditions:
a) $\sigma=15 \mu=60 \mathrm{Md}=58$
b) $\sigma=15 \mu=50 \mathrm{Md}=52$
c) $\sigma=10 \mu=70 \mathrm{Md}=72$
d) $\sigma=17 \mu=65 \quad \mathrm{Md}=67$
8) If a student scored much higher than average then her deviation score would be
a) negative and large
b) positive and large
c) large (but you don't know whether negative or positive)
d) negative (but you don't know whether large or small)
e) positive (but you don't know whether large or small)
acce. All that matters here is picking the smallest standard deviation - as variability decreases prediction accuracy increases.
dbb. Deviation score is equal to x - $x_{\text {bar }}$, so higher than average would make it positive, and "much higher than average" would make it a large deviation.
ddbd. Less consistent means "higher variability" and "always smaller" means a "lower central tendency".
a) higher variability; higher central tendency
b) higher variability; lower central tendency
c) Iower variability; higher central tendency
d) lower variability; lower central tendency
e) depends upon the sample size
f) depends upon whether the distributions are skewed.
9) Which of the following would provide parameters?
a) SS, variance, Standard Deviation
b) variance and Standard Deviation
c) Cy' $^{\prime}$, b, a
d) $\mathrm{r}, \mathrm{Sy}{ }^{\prime}$, Sy
e) μ, ρ, σ
f) $M, M d, M o$
10) Students are assigned to complete a fashion survey in one of four class rooms. Classroom number would provide \qquad data and favorite color of shirt would provide
\qquad data.
a) quantitative; qualitative
b) quantitative; quantitative
c) qualitative; quantitative
d) qualitative; qualitative
11) Which of the following would best enable you to show the number of times Stove-top stuffing was listed as favorite food among a group of 200 people?
a) Mean
b) M edian
c) Mode
d) Frequency Distribution
e) Range
f) Standard Deviation
12) You ask students to rank 10 cafeteria meals from best to worst. This would provide which level of measurement:
a) Nominal
b) Ordinal
c) Interval
d) Ratio
ddbe. Rankings produce ordinal level data.
eaca. Favorite type of food is qualitative data - mode is the only measure of central tendency that works with qualitative data.
adde. Classroom number is not rankable in a meaningful way and so is qualitative; favorite color would also produce qualitative data.
13) Assume evil civil engineers change traffic light colors to orange, purple, \& fuchsia. Counting the number of accidents occurring in the first hour after the change would provide which level of measurement:
a) Nominal
b) Ordinal
c) Interval
d) Ratio
14) Which of the following SPSS graphs most easily enable you to check for deviations from normality for a distribution of data?
a) Bar graph
b) Error bar
c) Graphing of sample means
d) Pie chart
e) Line graph
f) Histogram
15) A distribution with two distinct clusters of high frequency scores could be described as
a) normally distributed
b) mesokurtic
c) leptokurtic
d) bimodal
e) skewed
f) bumpy
16) Which measure gives the score at the $50^{\text {th }}$ percentile?
a) Skew
b) Mean
c) Median
d) Mode
e) Mendacity
f) Standard Deviation
17) A deviation score tells you if the
a) Distribution is skewed
b) Distribution is bimodal
c) Distribution has kurtosis
d) The score is smaller or bigger than the mean
e) The score is smaller or bigger than the median

19) SS / n provides

a) Standard Deviation
b) Variance
c) Sum of Squares
d) $\Sigma x^{2}+(\Sigma x)^{2} / n$
e) a Deviation Score
f) Sum of the Deviation Scores
20) As the strength of the correlation increases, which of the following increase
a) r^{2}, slope of the regression line, prediction accuracy
b) r^{2}, a, prediction accuracy
c) Sy', n, prediction accuracy
d) $\mathrm{Sy}^{\prime}, \mathrm{Sy}, \mathrm{r}^{2}$
e) prediction accuracy, slope of the regression line, Sy'

a) Standard Deviation b) Variance c) Sum of Squares d) $\Sigma x^{2}+(\Sigma x)^{2} / n$ e) a Deviation Score f) Sum of the Deviation Scores	dividing SS by n gives you Variance.
20) As the strength of the correlation increases, which of the following increase a) r^{2}, slope of the regression line, prediction accuracy b) r^{2}, a, prediction accuracy c) Sy', n, prediction accuracy d) $\mathrm{Sy}^{\prime}, S y, r^{2}$ e) prediction accuracy, slope of the regression line, Sy'	beag If r increases, all of these three things must also increase.

bdda. You would start counting at zero, so the data would be ratio.
alfg. The Histogram on SPSS allows you to overlay the curve of a normal distribution.
bldk. Bimodal data has two clumps of data producing a camel-like shape.
eocq. By definition, the M edian gives the score at the $50^{\text {th }}$ percentile.
21) As a correlation gets stronger, the scatterplot pattern become more
a) elliptical (egg shaped)
b) line-like
c) flatter
d) variable
e) slanted to the right
f) slanted to the left
22) If the Ho for a correlation is false it means
a) There really isn't a correlation
b) $\rho=0$
c) There really is a correlation
d) $\rho \neq 0$
e) r must be a large value
f) $a \& b$
g) $c \& d$
h) c, d, \& e
23) When conducting a correlation, you are more likely to get a small p value if
a) ρ is small
b) ρ is large
c) the sample is small
d) the sample is large
e) $a \& c$
f) $b \& d$
24) Assume you correlate self-esteem and depression
reason your sample has very few people with average
are likely to experience...
a) a large ρ
b) a small ρ
c) a curvilinear relationship
d) truncation of range
e) a smaller standard deviation for depression
25) The As r increases....
a) Prediction accuracy decreases
b) The difference between Sy and Sy' gets smaller
c) Sy' gets larger
d) The coefficient of determination increases
e) The slope of the regression line gets flatter
26) When conducting a correlation, we calculate \qquad to estimate \qquad __.
a) $X_{\text {bar }} ; \mu$
b) $\mu ; x_{b a r}$
c) $r ; \rho$
d) $\rho ; \rho$
e) $r ; p$
f) b ; y^{\prime}
27) When Sy' increases
a) Sy increases and rincreases
b) Sy decreases and r decreases
c) Prediction error increases and r^{2} increases
d) Prediction error decreases and r^{2} decreases
e) r decreases and prediction error increases
agbd. A stronger correlation has less error so the points fall closer to the regression line. In a perfect correlation all the points fall exactly on the regression line.
qggh. The Ho says there is no correlation - if this is false then there must be an actual correlation. ($\rho \neq 0$ means there is some sort of correlation, either positive or negative).
ogfp. You're more likely to get a small p value (an indication of a real correlation) if the true correlation (ρ) is large and you have a larger (more reliable) sample to reflect this.
egdg. The truncation of the range off x (i.e., you have only people with average self-esteem) causes an underestimation of ρ.
oudo. If r increases r^{2} - the correlation of determination - must increase as well.
ppce. Using our sample we calculate r (a statistic) to estimate ρ (a population parameter).
goeo. Strength of correlation never affects Sy, ruling out a \& b. An increasing Sy' means more prediction error which means r is getting smaller.

Homework 3.4: Computational Review \#1 (open-book)

You can find the dataset at the website http:// faculty.winthrop.edu/ sinnj/ . It's creatively called Computational Review
\#1. The researcher is attempting to identify factors that can predict anxiety levels.

4. Do an analysis to provide the minimum values, maximum values, means, and standard deviations.
a. Which variable has the lowest standard deviation? (Be careful, you can only get standard deviation on quantitative data measured at the interval level or above).

[Paste Table of Descriptive Statistics Here.]

Do a correlation matrix correlating Anxiety, Hours worked per week, Social Support Quality, and Hours of Exercise.

* What's the smallest correlation (significant or not)?
* What's the direction of the relationship between Anxiety \& ... Hours Exer? \& Hours Worked?
* In which cases would you assume that "rho" is not equal to zero?

[Paste Correlation M atrix Here.]

7. Do 3 sets of scatterplots and regression analyses, pasting your work on the next page. You'll do three sets of analyses trying to predict anxiety. Use these three predictors: Hours worked, social support, and hours of exercise.

Which predictor accounts for the most variance?
Which predictor accounts for the least variance?
Which predictor best predicts anxiety?
What level of anxiety would you predict for an individual who exercised only 4
hours per week?

Show output where you're trying to predict Anxiety based on Hours worked per week.
[Paste "M odel Summary" table here and "Coefficients" table in space below.]

Show output of regression analysis where you're trying to predict Anxiety based on Social support Quality.

[Paste "M odel Summary" table here and "Coefficients" table in space below.]	[Paste Scatterplot with regression line Here.]			
	Show output of regression analysis where you're trying to predict Anxiety based on		Hours of exercise per week.	
[Paste "M odel Summary" table here and "Coefficients" table in space below.]	[Paste Scatterplot with regression line Here.]			

Homework 3.4: Computational Review \#1 (open-book) -key

You can find the dataset at the website http:// faculty.winthrop.edu/sinnj/ . It's creatively called Computational Review
\#1. The researcher is attempting to identify factors that can predict anxiety levels.

1. Do an appropriate graph of the marital status distribution. How to do it: It's qualitative data, so bar or pie graph is appropriate. Go to graphs, bar, groups of cases, move marital status into category axis box.	2. Do an appropriate graph of the anxiety distribution, with a normal curve as a backdrop. c. Any deviations from normality? no d. What would probably make the data fit the normal curve better? A larger sample. How to do it: Go to Graphs, Histogram, select display normal curve.
[Paste Graph of M arital Status Distribution Here.]	[Paste Graph of Anxiety Distribution Here.]
3. Do a graph that shows you the mean, plus or minus 1 standard deviation on anxiety.	
[Paste Graph of M arital Status Distribution Here.]	

4. Do an analysis to provide the minimum values, maximum values, means, and standard deviations.
b. Which variable has the lowest standard deviation? (Be careful, you can only get standard deviation on quantitative data measured at the interval level or above).

- Social Support Quality has lowest standard deviation.
- How to do it: Go to Descriptives, Descriptives (again), move over every QUANTITATIVE variable (i.e., not M arital Status)

[Paste Table of Descriptive Statistics Here.]

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
anxiety	20	7	30	18.95	6.126
Hours worked per week	20	20	60	41.50	14.244
Social Support quality	20	2	7	4.75	1.552
hrsexer	20	2	12	6.90	3.144
Valid N (listwise)	20				

Do a correlation matrix correlating Anxiety, Hours worked per week, Social Support Quality, and Hours of Exercise.

* What's the smallest correlation (significant or not)? Hrs Exercised \& Hrs W orked. ($r=-.173$)
* What's the direction of the relationship between Anxiety \&...Hours Exer? Negative \&.... Hours Worked? Positive
* In which cases would you assume that "rho" is not equal to zero? Social Support and Anxiety, Hrs Exercise \& Anxiety

Show output where you're trying to predict Anxiety based on Hours worked per week.
[Paste "M odel Summary" table here and "Coefficients" table in space below.]

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.194^{\mathrm{a}}$.038	-.016	6.174

a. Predictors: (Constant), Hours worked per week

Coefficients ${ }^{\text {a }}$					
Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	15.489	4.352		3.559	. 002
Hours worked per week	. 083	. 099	. 194	. 839	. 413

a. Dependent Variable: anxiety
[Paste Scatterplot with regression line Here.]

Show output of regression analysis where you're trying to predict Anxiety based on Social support Quality.

[Paste "M odel Summary" table here and "Coefficients" table in space below.]

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.530^{\mathrm{a}}$.281	.241	5.336

a. Predictors: (Constant), Social Support quality

Coefficients ${ }^{\text {a }}$						
Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	9.009	3.933		2.291	. 034
	Social Support quality	2.093	. 789	. 530	2.653	. 016

a. Dependent Variable: anxiety
[Paste Scatterplot with regression line Here.]

Show output of regression analysis where you're trying to predict Anxiety based on Hours of exercise per week.
[Paste "M odel Summary" table here and "Coefficients" table in space below.]

Model Summary

| | | | Adjusted | |
| :--- | :--- | ---: | ---: | ---: | Std. Error of

a.Predictors: (Constant), hrsexer

Coefficients ${ }^{2}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	29.351	2.197		13.361	.000
	hrsexer	-1.507	.291	-.774	-5.181	.000

a. Dependent Variable: anxiety
[Paste Scatterplot with regression line Here.]

Homework 3.5: Computational Review \#2 (open book)

9. Produce a table comparing the Hours Exercised by single and married persons.

11. Report the largest standard deviation among the four quantitative variables in the dataset.

13. If appropriate, indicate how much variance anxiety accounts for in hours worked. If not appropriate, explain why.

15. Create a table to answer this question: What percent of people exercise 6 hours or less? Report only the correcxt percent

16. Correlate anxiety, hours worked, social support, and hours exercised. What's the strongest observed correlation? [Report symbol and correct value.]

Variables: \qquad \& \qquad

18. If appropriate, write the regression equation for predicting anxiety based on hours of exercise. If not appropriate, explain why.
10. Report the median Hours Worked and Hours Exercised.

| Hours Worked Md | | |
| ---: | ---: | ---: | ---: |
| Hours Exercised Md $=$ | | |

12. Report the Pearson Correlation Coefficient of the variable that best predicts Hours Exercised.

13. Create a table showing the number of married and unmarried people in the dataset. Report only the two correct numbers.
number of single:
number of married: \qquad
14. Correlate anxiety, hours worked, social support, and hours exercised. List all the significant correlations. [Report symbol and correct value.]

-				
$=$				
	$=$			
	$=$			
	$=$			

19. If appropriate, predict anxiety given 8 hours of exercise. If not appropriate, explain why.
20. If appropriate, write the regression equation for predicting anxiety based on hours of work. If not appropriate, explain why.
21. If appropriate, predict anxiety given 6 hours of work. If not appropriate, explain why.
22. Sketch the regression line for predicting anxiety based on hours of exercise. Label appropriately, especially where the y-intercept occurs.

Homework 3.5: Computational Review - Key , Test \#1 (open book)

1. A researcher records the following scores in a pilot study: 10, 12, 14, 10, 12, 16. Calculate variance.
$\hat{s}_{x}=\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}=\frac{940-\frac{(74)^{2}}{6}}{6-1}$
2. Assume $\mathrm{SS}=2468$ and n equals 20 . Calculate standard deviation.

$$
\hat{s}_{x}=\sqrt{\frac{S S}{n-1}}=\sqrt{\frac{2468}{20-1}}
$$

3. A traffic safety engineer measured the number of times motorists ran a read light at various 20 minute intervals throughout the day. Calculate standard deviation for these numbers: $2,0,4,1,0,5,9$

$$
\begin{aligned}
& \hat{s}_{x}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}=\sqrt{\frac{127-\frac{(21)^{2}}{7}}{7-1}} \\
& \hat{s}_{x}=3.2650
\end{aligned}
$$

5. Open the website dataset Test 1 Review. Using SPSS, construct an appropriate graph to show the average hours of work plus/ minus one standard deviation. Roughly sketch the graph below and label the axes appropriately.

Go to Error bar, select separate variables, select Standard Deviation and set multiplier to 1.
6. Using SPSS, create a graph showing the frequency for hours of exercise. Do NOT produce a bar chart. Label appropriately.

Go to Graph, histogram, move hrsexer into "variable" box.
9. Produce a table comparing the Hours Exercised by single and married persons.

	Avg. Hours Single $=$	6.00		
Avg. Hours Married $=$	7.80			

Use Analyze, compare means, means
11. Report the largest standard deviation among the four quantitative variables in the dataset.

10. Report the median Hours Worked and Hours Exercised.

Hours Worked Md =	40.00				
Hours Exercised Md =	8.00				

Go to descriptives, frequencies, select statistics, select median
12. Report the Pearson Correlation Coefficient of the variable that best predicts Hours Exercised.

Use Analyze, descriptives, descriptives.

		anxiety	Hours worked per week	Social Support quality	hrsexer
anxiety	Pearson Correlation	1	. 194	. $530 *$	-. $774{ }^{* *}$
	Sig. (2-tailed)		. 413	. 016	. 000
	N	20	20	20	20
Hours worked per week	Pearson Correlation	. 194	1	. 375	-. 173
	Sig. (2-tailed)	. 413		. 103	. 466
	N	20	20	20	20
Social Support quality	Pearson Correlation	.530*	. 375	1	-. 318
	Sig. (2-tailed)	. 016	. 103		. 171
	N	20	20	20	20
hrsexer	Pearson Correlation	-.774**	-. 173	-. 318	1
	Sig. (2-tailed)	. 000	. 466	. 171	
	N	20	20	20	20

*. Correlation is significant at the 0.05 level (2 -tailed).
${ }^{* *}$. Correlation is significant at the 0.01 level (2 -tailed).
13. If appropriate, indicate how much variance anxiety accounts for in hours worked. If not appropriate, explain why.

You could calculate r^{2}, but the correlation is not significant (p is not below .05), so it is in appropriate to calculate the coefficient of determination $\left(r^{2}\right)$.
14. Create a table showing the number of married and unmarried people in the dataset. Report only the two correct numbers.
number of single: _10__
number of married: \qquad 10 Go to analyze, descriptives, frequencies.

20. If appropriate, write the regression equation for predicting anxiety based on hours of work. If not appropriate, explain why.

Not appropriate, correlation not significant
21. If appropriate, predict anxiety given 6 hours of work. If not appropriate, explain why.

Not appropriate, correlation not significant
22. Sketch the regression line for predicting anxiety based on hours of exercise. Label appropriately, especially where the y-intercept occurs.

1. Open Dataset "Sleep," correlate all the variables, and summarize all the correlations in the standard format $[r(20)=4.55$, n.s. $]$.	2. Identify the variable pairs with the weakest and strongest correlations in \#1. 3. Identify the amount of variance Weekend Sleep accounts for in amount Slept Last Night.	4. If appropriate, provide the formula for predicting Hours Slept Last Night based on Hours Slept Last Weekend.
5. If appropriate, predict Hours Slept Last Night based on Hours Slept on School Night.	6. Using SPSS, create a scatterplot for \#4 with a regression line. Roughly sketch axes and line below.	7. Using SPSS, create a scatterplot for \#5 with a regression line. Roughly sketch axes and line below.
8. Predict Hours Slept Last Night if Weekend Hours Slept is 5 .	9. State the correct symbols and values for \#8: a. Coefficient of Determin: b. Std Err of the Residual: c. Chance that $\rho=0$. d. Pearson's Corr. Coeff:	10. Open Dataset Bogus Winthrop. Summarize all correlations among the interval and ratio data.
11. Identify the two strongest and two weakest correlations in previous problem - state the two variable pairs.	12. If appropriate, state the formula for predicting GPA based on Satisfaction.	13. Do a scatterplot with a regression line for previous problem. Roughly sketch the axes and line here.
14. State the correct symbols and values for \#12. a. Coefficient of Determin: b. Std Err of the Residual: c. Chance that $\rho=0$. d. Pearson's Corr. Coeff:	15. Predict GPA if Satisfaction is 6.	

1. Open Dataset "Sleep," correlate all the variables, and summarize all the correlations in the standard format $[r(20)=4.55$, n.s.].

Correlations					
		SLPT_LN	SLPT_SN	SLPT_WKND	Books
SLPT_LN	Pearson Correlation	1	320	719 ${ }^{\text {"1 }}$	-. 176
	Sig. (2-tailed)		. 090	. 000	. 361
	N	29	29	29	29
SLPT_SN	Pearson Correlation	.320	1	. 316	-. 340
	Sig. (2-tailed)	. 090		. 095	. 071
	N	29	29	29	29
SLPT_WKND	Pearson Correlation	.719 ${ }^{\text {² }}$	316	1	. 111
	Sig. (2-tailed)	000	. 095		. 567
	N	29	29	29	29
BOOKS	Pearson Correlation	-. 176	-340	. 111	1
	Sig. (2-tailed)	. 361	. 071	. 567	
	N	29	29	29	29

- $r(27)=.320$, n.s.
- $\mathbf{r}(27)=.719, \mathrm{p}<=.05$
- $\mathbf{r}(27)=.176$, n.s.
- $\mathbf{r}(27)=.316$, n.s.
- $\mathbf{r}(27)=-.340$, n.s.
- $\mathbf{r}(27)=.111$, n.s.
**. Correlation is significant at the 0.01 level (2-tailed).

2. Identify the variable pairs with the weakest and strongest correlations in \#1.

Correlations					
		SLPT_LN	SLPT_SN	SLPT_WKND	BOOKS
SLPT_LN	Pearson Correlation	1	320	$719^{\prime \prime}$	-. 176
	Sig. (2-tailed)		. 090	. 000	. 361
	N	29	29	29	29
SLPT_SN	Pearson Correlation	. 320	1	. 316	-. 340
	Sig. (2-talled)	090		. 095	. 071
	N	29	29	29	29
SLPT_WKND	Pearson Correlation	.719 ${ }^{\text {¹ }}$.316	1	111
	Sig. (2-tailed)	000	. 095		. 567
	N	29	29	29	29
BOOKS	Pearson Correlation	-. 176	-340	111	1
	Sig. (2-tailed)	.361	. 071	. 567	
	N	29	29	29	29

--. Correlation is significant at the 0.01 level (2 -tailed).

- Strongest:
- Slpt_wknd \& Slpt_ln
- Weakest:
- Books and Slpt_wknd

3. Identify the amount of variance Weekend Sleep accounts for in amount Slept Last Night.

	Correlations				
		SLPT_LN	SLPT_SN	SLPT_WKND	BOOKS
SLPT_LN	Pearson Correlation	1	.320	$.719^{2 N}$	-.176
	Sig. (2-tailed)		.090	.000	.361
	N	29	29	29	29
SLPT_SN	Pearson Correlation	.320	1	.316	-.340
	Sig. (2-tailed)	090		095	.071
	N	29	29	29	29
SLPT_WKND	Pearson Correlation	$.719^{21}$.316	1	.111
	Sig. (2-tailed)	.000	.095		.567
	N	29	29	29	29
BOOKS	Pearson Correlation	-.176	-.340	.111	1
	Sig. (2-tailed)	.361	.071	.567	
	N	29	29	29	29

- $\mathbf{r}=.719$
- $\mathbf{r}^{2}=.5170$

[^0]4. If appropriate, provide the formula for predicting Hours Slept Last Night based on Hours Slept Last Weekend.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.719^{a}$.516	.498	1.064
a. Predictors: (Constant), SLPT_WKND				

- $y^{\prime}=1.061(x)-2.406$

Coefficients ${ }^{a}$

Model		Unstandardized Coefficients		$\substack{\text { Standardized } \\ \text { Coefficients }}$Beta	t	Sig.
		B	Std. Error			
1	(Constant)	-2.406	1.674		-1.438	. 162
	SLPT_WKND	1.061	.198	. 719	5.370	. 000

a. Dependent variable: SLPT_LN
5. If appropriate, predict Hours Slept Last Night based on Hours Slept on School Night.

- Not appropriate. Correlation not significant.

6. Using SPSS, create a scatterplot for \#4 with a regression line. Roughly sketch axes and line below.
7. Using SPSS, create a scatterplot for \#5 with a regression line.

8. Predict Hours Slept Last Night if Weekend Hours Slept is 5.

$$
y^{\prime}=b x+a
$$

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.719^{\mathrm{a}}$.516	.498	1.064

a. Predictors: (Constant), SLPT_WKND

- $y^{\prime}=1.061(x)-2.406$
- $y^{\prime}=1.061(5)-2.406$
- $y^{\prime}=2.899$

Coefficients ${ }^{a}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	-2.406	1.674		-1.438	. 162
	SLPT_WKND	1.061	. 198	. 719	5.370	. 000

a. Dependent Variable: SLPT_LN
9. State the correct symbols and values for \#8:

- a. Coefficient of Determin: $r^{2}=.516$
b. Std Err of the Residual: $\quad \mathrm{Sy}^{\prime}=1.064$
c. Chance that $\rho=0$:
$\mathrm{p}=.000$ (actually $\mathrm{p}<.001$)
d. Pearson's Corr. Coeff: $\quad r=.719$

10. Open Dataset Bogus Winthrop. Summarize all correlations among the interval and ratio data.

Correlations					
		college gpa	number of WU friends	social skills	satisfaction wo WU
college gpa	Pearson Correlation	1	. $555{ }^{2}$	-. 037	$.744^{12}$
	Sig. (2-tailed)		. 011	. 877	. 000
	N	20	20	20	20
number of WO friends	Pearson Correlation	. 555^{2}	1	. 023	$.520^{\circ}$
	Sig. (2-tailed)	. 011		. 924	019
	N	20	20	20	20
social skills	Pearson Correlation	. 037	. 023	1	-. 011
	Sig. (2-tailed)	. 877	924		. 962
	N	20	20	20	20
satisfaction w/ WU	Pearson Correlation	. $744^{\text {II }}$	$520{ }^{2}$	-. 011	1
	Sig. (2-tailed)	. 000	. 019	. 962	
	N	20	20	20	20

- $\mathrm{r}(18)=.555, \mathrm{p}<=.05$
- $\mathrm{r}(18)=-.037$, n.s.
- $\mathrm{r}(18)=.744, \mathrm{p}<=.05$
- $\mathrm{r}(18)=.023$, n.s.
- $\mathrm{r}(18)=.520, \mathrm{p}<=.05$
- $r(18)=-.011$, n.s.
*. Correlation is significant at the 0.05 level (2-tailed).
*. Correlation is significant at the 0.01 level (2-tailed).

11. Identify the two strongest and two weakest correlations in

 previous problem - state the two variable pairs.- Strongest: Satisfaction \& GPA
- Weakest: Satisfaction \& Social Skills

Correlations					
		college gpa	number of WU friends	social skills	$\begin{array}{\|l} \hline \text { satisfaction wf } \\ \text { WU } \end{array}$
college gpa	Pearson Correlation	1	$.555^{2}$. 037	. $744^{\text {² }}$
	Sig. (2-taileo)		. 011	. 877	. 000
	N	20	20	20	20
number of WU friends	Pearson Correlation Sig. (2-failed) N	$\begin{array}{r} .555^{2} \\ .011 \\ 20 \end{array}$	1	. 023	. $520{ }^{2}$
				. 924	. 019
			20	20	20
social skills	Pearson Correlation Sig. (2-tailed) N	. 037	. 023	1	- 011
		877	. 924		. 962
		20	20	20	20
satisfaction w/WU	Pearson Correlation Sig. (2-talled) N	744"	. 520^{2}	- 011	1
		. 000	. 019	. 962	
		20	20	20	20

*. Correlation is significant at the 0.05 level (2 -tailed)
*- Correlation is significant at the 0.01 level (2 -tailed).
12. If appropriate, state the formula for predicting GPA based on Satisfaction.

$$
\begin{aligned}
& y^{\prime}=b x+a \\
& y^{\prime}=.391(x)+.819
\end{aligned}
$$

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.744^{\mathrm{a}}$.554	.529	.55944

a. Predictors: (Constant), satisfaction w/ WU

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	. 819	.412		1.987	. 062
	satisfaction w/ WU	. 391	. 083	. 744	4.724	. 000

a. Dependent Variable: college gpa
13. Do a scatterplot with a regression line for previous problem. Roughly sketch the axes and line here.

14. State the correct symbols and values for \#12.

- a. Coefficient of Determin: $r^{2}=.554$
b. Std Err of the Residual: \quad Sy' $=.5594$
c. Chance that $\rho=\mathrm{o}$:
$\mathrm{p}=.000 \quad$ (actually $\mathrm{p}<.001$)
d. Pearson's Corr. Coeff: $\quad r=.744$

15. Predict GPA if Satisfaction is 6 .

- $y^{\prime}=b x+a$
- $y^{\prime}=.391(x)+.819$
- $\mathrm{y}^{\prime}=.391(6)+.819$
- $\mathrm{y}^{\prime}=3.165$

Homew ork 4.2: Z-scores, Sampling Distributions, Hypothesis Testing

Answer the following questions after listening to the on-line lecture on Z-scores (Hyp Testing \& Sampling Distributions) \Rightarrow Watch first slides before answering these questions:

Assume we test whether psychology majors are more or less anxious than normal. We find just one psychology major (Jayla) and calculate her z-score on an Anxiety test ($\mu=50$).

The Null Hypothesis is that psychology majors are, compared to normal people, \qquad anxious. (more/less/just as)

The Alternative Hypothesis is that psychology majors are \qquad normal people. (more/less/just as)

Using the provided μ, state the Ho : \qquad
Using the provided μ, state the Ha: \qquad
As Jayla's z-score gets farther from the center of the distribution, we become \qquad (more/less) likely to reject Ho.
We compare the z-obtained score (the one that represents Jayla) to the z- \qquad score.
We typically set z-critical equal to \pm \qquad . (This represents 5% of the distribution.)

If Jayla's z- score iswe will (retain/ reject) the Ho....	..and conclude that the anxiety of psychology majors is the same, less, or more than normal.	
2.49			
1.90			
-2.05			
3.01			
-1.45			

Answer the following after watching slides 4-7

Use this info for the figure and the first five problems:

Reliable Ralphie asks 5 people the travel time to Charleston. Sloppy Suzie asks just 1 person the same question.

1. Ralphie is working with a \qquad distribution. Suzie is working with a \qquad distribution.
2. In both cases, the true average travel time to Charleston is represented by \qquad (ρ or μ).
3. Ralphie's distribution will be \qquad (more or less) accurate than Suzie's.
4. Raphie's distribution will have \qquad (more or less) sampling error than Suzie's.
5. Raphie's distribution will have \qquad (more or less) variability than Suzie's.
6. Sampling distributions are \qquad (more or less) accurate than frequency distributions.
7. A z-score for a frequency distribution uses standard \qquad to measure variability.
8. A z-score for a sampling distribution uses standard \qquad to measure variability.
9. Assume that standard deviation for a frequency distribution is 12 . If samples are taken from this same population with 16 people in each sample, the standard error will be \qquad (hint: use formula for standard error of the mean).
10. A sampling distribution is comprised of \qquad (sample means or scores).
11. A frequency distribution is comprised of \qquad (sample means or scores).
12. Assume you estimate the average GPA of all freshmen by sampling 4 freshmen. If your sample size increases to 8 , you accuracy will \qquad (increase/decrease).
13. If your accuracy increases, this is the same as saying your standard error of the mean has \qquad (increased/decreased)
14. With a frequency distribution you will calculate a z-score for a \qquad (score/sample mean).
15. With a sampling distribution you will calculate a z-score for a \qquad (score/ sample mean).
16. The standard error of the mean tells you how far a typical \qquad (score/sample mean) falls from the population mean.

Answer the following after slides 8 \& 9

You suspect older drivers take longer to drive to Charleston. You ask 9 older drivers how long they take and find they take 4.1 hours on average ($\mathrm{M}=4.1$). Normal drivers take 3.5 hours ($\mu=3.5, \sigma=0.9$)

1. First, set up the problem by recording the key facts: $\mu=$ $\sigma=$ $M\left(\right.$ or $\left.x_{b a r}\right)=$ $n=$	2. Because you're given n (the sample size) you know it's a distribution and so you'll need to calculate standard	3. Work the formula for standard error of the mean:
4. Now work the formula for z- obtained:	5. Does the z-obtained score exceed z-critical ($\pm 1.96) ?$	6. Do you retain or reject the Ho $?$ $z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=$

Homew ork 4.2-Z-scores, Sampling Distributions, Hypothesis Testing

Answer the following questions after listening to the on-line lecture on Z-scores (Hyp Testing \& Sampling Distributions)
\Rightarrow Watch first three slides before answering these questions:
Assume we test whether psychology majors are more or less anxious than normal. We find just one psychology major (Jayla) and calculate her z-score on an Anxiety test ($\mu=50$).

The Null Hypothesis is that psychology majors are, compared to normal people, _just as_ anxious. (more/less/just as)

The Alternative Hypothesis is that psyc majors are _more or less anxious \qquad normal people. (more/less/just as)

Using the provided μ, state the Ho : \qquad $\mu=50$ \qquad
Using the provided μ, state the Ha : \qquad $\mu \neq 50$ \qquad
As Jayla's z-score gets farther from the center of the distribution, we become _more (more/less) likely to reject Ho.

We compare the z-obtained score (the one that represents Jayla) to the z-critical score.

We typically set z-critical equal to \pm \qquad . (This represents 5% of the distribution.)

If Jayla's z- score is we will (retain/reject) the Ho....	...and conclude that the anxiety of psychology majors is the same, less, or more than normal.
2.49	Reject	M ore
1.90	Retain	Same
-2.05	Reject	Less
3.01	Reject	M ore
-1.45	Retain	Same

Answer the following after watching slides 4-7

Use this info for the figure and the first five problems:
Reliable Ralphie asks 5 people the travel time to Charleston. Sloppy Suzie asks just 1 person the same question.

All possible travel times to Charleston

$\mathrm{n}=5$
_Ralphie's Distribution
A _sampling_ distribution M easure of variability (and symbol) is:
___standard error \qquad It has_less__ variability than the other one.

$\mathbf{n}=\mathbf{1}$
_-Suzies' Distribution
A_frequency_distribution
Measure of variability (and
symbol) is:
_-_standard deviation__-_
It has more_ variability
than the other one.

Fill in the blanks in this figure.

17. Ralphie is working with a __sampling__ distribution. Suzie is working with a _ frequency \qquad distribution.
18. In both cases, the true average travel time to Charleston is represented by \qquad μ \qquad (ρ or μ).
19. Ralphie's distribution will be \qquad more \qquad (more or less) accurate than Suzie's.
20. Raphie's distribution will have \qquad less (more or less) sampling error than Suzie's.
21. Raphie's distribution will have \qquad less \qquad (more or less) variability than Suzie's.
22. Sampling distributions are \qquad (more or less) accurate than frequency distributions.
23. A z-score for a frequency distribution uses standard \qquad to measure variability.
24. A z-score for a sampling distribution uses standard \qquad error of the mean_ to measure variability.
25. Assume that standard deviation for a frequency distribution is 12 . If samples are taken from this same population with 16 people in each sample, the standard error will be __3 _3 \qquad (hint: use formula for standard error of the mean).
26. A sampling distribution is comprised of \qquad (sample means or scores).
27. A frequency distribution is comprised of \qquad (sample means or scores).
28. Assume you estimate the average GPA of all freshmen by sampling 4 freshmen. If your sample size increases to 8 , you accuracy will \qquad (increase/decrease).
29. If your accuracy increases, this is the same as saying your standard error of the mean has _decreased (increased/decreased)
30. With a frequency distribution you will calculate a z-score for a \qquad (score/sample mean).
31. With a sampling distribution you will calculate a z-score for a \qquad (score/sample mean).
32. The standard error of the mean tells you how far a typical \qquad (score/sample mean) falls from the population mean.

Answer the following after slides $\mathbf{8} \boldsymbol{\&} \mathbf{9}$

You suspect older drivers take longer to drive to Charleston. You ask 9 older drivers how long they take and find they take 4.1 hours on average ($\mathrm{M}=4.1$). Normal drivers take 3.5 hours ($\mu=3.5, \sigma=0.9$)

1. First, set up the problem by recording the key facts: $\begin{aligned} & \mu=3.5 \\ & \sigma=0.9 \\ & M\left(\text { or } x_{\text {bar }}\right)=4.1 \\ & n=9 \end{aligned}$	2. Because you're given n (the sample size) you know it's a _sampling distribution and so you'll need to calculate standard_error of the mean__, represented by the symbol \qquad	3. Work the formula for standard error of the mean: $\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{0.9}{\sqrt{9}}=0.3$
4. Now work the formula for zobtained: $z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{4.1-3.5}{0.3}=2$	5. Does the z-obtained score exceed z-critical (± 1.96)? Yes!	6. Do you retain or reject the Ho? Reject Ho 7. Do older drivers take longer to drive to Charleston? Yes!

Homework 4.1: Z-scores for scores

note: M equals $X_{b a r}$ (i.e, the mean of a sample)

1. Define standard deviation:
2. Define z-score for your mother and relate it to standard deviation:
3. On the Whiznoodle Depression Inventory the average score is 50 (i.e., $\mu=50$) with a standard deviation of $5(\sigma=5)$.

a. What's Bob's standard score (zscore) if Bob scored a 62?	b. What percent of people are less depressed than Bob?	c. What percent of people are more depressed than Bob?		
d. What's Rolanda's standard score if she had a raw score of 37 ?	e. What percent of people are less depressed than Rolanda?	f. What percent of people are more depressed than Rolanda?		
4. M ost IQ tests are normed to have an average score of $\mathbf{1 0 0}$ with a standard deviation of $\mathbf{1 5}$.				
a. What's Shanta's z-score if she scores 120 on the IQ test?	b. What percent of people score lower?	c. What percent of people score higher?		

5. A teacher administered the Ceespautrun reading ability test where students typically average 40 points with a standard deviation of 4 .
a. Shanta scored a 50. What's her zscore?
b. What percent of people have a lower reading ability than Shanta?
e. What percent of students will score higher than Kelly?
c. What percent of people have a higher reading ability than Shanta?
f. What percent of students will score lower than Kelly?
6. A researcher tests whether teachers with masters' degrees have classes that do better on the end of grade tests. His sample of 16 teachers averaged 79 on these tests. Teachers in the district averaged $78(\sigma=10)$
$\mathrm{n}=$
$M=$
$\begin{array}{ll}\mu= & z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}= \\ \sigma= & \end{array}$
7. Do students in the Sigma Digma Wigma fraternity have GPAs ($M=2.4$, $\mathrm{n}=16$) different from those of normal students ($\mu=2.7, \sigma=0.3$)
8. A school psychologist tests whether 9 teachers trained in classroom management report fewer disciplinary problems (an average of 5) compared to district-wide norms ($\mu=11, \sigma=6$).

Do these teachers seem more or less successful than normal? ($z_{\text {crit }}= \pm 1.96$). Show sketch. Circle: Reject or Retain H_{0}

Do the fraternity have lower/higher GPAs than normal? $\left(z_{\text {crit }}= \pm 1.96\right)$. Show sketch. Circle: Reject or Retain H_{0}

Do these teachers have fewer/more disciplinary problems than normal? (Z crit $= \pm 1.96$). Show sketch. Reject or Retain H_{0}
9. A researcher tested whether rats on diet pills differed in weight from Do these rats seem lighter or heavier normal rats ($\mu=410, \sigma=25$). The four "dieting" rats averaged 375 ounces.
10. A researcher examined whether 9 people with social phobias were more likely to be depressed ($M=51$) than normal people (who average 50 with a standard deviation of 6).
than normal? $\left(z_{\text {crit }}= \pm 1.96\right)$. Show sketch. Circle: Reject or Retain H_{0}

Do these people seem less or more depressed than normal? $\left(z_{\text {crit }}= \pm 1.96\right)$. Show sketch. Circle: Reject or Retain H_{0}
11. Do people who've completed a memory enhancement course do better on a test of working memory? The twenty-five memory course students scored 8 on average. People in general average 7 with a standard deviation of 2 .
12. You administer a measure of depression to a group of 25 students deprived of studying for an entire weekend. This sample of students scores 44 on average. Higher scores indicate more depression, and normal people score 50 with a standard deviation of 15 .

Do these people seem to do worse or better than normal? ($z_{\text {crit }}= \pm 1.96$). Show sketch. Circle: Reject or Retain H_{0}

Do these students seem less or more depressed than normal? ($z_{\text {crit }}= \pm 1.96$). Show sketch. Circle: Reject or Retain H_{0}
13. For the following, indicate whether it's a frequency distribution (FD) or a sampling distribution (SD)

FD SD a. A teacher administered the Ceespautrun reading ability test where students typically average 40 points with a standard deviation of 4 . Her 16 students score 45 on average.
FD SD b. Adian scored 650 on the SAT. If people in general score at 500 with a standard deviation of 100 , what percent of people score higher than this?
FD SD C. The 13 ROTC students averaged a score of 23 on the ACT when normal students score 20 with a standard deviation of 5. Do ROTC students appear to be above average?
FD SD d. The girl who received the tutoring scored 89 on the test. What percent of people did better than this, assume the average score overall was 75 with a standard deviation of 7 ?
note: M equals $X_{b a r}$ (i.e, the mean of a sample)

1. Define standard deviation:

The distance a typical score falls from the mean in a given distribution.

2. Define z-score for your mother and relate it to standard deviation:

The distance a specific score (x) falls from the mean (μ), expressed as standard-deviation (σ) units.

$$
z=\frac{x-\mu}{\sigma_{x}}
$$

3. On the Whiznoodle Depression Inventory the average score is 50 (i.e., $\mu=50$) with a standard deviation of $5(\sigma=5)$.
a. What's Bob's standard score (zscore) if Bob scored a 62?

$$
\begin{aligned}
& \mu=50 \\
& \sigma=5 \\
& x=62 \\
& z=?
\end{aligned}
$$

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma_{x}} \\
& z=\frac{62-50}{5} \\
& z=2.4
\end{aligned}
$$

d. What's Rolanda's standard score if she had a raw score of 37 ?

$$
\begin{aligned}
& \mu=50 \\
& \sigma=5 \\
& x=37 \\
& z=?
\end{aligned}
$$

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma_{x}} \\
& z=\frac{37-50}{5} \\
& z=-2.6
\end{aligned}
$$

b. What percent of people are less depressed than Bob?

e. What percent of people are less denressed than Rolanda?

c. What percent of people are more depressed than Bob?
$\xrightarrow{\text { area beyond }}$
f. What percent of people are more depressed than Rolanda?

4. Most IQ tests are normed to have an average score of 100 with a standard deviation of $\mathbf{1 5}$.
a. What's Shanta's z-score if she scores 120 on the IQ test?
b. What percent of people score lower?

$$
\begin{aligned}
& \mu=100 \\
& \sigma=15 \\
& x=120 \\
& z=?
\end{aligned}
$$

c. What percent of people score higher?

5. A teacher administered the Ceespautrun reading ability test where students typically average 40 points with a

 standard deviation of 4 .a. Shanta scored a 50. What's her zscore?

$$
\begin{array}{ll}
\mu=40 & z=\frac{x-\mu}{\sigma_{x}} \\
\sigma=4 & z=\frac{50-40}{4} \\
x=50 & z=2.5
\end{array}
$$

b. What percent of people have a lower reading ability than Shanta?

e. What percent of students will score higher than Kelly?
area
between

c. What percent of people have a higher reading abilitv than Shanta?

f. What percent of students will score lower than Kelly?

6. A researcher tests whether teachers with masters' degrees have classes that do better on the end of grade tests. His sample of 16 teachers averaged 79 on these tests. Teachers in the district averaged 78 ($\sigma=10$)

$$
\begin{array}{ll}
n=16 & \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{10}{\sqrt{16}}=2.5 \\
\bar{x}=79 & z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{79-78}{2.5}=0.4 \\
\mu=78 &
\end{array}
$$

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma_{x}} \\
& z=\frac{35-40}{4} \\
& z=-1.25
\end{aligned}
$$

7. Do students in the Sigma Digma Wigma fraternity have GPAs ($M=2.4, n=16$) different from those of normal students ($\mu=2.7, \sigma=0.3$)

$$
\begin{array}{ll}
n=16 & \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{0.3}{\sqrt{16}}=.075 \\
\bar{x}=2.4 & \\
\mu=2.7 & z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{2.4-2.7}{.075}=-4 \\
\sigma_{x}=0.3 &
\end{array}
$$

8. A school psychologist tests whether 9 teachers trained in classroom management report fewer disciplinary problems (an average of 5) compared to district-wide norms ($\mu=11, \sigma=6$).

$$
\begin{array}{ll}
n=9 & \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{6}{\sqrt{9}}= \\
\bar{x}=11 & z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{5-11}{2}=-3
\end{array}
$$

Do these teachers seem more or less successful than normal? ($z_{\text {crit }}= \pm 1.96$). Show sketch. Circle: Reject or Retain H_{0}

Do the fraternity have lower/higher GPAs than normal? $\left(Z_{\text {crit }}= \pm 1.96\right)$. Show sketch. Circle: Reject or Retain H_{0}

Do these teachers have fewer/more disciplinary problems than normal? $Z_{\text {crit }}= \pm$ 1.96). Show sketch. Reject or Retain H_{0}

9. A researcher tested whether rats on diet pills differed in weight from normal rats ($\mu=410, \sigma=25$). The four "dieting" rats averaged 375 ounces.

$$
\begin{array}{ll}
\mu=410 & \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{25}{\sqrt{4}}=12.5 \\
\sigma_{x}=25 & \\
n=4 & z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{375-410}{12.5}=-2.8 \\
\bar{x}=375 &
\end{array}
$$

10. A researcher examined whether 9 people with social phobias were more likely to be depressed ($M=51$) than normal people (who average 50 with a standard deviation of 6).

$$
\begin{array}{ll}
\mu=50 & \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{6}{\sqrt{9}}=2 \\
\sigma_{x}=6 & z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{51-50}{2}=0.5 \\
n=9 & \bar{x}=51
\end{array}
$$

11. Do people who've completed a memory enhancement course do better on a test of working memory? The twenty-five memory course students scored 8 on average. People in general average 7 with a standard deviation of 2 .

$$
\begin{array}{ll}
\mu=7 & \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{2}{\sqrt{25}}=0.4 \\
\sigma_{x}=2 & \\
n=25 \\
\bar{x}=8 & z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{8-7}{0.4}=2.5
\end{array}
$$

12. You administer a measure of depression to a group of 25 students deprived of studying for an entire weekend. This sample of students scores 44 on average. Higher scores indicate more depression, and normal people score 50 with a standard deviation of 15 .

$$
\begin{array}{ll}
\mu=50 & \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{15}{\sqrt{25}}=3 \\
\sigma_{x}=15 \\
n=25 & z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{44-50}{3}=-2 \\
\bar{x}=44 &
\end{array}
$$

Do these rats seem lighter or heavier than normal? ($z_{\text {crit }}= \pm 1.96$). Show sketch. Circle: Reject or Retain H_{0}

Do these people seem less or more depressed than normal? ($z_{\text {crit }}= \pm 1.96$). Show sketch. Circle: Reject or Retain H_{0}

Do these people seem to do worse or better than normal? ($z_{\text {crit }}= \pm 1.96$). Show sketch. Circle: Reject or Retain H_{0}

Do these students seem less or more depressed than normal? ($z_{\text {crit }}= \pm 1.96$). Show sketch. Circle: Reject or Retain H_{0}

13. For the following, indicate whether it's a frequency distribution (FD) or a sampling distribution (SD)

FD SD a. A teacher administered the Ceespautrun reading ability test where students typically average 40 points with a standard deviation of 4 . Her 16 students score 45 on average.
FD SD b. Adian scored 650 on the SAT. If people in general score at 500 with a standard deviation of 100 , what percent of people score higher than this?

FD SD
c. The 13 ROTC students averaged a score of 23 on the ACT when normal students score 20 with a standard deviation of 5 . Do ROTC students appear to be above average?

FD SD d. The girl who received the tutoring scored 89 on the test. What percent of people did better than this, assume the average score overall was 75 with a standard deviation of 7 ?

Homework 5.1: t-scores

These questions accompany Lecture Video 5.1, One Sample T-tests.

Homework 5.2: Hypothesis Testing with T-Scores

1. Hypothesis Testing \#1: A group of students take a new pilot version of a critical thinking course and then complete the Wizweekler test of critical thinking. If normal people score 40 on the test, does it appear that the course affected their critical thinking? (Don't forget effect size if appropriate.)

$\frac{D \text { Data }}{45}$	$\hat{\text { sैx }}=6.3048$	1.	2.
50			
40		3.	4.
35		5.	
55			
42			
48			
40			
50			

2. Impacting Treatment Effect and Sampling Error: For each of the following, indicate (1) whether the change described would affect the treatment effect (T) or sampling error (SE), and (2) whether the change would cause an increase or decrease.
___a) You base the class mean on 25 people, not just 9 .
___b) You standardize how people study the course material, so that there are fewer differences in how much they learn about critical thinking.
\qquad c) You provide more feedback on their critical thinking abilities during the course, so that they become more effective at critical thinking.
\qquad d) You have different people teach each of the 9 students about critical thinking, and every person teaches the course differently.
___e) You cut back the course from a semester long course to just a weekend workshop, so the course becomes less effective.
___f) You discover that the class average was 48, not 45 .
3. Hypothesis Testing \#2: The wise and beloved statistics professor claimed that students who scored an A on the last test studied more than the 4 hours per week studied by average students. Does this small sample of students earning an A support this claim? (Don't forget effect size if appropriate)

$\frac{\text { Data }}{4}$	$\frac{\text { Calculations }}{\text { (calculate } \hat{s}_{x} \text { to start) }}$		
6		1.	2.
7		3.	4.
9		5.	

Sketch the Ho Distribution and label with both raw sample means and standard error scores. Also label tobt, $\mathrm{t}_{\text {critical }}$, and the regions of rejections.

Standard Values.......
$+1 \hat{s}_{\bar{x}}$
Raw Values. \qquad
5. Questions pertaining to SPSS print-out above.

First, label information on the SPSS print-out with the appropriate symbols (e.g., $\sigma_{\bar{x}}$).
a) What's the sample mean?
b) What's the population mean?
c) What's the differ. between the two?
\qquad d) What's the typical deviation of average study times for samples around the population mean of 4 hours that you'd expect based on just sampling error?
e) What's the probability you'd see this sort of $\mathrm{t}_{\text {obtained }}$ value just by chance?
f) If you had done this by hand, what would tcritical equal?
g) What type of decision error might you be making? (I or II)

Indicate which of the following would make it more or less likely you'd reject the Ho and conclude that A students study more?
\qquad a. $\mathrm{t}_{0 \text { ot }}$ is larger
\qquad b. standard error is smaller
_____c. variability in raw scores is larger
\qquad d. average time spent studying by A students is larger

2. Impacting Treatment Effect and Sampling Error: For each of the following, indicate (1) whether the change described would affect the treatment effect (T) or sampling error (SE), and (2) whether the change would cause an increase or decrease.
a) \downarrow SE You base the class mean on 25 people, not just 9 .
b) \downarrow SE You standardize how people study the course material, so that there are fewer differences in how much they learn about critical thinking.
___c) $\uparrow T$ You provide more feedback on their critical thinking abilities during the course, so that they become more effective at critical thinking.
d) \uparrow SE You have different people teach each of the 9 students about critical thinking, and every person teaches the course differently.
_e) $\downarrow \top$ You cut back the course from a semester long course to just a weekend workshop, so the course becomes less effective.
___f) $\uparrow T$ You discover that the class average was 48 , not 45.
3. Hypothesis Testing \#2: The wise and beloved statistics professor claimed that students who scored an A on the last test studied more than the 4 hours per week studied by average students. Does this small sample of students earning an A support this claim? (Don't forget effect size if appropriate)

$\frac{\text { Data }}{4}$				
6				
7	$\hat{s}_{x}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}=\sqrt{\frac{182-\frac{676}{4}}{4-1}=2.0817}$	1. cf. $\mathrm{M} \& \mu$ 9		2. Ho: $\mu=4 ; \quad \mathrm{Ha}: \mu \neq 4$
:---				
3. $\alpha=05, \mathrm{t}_{\text {crit }}=3.182$				

5. Questions pertaining to SPSS print-out above.

First, label information on the SPSS print-out with the appropriate symbols (e.g., $\sigma_{\bar{x}}$).
a) 6.5 What's the sample mean?
b) 4 What's the population mean?
c) 2.5 What's the difference between the two?
d) .544 W hat's the typical deviation of average study times for samples around the population mean of 4 hours that you'd expect based on just sampling error?
e) 0.1\% What's the probability you'd see this sort of $t_{\text {obtained }}$ value just by chance?
f) 2.201 If you had done this by hand, what would $\mathrm{t}_{\text {critical }}$ equal?
g) Type I What type of decision error might you be making? (I or II)
Indicate which of the following would make it more or less likely you'd reject the Ho and conclude that A students study more?
\qquad e. $\mathrm{t}_{\text {obt }}$ is larger
\qquad f. standard error is smaller g.
h. A average time spent studying by A students is larger

Homework 5.3: One-sample t-test
For each of the following, complete hypotheses testing steps 1-5, giving special attention to the paragraph write-ups.
Q1. Punishment: The researcher predicted participants in the "severe vengeance" condition would recommend more than 2 minutes of loud noise to punish the cheating opponent ($x=2,3,4,2,3,4,4,2,5,3,4$).

a. What type of hypothesis testing error is possible? \qquad b. Sample mean \qquad C. $\mu=$ \qquad
c. What's the chance you would see this difference between the sample \& pop. means just by chance? \qquad
d. State the symbol and value for std error. \qquad d. "difference observed" \qquad
f. Summarize the statistic: \qquad g. $\hat{s}_{x}=$ \qquad g. $p=$ \qquad
Q2. Giving: The researcher predicted participants in the "crushing guilt" condition would offer more than the typical $\$ 10$ charity gift. ($x=\$ 8,10,5,7,20,7,12,9,20,12,4,3$).

One-Sample Statistics
Hypothesis testing steps:

	N	Mean	Std. Deviation	Std. Error Mean
dollars	12	9.75	5.562	1.606

2.
3.
4.

Q4. Indicate the types of hypothesis testing error that might be made if you.... Type...
a.Decide the debate team is smarter than normal
b. \qquad Decide the sky is falling
c. \qquad Decide global warming is not occurring
d. \qquad Decide your wait time at the store is greater than the 3 minutes promised.
e. \qquad Decide the extraversion scores of the sales people are higher than normal.

Homework 5.3: One-sample t-test__ Key

For each of the following, complete hypotheses testing steps 1-5, giving special attention to the paragraph write-ups.
Q1. Punishment: The researcher predicted participants in the "severe vengeance" condition would recommend more than 2 minutes of loud noise to punish the cheating opponent ($x=2,3,4,2,3,4,4,2,5,3,4$).
Hypothesis testing steps:

1. cf. M and μ
2. $\mathrm{H}_{0}: \mu=2, \mathrm{H}_{\mathrm{A}}: \mu \neq 2$
3. 2-tailed, $\alpha=05, \mathrm{df}=10, \mathrm{t}_{\text {crit }}= \pm 2.228$
4. $\mathrm{t}_{\text {obt }}=4.183$

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
duration	11	3.27	1.009	.304

	Test Value $=2$					
	t	df	Sig. (2-tailed)	MeanDifference	95\% Confidence Interval of the Difference	
					Lower	Upper
duration	4.183	10	. 002	1.273	59	1.95

5. The hypothesis was supported. Participants in the severe vengeance condition recommended sig. more punishment ($M=3.27$) than normal (μ $=2), t(10)=4.183, p \leq .05$. The effect of condition on punishment was large, $d=1.2616$.

If needed, calculate d here:
$d=1.273 / 1.009=1.2616$
$\mathrm{d}=1.2616$.
a. What type of hypothesis testing error is possible? _Type 1_
b. Sample mean _M $=3.27$ \square C. $\mu=_2$ 2
c. What's the chance you would see this difference between the sample \& pop. means just by chance? \qquad .2\% \qquad
d. State the symbol and value for std error. _ $\hat{S}_{x b a r}=.304$ \square d. "difference observed" \qquad $M-\mu=1.273$
f. Summarize the statistic: \qquad $t(10)=4.183, p \leq .05$ \qquad g. $\hat{S}_{x}=$ 1.009
g. $p=$ \qquad 002 \qquad
Q2. Giving: The researcher predicted participants in the "crushing guilt" condition would offer more than the typical $\$ 10$ charity gift. ($x=\$ 8,10,5,7,20,7,12,9,20,12,4,3$).

Hypothesis testing steps:
One-Sample Statistics

1. cf. M and μ
2. $\mathrm{H}_{0}: \mu=10, \mathrm{H}_{\mathrm{A}}: \mu \neq 10$

	N	Mean	Std. Deviation	Std. Error Mean
dollars	12	9.75	5.562	1.606

3. 2-tailed, $\alpha=05, d f=11, t_{\text {crit }}= \pm 2.201$
4. $t_{\text {obt }}=-0.156$.

If needed calculate d here:
5. The hypothesis was not supported. Participants in the guilt condition did not give sig. more or less $(M=9.75)$ than normal $(\mu=10), t(11)=-0.156$, n.s.

Q4. Indicate the types of hypothesis testing error that might be made if you.... Type...
a.
 Decide the debate team is smarter than normal
b.
 Decide the sky is falling
c. __II_ Decide global warming is not occurring
d. _____ Decide your wait time at the store is greater than the 3 minutes promised.
e. \qquad Decide the extraversion scores of the sales people are higher than normal.

1. What's happening to US temperatures over time in this figure?
2. What's changing, the variability or the central tendency?
3. If we were to depict these yearly temperature ranges as distributions as time passes those distributions would be shifting to the \qquad _.

Figure 3. The ratio of record daily temperature highs to record daily lows observed at about 1,800 weather stations in the 48 contiguous United States from Jan. 1950-Sept. 2009: Source: Meehl et al., 2009

Now let's look at this in terms of a distribution...

Figure 4 represents the change in climate over a period of time due to Global Warming.
4. For these two distributions, the left represents the
\qquad climate and the right represents the
\qquad climate.
5. In this figure, what is changing, the mean or variability? What does this mean regarding the type of climate we have?

6. Overall, in the distribution the climate is becoming \qquad (hotter/colder). This is displayed by the increasing
\qquad between the curves.
7. Let's say that you have enough power to conclude that there is a treatment effect between these two distributions. To find the practical significance of this effect, you would calculate \qquad , or the gap between the old and new. What is the symbol for this? \qquad _.

Now we'll examine a different type of change in the climate
8. In Figure 5, what changes between the two distributions depicted? (Hint: It's not central tendency!)
9. M ore specifically, in the new climate, there will be \qquad days falling in the tails (very cold or very hot) and \qquad days near the average.

Figure 5
10. The mean of these two curves (in Figure 5) are the same. This means that the average temperature is \qquad (getting hotter/getting colder/ staying the same), but that the \qquad in temperatures is increasing.
11. In general, we increase power by increasing \qquad and decreasing \qquad .
11. In general, we increase power by increasing \qquad and decreasing \qquad .

Now let's examine both types of changes occuring at once...

Now we have two distributions that combine the differences shown separately in Figures 4 and 5.
12. Overall then, there are going to be more hot days, which means the \qquad of the distribution will increase as well as the \qquad in temperatures (hint: greater spread).

Figure 6

Lastly, we have a graph showing actual temperature distributions for specific years...
13. What happened to the mean temperatures over time in Figure 7 ?
14. What happened to the variability in temperatures over time?
15. So overall the climate is becoming (what two things)?

Short Answer \& Wrap Up

16. For the distributions examined here, explain what d tells you and what type of change d represents (i.e., change in variability vs. change in central tendency)
17. Think about what gives you more power to detect a difference. In the case of global warming, explain what about the types of changes in the distributions from one year to the next that make it easier to think nothing is changing? What other aspect of the type of changes make it harder to see the shift to the right.
18. What's happening to US temperatures over time in this figure?

They are increasing as time passes.
2. What's changing, the variability or the central tendency?

The central tendency.
3. If we were to depict these yearly temperature ranges as distributions as time passes those distributions would be shifting to the right.
Now let's look at this in terms of a distribution...
Figure 4 represents the change in climate over a period of time due to Global Warming.
4. For these two distributions, the left represents the old climate and the right represents the new climate.
5. In this figure, what is changing, the mean or variability? What does this mean regarding the type of climate we have?

The mean is changing. This means that the climate is getting warmer over time.

6. Overall, in the distribution the climate is becoming hotter (hotter/colder). This is displayed by the increasing mean between the curves.
7. Let's say that you have enough power to conclude that there is a treatment effect between these two distributions. To find the practical significance of this effect, you would calculate effect size, or the gap between the old and new. What is the symbol for this? \qquad d

Now we'll examine a different type of change in the climate

8. In Figure 5, what changes between the two distributions depicted? (Hint: It's not central tendency!) Variance
9. M ore specifically, in the new climate, there will be more days falling in the tails (very cold or very hot) and less days near the average.

Figure 5
10. The mean of these two curves (in Figure 5) are the same. This means that the average temperature is staying the same (getting hotter/getting colder/ staying the same), but that the variability in temperatures is increasing.
11. In general, we increase power by increasing treatment effect and decreasing sampling error

Now let's examine both types of changes occuring at once...
Now we have two distributions that combine the differences shown separately in Figures 4 and 5.

Overall then, there are going to be more hot days, which means the central tendency of the distribution will increase as well as the variance in temperatures (hint: greater spread).

Lastly, we have a graph showing actual temperature distributions for specific years...
14. What happened to the mean temperatures over time in Figure 7 ?

The mean gradually shifted to the right, showing the slow increase of temperature/climate over the years.
15. What happened to the variability in temperatures over time?

The variability increased, which shows that a wider range of temperatures are being recorded as time passes (i.e., the purple distribution is wider than the earlier distributions).

16. So overall the climate is becoming (what two things)?

The climate is becoming hotter (the mean has shifted to the right) with a
Figure 7

Short Answer \& Wrap Up

17. For the distributions examined here, explain what " d " tells you and what type of change " d " represents (i.e., change in variability vs. change in central tendency)
Effect size (d) tells you the practical significance of the change in climates. It represents the overall amount that the mean (i.e., the center) of the distribution has shifted.
18. Think about what gives you more power to detect a difference. In the case of global warming, explain what about the types of changes in the distributions from one year to the next that make it easier to think nothing is changing? What other aspect of the type of changes make it harder to see the shift to the right.
First, from year to year, the distribution shifts just a small amount to the right - that is, the treatment effect is fairly small on a year-to-year basis. Second, within a given year, there is a lot of variability in temperature, so there is also a lot of sampling error which can mask the small treatment effect that is occurring.

Homework 6.1: Questions about Independent t-test

Answer these questions after watching the video on Independent t-tests.

1. The null hypothesis for the independent t-test is...
a. $\mu_{1}-\mu_{2}=0$
b. $\mu_{1}=\mu_{2}$
c. $\quad \mu_{\text {Difference }}=0$
2. If the Levine's test for equality of variance (the one next to the F on the output) is significant, you should use which line from the SPSS independent t -test table?
a. The first line
b. The second line
3. The measure of variability in an independent t-test formula is the
a. Standard error of the mean difference
b. Standard error of the difference
4. What's the formula for an independent t-test? \qquad
5. You only calculate the d statistic if ...
a. The null hypothesis is rejected
b. The alternative hypothesis is retained.
c. $\mathrm{t}_{\text {crit }}$ exceeds $\mathrm{t}_{\text {obtained }}$
6. When calculating the d statistic from the SPSS independent t-test output, you must first calculate...
a. Standard deviation
b. Standard error
7. When entering data into SPSS for an independent samplest-test, the data is formatted so that you have....
a. Two columns, with two data points per person
b. Two columns, one indicating the person's group and the other the person's score.
8. If I conclude your mother loves you significantly more than your brother, I could be making a Type \qquad error
a. I
b. II
9. Imagine a study comparing pain medication A to pain medication B . Which of the following would indicate a treatment effect?
a. Very low variability in reported pain levels within the two groups.
b. A large difference in the average amount of pain between the two groups.
10. In the same study, controlling for extraneous variables (e.g., amount of physical activity) would likely do which of the following?
a. Decrease sampling error
b. Increase the treatment effect.

Homework 6.2 - Independent t-test practice

\#1: The false consensus effect predicts people overestimate the prevalence of their own attitude. You ask smokers and non-smokers to guess what percent of people aged 18 to 22 smoke.

Smokers: $40,35,25,30,30,35,20,10,30,25$
Non-Smokers: $30,35,15,25,20,15,30,20,10,10$

a. Type of test?				b. Hypotheses?				
Group Statistics								
	Smoking	N		Mean	$\begin{gathered} \text { Std } \\ \text { Seviatio } \end{gathered}$		$\begin{aligned} & \text { Std. Error } \\ & \text { Mean } \end{aligned}$	
Estimate	smokers	10		28.00	8.56		2.708	
	non-smokers	10	0	21.00	8.75		2.769	
Independent Samples Test								
				t.test tor Equally of Means				
		F	sig.	.	df		2i) Mean	${ }_{\text {Std, }}^{\text {Dif }}$
Estimate	Equal variances assumed Equal variances not assummed	13	. 716	$\begin{array}{ll} 6 & 1.807 \\ 1.807 \end{array}$	18 17.99	$\begin{aligned} & .087 \\ & .087 \end{aligned}$	7.000 87 7.000	3.87 3.87

c. Show how data would be enetered into SPSS. Name variables and enter values.

e. M easure of
standard error:
f. Chance you'd see this difference between means by sheer chance?
d. Effect size (do for practice even if not sig.)
i. Paragraph Write-up (can use separate paper).
\#2: You wonder if the smell of smoke affects attractiveness ratings. Each male participant rates the attractiveness of a set of smoking or non-smoking women.

Smokers: $\quad 19,25,20,25,29,25,20,15,21$
Non-Smokers: $\quad 29,25,28,24,28,25,27,25,27$
a. Type of test?
b. Hypotheses?

	Group Statistics				
Std. GROUP N Mean Deviation	Std. Error Mean				
ATTRACT	1 odor	9	22.11	4.23	1.41
	2 no odor	9	26.44	1.74	58
Independent Samples Test					

		$\begin{gathered} \text { Levene's } \\ \text { Testfor Eq of } \\ \text { var } \end{gathered}$		t-test for Equality of Means				
		F	Sig.	t	df	Sig. (2tailed)	Mean Diff	Std. Err Eiff Din
Attract	Equal variances assumed		. 018		16	. 012	-4.33	1.52
	Equal variances not assumed			-2.84	10.6	. 016	-4.33	1.52

c. Show how data
would be enetered
into SPSS. Name
variables and enter
values.

g.Diff observed?	e. Diff expected (name, symbol, and value)

d. Effect size (do for practice even if not sig.)
i. Paragraph Write-up (can use separate paper).

Homework 6.2 - Independent t-test practice- Key

\#1: The false consensus effect predicts people overestimate the prevalence of their own attitude. You ask smokers and nonsmokers to guess what percent of people aged 18 to 22 smoke.

a. Type of test?
Indep. t-test

c. Show how data would be enetered into SPSS. Name variables and enter values.

Grp	Score
1	40
1	35
1	25
1	30
1	30
1	35
1	20
1	10
1	30
1	25
2	30
2	35
2	15
2	25
2	20
2	15
2	30
2	20
2	10
2	10

e. M easure of standard error:
Std. Err of the Diff:
$\hat{S}_{\bar{x}_{1}-\bar{x}_{2}}=3.873$
f. Chance you'd see this difference between means by sheer chance? 8.7\%
d. Effect size (do for practice even if not sig.)

$$
\begin{aligned}
& \hat{s}=\hat{s}_{\bar{x}_{1}-\bar{x}_{2}} * \sqrt{n}=3.873 * \sqrt{10}=12.2475 \\
& d=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\hat{s}}=\frac{|28-21|}{12.2475}=.5715
\end{aligned}
$$

i. Paragraph Write-

The hypothesis was not supported. The smoker's estimate ($M=28 \%$) does not differ significantly from that of non-smokers ($\mathrm{M}=21 \%$), t (18) = 1.807, n.s.
\#2: You wonder if the smell of smoke affects attractiveness ratings. Each male participant rates the attractiveness of a set of smoking or non-smoking women.

a. Type of test?	b. Hypotheses?
Indep. t-test	$\boldsymbol{H o}_{0}: \mu_{1}-\mu_{2}=0$
	$\boldsymbol{H}_{A}: \mu_{1}-\mu_{2} \neq 0$

Group Statistics					
	GROUP	N	Mean	Std. Deviation	Std. Error Mean
ATTRACT	1 odor	9	22.11	4.23	1.41
	2 no odor	9	26.44	1.74	. 58

F-test significant, so use second line.		Independent Samples Test						
		Levene'sTest for Eq ofVar		t-test for Equality of Means				
		F	Sig.	t	df	Sig. (2tailed)	Mean Diff	$\begin{aligned} & \text { Std. } \\ & \text { Err } \\ & \text { Diff } \end{aligned}$
Attract	Equal variances assumed	6.998			16	. 012	-4.33	1.52
	Equal variances not assumed				10.6	. 016	-4.33	1.52

c. Show how data
would be enetered
into SPSS. Name
variables and
enter values.

Grp	Score
1	19
1	25
1	20
1	25
1	29
1	25
1	20
1	15
1	21
2	29
2	25
2	28
2	24
2	28
2	25
2	27
2	25
2	27

g.Diff observed?
(-) 4.33
e. Diff expected (name, symbol, and value)
Std. Err of the Diff:

$$
\hat{S}_{\bar{x}_{1}-\bar{x}_{2}}=1.52
$$

d. Effect size (do for practice even if not sig.)
$\hat{s}=\hat{s}_{\bar{x}_{1}-\overline{\bar{x}_{2}}} * \sqrt{n}=.1 .52 * \sqrt{9}=4.56$

$$
d=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\hat{s}}=\frac{|22.11-26.44|}{4.56}=.9496
$$

i. Paragraph Write-up

The hypothesis was supported. Participants rated smokers as sig. less attractive ($\mathrm{M}=22.11$) compared to non-smokers ($\mathrm{M}=26.44$), $\mathrm{t}(16)=-2.84, \mathrm{p}<=.05$. The effect of smoking on attractiveness was large, $d=.9496$.
\#1: You believe National Public Radio (NPR) provides much better news coverage than Fox "News." You have all participants tune-in to a month of one and a month of the other, and administer a current events quiz after each month. You counterbalance the design so the order of viewing is balanced: Half get NPR first and then Fox; half get Fox first and then NPR.
a. Type of test?
b. Hypotheses?
Paired Samples Statistics

Paired Samples Statistics					
Std. Std. Error Mean N Deviation Mean Pair FOX 13.54 13 1.98 1 NPR 16.69 13 2.43	.55				

Paired Samples Test

	Paired Differences					
	Mean	Std. Deviation	Std. Error Mean	t	df	Sig. (2-tailed)
Pair 1 FOX - NPF	-3.15	2.03	. 56	-5.588	12	. 000

e. M easure of standard error (precise name, symbol, \& value)?
f. Chance you'd see this difference between means by sheer chance?

| d. Effect size (do for
 practice even if not sig.) | 13 | 16 |
| :--- | :--- | :--- | :--- |
| 10 | 15 | |
| 14 | 14 | |
| 13 | 18 | |
| 14 | 14 | |
| 16 | 20 | |
| 16 | 20 | |
| 14 | 18 | |
| 14 | 14 | |
| 12 | 16 | |
| 10 | 14 | |

ग ${ }^{\text {² }}$	귝
16	18
14	20
13	16
10	15
14	14
13	18
14	14
16	20
16	20
14	18
14	14
12	16
10	14

c. Show data

d. Effect size (do for practice even if not sig.)

g. Difference observed?
h. Formula for df?
i. Paragraph Write-up (can use separate paper)
\#2: An international studies advisor suspects he can show that study abroad drastically improves the self-esteem of students who undertake such a growth inducing experience. She compares the self-reported self-esteem levels of ten students before and after they study abroad for a semester. a. Type of test?
b. Hypotheses?

Paired Samples Statistics					
$\left.\begin{array}{\|ll\|r\|r\|r\|}\hline & & & \begin{array}{c}\text { Std. } \\ \text { Deviation }\end{array} & \begin{array}{c}\text { Std. Error } \\ \text { Mean }\end{array} \\ \hline \text { Pair } & \text { BEFORE Self-esteem before } & 3.90 & 10 & 1.20 \\ 1 & \text { AFTER Self-esteem after } & 4.40 & 10 & 1.17\end{array}\right] .37$					

[^1]d. Effect size (do for
practice even if not sig.)

$\begin{aligned} & \text { 罰 } \\ & \frac{0}{0} \\ & \dot{D} \end{aligned}$	$\underset{\substack{\underset{0}{7} \\ \underset{\sim}{2} \\ \hline}}{ }$
4	5
6	5
3	5
2	3
3	3
5	4
4	4
3	4
4	4
5	7

c. Show data format here:
\#1: You believe National Public Radio (NPR) provides much better news coverage than Fox "News." You have all participants tune-in to a month of one and a month of the other, and administer a current events quiz after each month. You counterbalance the design so the order of viewing is balanced: Half get NPR first and then Fox; half get Fox first and then NPR.

a. Type	of test?	Dependent t-test			b. Hypotheses?		
Paired Samples Statistics							
		Mean	N Devia	Std. Deviation St	Std. Error Mean		
Pair	FOX	13.54	13	1.98	. 55		
	NPR	16.69	13	2.43	. 67		
Paired Samples Test							
		Paired Differences					
		Mean	Std. Deviation	Std. Error Mean	t	df	Sig. (2-tailed)
Pair 1	FOX-N	P-3.15	2.03	3 . 56	6 -5.588	12	. 000

e. Measure of standard error?: Std. Error of the M ean Difference $\hat{s}_{\bar{D}}=0.56$
f. Chance you'd see this difference between means by sheer chance? $<\mathbf{1} \%$
i. Paragraph Write-up (can use separate paper) The hypothesis was supported. Participants scored higher on current events quiz after listening to NPR ($M=16.69$) than after watching $F O X(M=13.54), t(12)=-5.588$, $\mathrm{p} \leq .05$. The effect of program type on quiz score was large, $\mathrm{d}=1.5517$.
\#2: An international studies advisor suspects he can show that study abroad drastically improves the self-esteem of students who undertake such a growth inducing experience. She compares the self-reported self-esteem levels of ten students before and after they study abroad for a semester
a. Type of test? Dependent t-test b. Hypotheses? $\quad \mathbf{H}_{0}: \mu_{D}=\mathbf{0} \mathbf{H}_{A}: \mu_{D} \neq \mathbf{0}$

Paired Samples Statistics					
Std. Deviation Std. Error Mean Pair BEFORE Self-esteem before 3.90 10 1.20	.38				
1	AFTER Self-esteem after	4.40	10	1.17	

Paired Samples Test

		Paired Differences					
		Mean	Std. Deviation	Std. Error Mean	t	df	$\begin{gathered} \text { Sig. } \\ \text { (2-tailed) } \end{gathered}$
$\begin{array}{\|l\|} \hline \text { Pair } \\ 1 \end{array}$	BEFORE Self-esteen before - AFTER Self-esteem after	-. 50	1.08	. 34	-1.464	9	. 177

g. Difference observed?
$\bar{D}=3.15$
h. Formula for df? $\mathbf{d f}=\mathbf{1 2}$

| z
 \times
 16 18
 14 20
 13 16
 10 15
 14 14
 13 18
 14 14
 16 20
 16 20
 14 18
 14 14
 12 16
 10 14 |
| :--- | :--- |

c. Effect size (do for
practice even if not sig.)

$$
\begin{aligned}
& \mathrm{d}=\frac{|\mathrm{D}|}{\hat{\mathrm{S}}_{\mathrm{D}}} \\
& \left.=\frac{|-3.15|}{2.03} \right\rvert\, \\
& =1.5517
\end{aligned}
$$

Homework 6.3A - Annotating Output

Homework 6.3A - Annotating Output-Key

Homework 6.4: Independent \& Dependent T-tests

1. Reviewingz and t-scores: Matilda M atador scores a 30 on the extraversion scale whereas normal people score 40 ($\sigma_{x}=5$). What percent of people are more extraverted than M atilda?

a. Are you dealing with a score or a	b. Find the z or t-score.	c. Roughly sketch the distribution and value.	d. Find the correct percent (for z- Frequency ? sample scores only).
distribution?			

2. Reviewingz and t-scores: A group of 25 teenagers forced to watch 20 hours of Barney average 41 on the depression inventory $\left(\mu=40, \sigma_{x}=10\right)$. What percent of all teenagers are less depressed than this group?

a. Are you dealing with a score or a sample mean?	b. Find the zor t-score.	c. Roughly sketch the distribution and Frequency or		d. Find the correct percent (for z- sample distribution?
scores only).				

3. Reviewing z and t-scores: The "Safe and Speedy" moving company told Opal that the average shipping time was 7 days. Former customers indicated delivery times of $4,9,10,5,12$, and 10 days. Does the 7 days avg. seem plausible based on these data?
$\left.\begin{array}{l|l|l|}\hline \begin{array}{l}\text { a. Are you } \\ \text { dealing with } \\ \text { a score or a } \\ \text { sample }\end{array} & & \text { b. Find the zort-score. } \\ \text { mean? }\end{array}\right)$
4. Interpreting Independent t-tests: An educational psychologist speculated that students who spent more time reading would have lower hostility scores because they would be better able to reason through to problem solving and express their feelings to others. She designed a reading intensive summer experience that students took each year of junior high school. She randomly 20 students both a control and experimental condition, and evaluated their hostility scores after 3 years.

* Label as much of the output as possible with the correct symbols. Be sure to distinguish between standard error of the mean and standard error of the difference.
* Show how you'd set up the data to enter it into SPSS
\qquad a) What's the average level of hostility in the experimental group?
\qquad b) What's the avg. level of hostility in the control group?
\qquad c) What's the observed variability?
\qquad d) What's the expected variability?
\qquad e) What's $t_{\text {obt }}$?
\qquad f) What's the probability you'd see this difference between sample means by chance?

Hypothesis Testing Steps:

1.
2.
3.
4.

.
5. Interpreting Dependent T-tests: An I/O psychologist conducts a study to examine the impact of a diversity training workshop for managers. He asks subordinates to rate managers both before and after the weekend workshop to see if managers have become more sensitive (e.g., less likely to use racial stereotypes, more sensitive to the needs of working mothers, respectful of non-Christian holiday requests, etc.). The subordinates rate their supervisors using a measure of tolerance developed by the psychologist. Scores range from 10 (very insensitive) to 50 (extremely sensitive).

* Label as much of the output as possible with the correct symbols. Be sure to distinguish between standard error of the mean and standard error of the difference.
* Show how you'd set up the data to enter it into SPSS都
\qquad a) What's the average level of tolerance before?
\qquad b)What's the avg. level of tolerance after the training?
\qquad c) What's the observed difference?
\qquad d)What's the expected difference?
\qquad e) What's $\mathrm{t}_{\text {obt }}$?
\qquad f) What's the probability you'd see this difference between sample means by chance?

Hypothesis Testing Steps:
1.
3.
5.
4.
2.

6. Changing Power: Referring to the study above, indicate for each of the following how the change would affect either sampling error or the treatment effect. Also indicate what would happen to the size of $\mathrm{t}_{\text {obt }}$.
\qquad a) Increasing the length of the training so it would have more impact on participants.
________ b) Decreasing the number of participants.
\qquad c) Selecting only participants that started with moderate levels of tolerance.
d) Picking managers from several different departments and from very different working conditions.
\qquad e) M aking bonuses for managers contingent on improving the tolerance ratings by subordinates.
7. Picking the correct statistic: Indicate which is the appropriate statistic for the following situations:
a) \qquad Determine whether the average number of community service hours of a particular fraternity chapter differs from the 5 hour, nation-wide average.
b) \qquad Estimate the variability in service hours for individuals across the entire fraternity based on the variability of service hours for the local chapter.
c) \qquad Compare fraternity and sororities on community service hours. You have 10 members of each.
d) \qquad Calculate the typical number of Twinkies eaten by the 10 fraternity brothers.
e) \qquad Determine the percent of Americans who eat more than the average number of Twinkies eaten by these fraternity brothers ($\sigma=2$).
f) \qquad Determine the percent of Americans who eat more than the 92 Twinkies eaten per day by Big John.
g) \qquad Determine whether fraternity brothers watch more television than the 3 hour per day, nation-wide average. Use your sample of 10 fraternity brothers.
h) \qquad Compare the weight of 10 football players before and after an all Fried Chicken diet.
i) \qquad Compare 10 football players on the diet for 10 weeks to 10 football players who ate normally (as normally as football players can eat).
8. Reviewing z and t-scores: Matilda M atador scores a 30 on the extraversion scale whereas normal people score $40(\sigma=5)$. What percent of people are more extraverted M atilda?

9. Reviewing zand t-scores: A group of 25 teenagers forced to watch 20 hours of Barney average 41 on the depression inventory ($\mu=40, \sigma=10$). What percent of all teenagers are less depressed than this group?

a. Are you	b. Find the zor t-score.			d. Find the correct percent (for
score or a	$M=41$	$\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{10}{\sqrt{25}}=2$		
sample mean?	$\mu=40$			z-scores
Frequency or		$\begin{array}{cc} \sqrt{n} & \sqrt{ } 25 \\ \bar{x}-\mu & \end{array}$		onlal
sampling	$\sigma=10$. 1915
distribution?	$\mathrm{n}=25$	$z=\frac{\sigma_{\bar{x}}}{}$. 5000
	$\mathrm{z}=$?	$z=\underline{41-40}=0.5$	$z=0.5$. 6915
sample mean sampl. distribut.		$z=\frac{2}{2}=0.5$		69.15\%

3. Reviewing z and t-scores: The "Safe and Speedy" moving company told Opal that the average shipping time was 7 days. Former customers indicated delivery times of $4,9,10,5,12$, and 10 days. Does the 7 days avg. seem plausible based on these data?

a. Are you dealing with a score or a sample mean? Frequency or sampling distribution ? b. Find the z or t -score. $\begin{aligned} & \mu=7 \\ & M=8.3333 \\ & \hat{s}_{x}=3.1411 \end{aligned}$	c. Roughly sketch the distribution and value.
$\begin{aligned} & \hat{s}_{x}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}=\sqrt{\frac{466-\frac{2500}{6}}{6-1}}=3.1 \cdot \\ & \hat{s}_{\bar{x}}=\frac{\hat{s}_{x}}{\sqrt{n}}=\frac{3.1411}{\sqrt{6}}=1.2823 \\ & t=\frac{\bar{x}-\mu}{\hat{s}_{\bar{x}}}=\frac{8.3333-7}{1.2823}=1.0398 \end{aligned}$	Retain Ho . 7 day average is plausible.

4. Interpreting Independent t-tests: An educational psychologist speculated that students who spent more time reading would have lower hostility scores because they would be better able to reason through to problem solving and express their feelings to others. She designed a reading intensive summer experience that students took each year of junior high school. She randomly 20 students both a control and experimental condition, and evaluated their hostility scores after 3 years.

Group Statistics													
Cntrl 20	$\frac{\text { Exp }}{15}$		G	N	Mean	Std. Deviation	Std. Error Mean						
30	10	HOSTIL		10	29.00	7.746	$\begin{aligned} & \hline 2.449 \\ & 1.979 \end{aligned}$						
	10		2	10	18.50	6.258							
40	15												
30	20												
20	10												
25	25	Independent Samples Test											
20	30				Levene's Test for Equality of Variances		t -test for Equality of Means						
30	20												
35					F	Sig.	t	df	$\begin{aligned} & \text { Sig. } \\ & \text { (2-ta } \\ & \text { iled) } \end{aligned}$	Mean Differe nce	Std. Error Difference	95\% Confidence Interval of the Difference	
35	20												
40	20											Lower	Upper
		HOSTIL	Equal assum	ances	. 635	. 436	$\begin{aligned} & 3.33 \\ & 3.33 \end{aligned}$	18	. 004	10.50	3.149	3.884	17.116
		Equal variances not assumed						17.2	. 004	10.50	3.149	3.863	17.137

* Label as much of the output as possible with the correct symbols. Be sure to distinguish between standard error of the mean and standard error of the difference.
* Show how you'd set up the data to enter it into SPSS

| Group | Hostility |
| :--- | :--- | :--- |
| 1 | 20 |
| 1 | 30 |
| \ldots | \ldots |
| 2 | 15 |
| 2 | 10 |

Hypothesis Testing Steps:

1. Compare $M_{1} \& M_{2}$
2. $\mathrm{Ho}: \mu_{1}-\mu_{2}=0 \quad$ На: $\mu_{1}-\mu_{2}=0$
3. $\alpha=.05, d f=18 t_{\text {crit }}=2.101$
4. $t_{o b t}=3.33$

$$
\begin{aligned}
& \hat{s}=\hat{s}_{\bar{x}} * \sqrt{n}=3.149 * \sqrt{10}=9.9580 \\
& d=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\hat{s}}=\frac{29-18.5}{9.9580}=1.0544
\end{aligned}
$$

5. Reject Ho.

The hypothesis was supported. The average hostility score for the experimental group ($M=18.50$), was significant lower than that of the control group $(M=29.00), t(18)=3.33, p \leq .05$. Reading has a large effect on hostility scores, $\mathrm{d}=1.0544$.
5. Interpreting Dependent T-tests: An I/O psychologist conducts a study to examine the impact of a diversity training workshop for managers. He asks subordinates to rate managers both before and after the weekend workshop to see if managers have become more sensitive (e.g., less likely to use racial stereotypes, more sensitive to the needs of working mothers, respectful of non-Christian holiday requests, etc.). The subordinates rate their supervisors using a measure of tolerance developed by the psychologist. Scores range from 10 (very insensitive) to 50 (extremely sensitive).

* Label as much of the output as possible with the correct symbols. Be sure to distinguish between standard error of the mean and standard error of the difference.
_a) 26.25 What's the average level of tolerance before?
_b) 31.88 What's the avg. level of tolerance after the training?
_c) -5.63 What's the observed difference?
_d) 2.745 What's the expected difference?
_e) -2.049 What's tobt?
_f) 8% What's the probability you'd see this difference between sample means by chance?
* Show how you'd set up the data to enter it into SPSS

Before After
2535
2020
2530

Hypothesis Testing Steps:

1. Compare Dbar \& $\mu \mathrm{D}$

2. $\mathrm{Ho}: \mu_{D}=0$; $\mathrm{Ha}: \mu_{D} \neq 0$
3. $\alpha=.05, d f=n-1=7 ; \quad t_{\text {crit }}=2.365$
4. $\mathrm{t}_{\text {obt }}=-2.049$
5. Retain Ho.

The hypothesis was not supported. The average tolerance level of managers after training ($\mathrm{M}=31.88$) is not statistically different from the level before training ($M=26.25$), $t(7)=-2.049$, n.s..
6. Changing Power: Referring to the study above, indicate for each of the following how the change would affect either sampling erı or the treatment effect. Also indicate what would happen to the size of $\mathrm{t}_{\text {obt }}$.

Note: Increasing treatment effect always increases $t_{\text {obt }}$; Increasing sampling error always decreases $t_{\text {obt }}$.
a) \uparrow treatment effect, \uparrow tobt Increasing the length of the training so it would have more impact on participants.
b) \uparrow sampling error, \downarrow tobt Decreasing the number of participants.
c) \downarrow sampling error, $\boldsymbol{\uparrow}$ tobt Selecting only participants that started with moderate levels of tolerance.
d) \uparrow sampling error, \downarrow tobt Picking managers from several different departments and from very different working conditions.
e) \uparrow treatment effect, \uparrow tobt M aking bonuses for managers contingent on improving the tolerance ratings by subordinates.
7. Picking the correct statistic: Indicate which is the appropriate statistic for the following situations:
a) 1-sample t-test Determine whether the average number of community service hours of a particular fraternity chapter differs from the 5 hour, nation-wide average.
b) Standard deviation as an estimate, \hat{s}_{x} Estimate the variability in service hours across the entire fraternity based on the variability service hours for the local chapter.
c) Ind. t-test Compare fraternity and sororities on community service hours. You have 10 members of each.
d) Mean $x_{b a r}$ Calculate the typical number of twinkies eaten by the 10 fraternity brothers.
e) z-score (sampling distribution) Determine the percent of Americans who eat more than the average number of Twinkies eate by these fraternity brothers ($\sigma=2$).
f) z-score (frequency distribution) Determine the percent of Americans who eat more than the 92 Twinkies eaten per day by BigJo
g) 1-sample t-test Determine whether fraternities brothers watch more television than the 3 hour per day, nation-wide average. U your sample of 10 fraternity brothers.
h) Dependent t-test Compare 10 football players before and after an all Fried Chicken diet.
i) Independent t-test Compare 10 football players on the diet for 10 weeks to 10 football players who ate normally (as normally as football players can eat).

Homework 6.6-Conceptual Review

1) A researcher tests whether caffeine increases academic performance and concludes it does not. Which of the following must be true
a) $t_{\text {crit }}<t_{\text {obt }}$
b) $\mathrm{p}<.05$
c) she could be making a Type II error
d) there was no sampling error
e) increasing n would help detect a treatment effect
2) A researcher tested whether those primed to have an avoidance orientation took longer to order dinner at a restaurant. To prime the avoidance orientation she had participants in the experimental group try to list five movies no one should see. Which of the following might she do to reduce sampling error?
a) Decrease n
b) Decrease power
c) Standardize the number of items on a menu
d) Increase the number of don't-see-movies she requires the person to list in the experimental group.
e) Increase the variability in hunger level
3) A researcher concludes the new anti-psychotic drug Avernon produces significantly fewer side effects than the market leader and determines the effect size is large. Which of the following must be true?
a) There is no chance of a Type I error.
b) There were no extraneous variables affecting the DV
c) There is no evidence of sampling error
d) The observed difference was double (or more) the expected difference
4) A researcher suspects that participants will rate spooky stories as scarier if read in low light conditions. She has participants read stories in both low and high light conditions and then rate the stories on scariness. The number of scary elements written into a given story would be
a) the IV
b) the levels of the IV
c) the DV
d) an extraneous variable.
5) A researcher wants to test the effectiveness of debating versus lecturing for teaching the use of evidence in writing. He teaches debate in one class, lectures in another, and then tests for differences in essay quality. Which of the following would decrease sampling error in this design:
a) run the program for two rather than only one semester
b) increasing the intensity of the debate training
c) decrease the quality of the lecturing
d) $a \& b$
6) A researcher wants to test the effectiveness of debating versus lecturing for teaching the use of evidence in writing. He teaches debate in one class, lectures in another, and then tests for differences in essay quality. M aking the debate training more focused on the use of evidence would likely make
a) Type I error less likely
b) Type II error less likely
c) it less likely you can exceed t-critical
d) it more likely sampling error will increase
7) When doing a two sample t-test, an increase in the difference between means would suggest a(n)
a) increased treatment effect
b) decreased treatment effect
c) increased sampling error
d) decreases sampling error
8) In a t formula, increasing power will yield
a) Less Type I error
b) M ore Type II error
c) a smaller α area
d) \quad a smaller β area
9) As n increases
a) Treatment effect increases
b) Sampling error increases
c) α increases
d) β increases
e) Power increases

Fill-in

1. If participants are matched by the experimenter then one should conduct a \qquad samplest-test.
2. If the standard deviation in the population is not known we must \qquad it based on the sample.
3. As $t_{\text {critical }}$ increases $t_{\text {obtained }}$ \qquad . (increases, decreases, or stays the same)
4. As n increases standard \qquad will stay the same but standard \qquad will decrease (hint: both are measures of variability).
5. In any hypothesis testing formula (z, t, etc.) some measure of variability is on the bottom and it specifies the difference \qquad based solely on sampling error.
6. The typical measure of practical significance with the t-test is the \qquad statistic (hint: a specific statistic).
7. In an independent t-test, if the treatment effect increases then this may increase the difference between the two
\qquad in the formula.
8. Unlike the t-distribution, the z-distribution conforms to the \qquad (hint: three word).
9. If you wanted to calculate the variability of the points scored per player you'd typically calculate \qquad
\qquad _.
10. The area under the alternative distribution not designated "power" would be represented by the symbol \qquad .
11. Determining the size of a treatment effect (after concluding one exists) requires a calculation of \qquad significance.
12. For any given t-test, an increase in treatment effect or a decrease in sampling error gives the experimenter more
\qquad _•

Name that Stat

Use the following choices for the items below
a. standard deviation
b. mean
c. correlation
d. regression
e. one-sample z-test
f. one-samplet-test
g. two-sample t-test, independent
h. two-sample t-test, dependent
i. effect size (d)
j. the three-sample Zamboni half-twist with triple flip

1) _____ A researcher examines the effect of music training on math ability. He compares a group of kids with three years of music lessons to a group with no lessons on a math ability test.
2) _______A researcher tests whether victim sensitivity relates to narcissism. Some of the participants are named Ned.
3) ______A researcher tests whether auto mechanics score higher than normal (40 pts) on a test of spatial ability.
4) ______ researcher examines whether former professional football players score differently on a test of verbal recall ($\mu=100, \sigma=10$).
5) \qquad A research attempts to predict someone's narcissism score based on how long they gaze into a mirror mounted in the hallway.
6) \qquad A research measures how long the typical person spends showering after finishing a statistics course.
7) \qquad A researcher tests whether researchers smell worse than normal people. He matches people on smelling ability and then assigns half to smell researchers and have to smell normal people.
8) \qquad A researcher determines that doing research does make people smell funny and now wants to determine how much worse they smell than normal people.
9) \qquad A stats teacher wants to test whether people have lower social skills than normal after taking a statistics class. He measures the social skills of his most recent class of victims students and compares it to people in general ($\mu=100, \sigma=20$).
10) A researcher tests whether caffeine increases academic performance and concludes it does not. Which of the following must be true
a) $t_{\text {crit }}<t_{0 b t}$
b) $p<.05$
c) she could be making a Type II error
d) there was no sampling error
e) increasing n would help detect a treatment effect
11) A researcher tested whether those primed to have an avoidance orientation took longer to order dinner at a restaurant. To prime the avoidance orientation she had participants in the experimental group try to list five movies no one should see. Which of the following might she do to reduce sampling error?
a) Decrease n
b) Decrease power
c) Standardize the number of items on a menu
d) Increase the number of don't-see-movies she requires the person to list in the experimental group.
e) Increase the variability in hunger level
12) A researcher concludes the new anti-psychotic drug Avernon produces significantly fewer side effects than the market leader and determines the effect size is large. Which of the following must be true?
a) There is no chance of a Type I error.
b) There were no extraneous variables affecting the DV
c) There is no evidence of sampling error
d) The observed difference was double (or more) the expected difference
13) A researcher suspects that participants will rate spooky stories as scarier if read in low light conditions. She has participants read stories in both low and high light conditions and then rate the stories on scariness. The number of scary elements written into a given story would be ...
a) the IV
b) the levels of the IV
c) the DV
d) an extraneous variable.
14) A researcher wants to test the effectiveness of debating versus lecturing for teaching the use of evidence in writing. He teaches debate in one class, lectures in another, and then tests for differences in essay quality. Which of the following would decrease sampling error in this design:
a) run the program for two rather than only one semester
b) increasing the intensity of the debate training
c) using only participants who can read at grade level
d) $a \& b$
15) A researcher wants to test the effectiveness of debating versus lecturing for teaching the use of evidence in writing. He teaches debate in one class, lectures in another, and then tests for differences in essay quality. M aking the debate training more focused on the use of evidence would likely make
a) Type I error less likely
b) Type II error less likely
c) it less likely you can exceed t-critical
d) it more likely sampling error will increase
16) When doing a two sample t-test, an increase in the difference between means would suggest a(n)
a) increased treatment effect
b) decreased treatment effect
c) increased sampling error
d) decreases sampling error
17) In a t or F formula, increasing power will yield
a) Less Type I error
b) M ore Type II error
c) a smaller α area
d) a smaller β area
18) As n increases
a) Treatment effect increases
b) Sampling error increases
c) α increases
d) β increases
e) Power increases

Fill-in

1. If participants are matched by the experimenter then one should conduct a _DEPENDENT_samples t-test.
2. If the standard deviation in the population is not known we must _ESTIM ATE_ it based on the sample.
3. Astcritical increases $\mathrm{t}_{\text {obtained }}$ \qquad . (increases, decreases, or stays the same)
4. As n increases standard \qquad will stay the same but standard \qquad will decrease (hint: both are measures of variability).
5. In any hypothesis testing formula (z, t, etc.) some measure of variability is on the bottom and it specifies the difference \qquad EXPECTED based solely on sampling error.
6. The typical measure of practical significance with the t-test is the \qquad d \qquad statistic (hint: a specific statistic).
7. In an independent t-test, if the treatment effect increases then this may increase the difference between the two __MEANS__ in the formula.
8. Unlike the t -distribution, the z -distribution conforms to the_STANDARD NORM ALCURVE_ (hint: three word).
9. If you wanted to calculate the variability of the points scored per player you'd typically calculate __STANDARD DEVIATION_.
10. The area under the alternative distribution not designated "power" would be represented by the symbol _ β __ .
11. Determining the size of a treatment effect (after concluding one exists) requires a calculation of __PRACTICAL PRACTICAL___ significance.
12. For any given t-test, an increase in treatment effect or a decrease in sampling error gives the experimenter more __POWER__.

Name that Stat

Use the following choices for the items below
a. standard deviation
b. mean
c. correlation
d. regression
e. one-sample z-test
f. one-sample t-test
g. two-sample t-test, independent
h. two-sample t-test, dependent
i. effect size (d)
j. the three-sample Zamboni half-twist with triple flip

1) ___G__ A researcher examines the effect of music training on math ability. He compares a group of kids with three years of music lessons to a group with no lessons on a math ability test.
2) ___C___A researcher tests whether victim sensitivity relates to narcissism. Some of the participants are named Ned.
3) ___F___A researcher tests whether auto mechanics score higher than normal (40 pts) on a test of spatial ability.
4) __E__A researcher examines whether former professional football players score differently on a test of verbal recall ($\mu=100, \sigma=10$).
5) ___D__ A research attempts to predict someone's narcissism score based on how long they gaze into a mirror mounted in the hallway.
6) ___B__A research measures how long the typical person spends showering after finishing a statistics course.
7) __ H___ A researcher tests whether researchers smell worse than normal people. He matches people on smelling ability and then assigns half to smell researchers and have to smell normal people.
8) ___ A researcher determines that doing research does make people smell funny and now wants to determine how much worse they smell than normal people.
9) __E__A stats teacher wants to test whether people have lower social skills than normal after taking a statistics class. He measures the social skills of his most recent class of victims students and compares it to people in general ($\mu=100, \sigma=20$).

Homework 6.7 Computational Review (Test 2)

All questions worth 6 pt unless otherwise marked.

For the following set of questions, assume normal people score 50 on the Ceespotrun verbal ability test ($\sigma=8$).	
1. Bob scores 66 . Calculate his standard score by hand.	2. If $z=1.5$, what percent score higher?
3. If Biff scores 39, what percent score higher?	4. A class of 16 students average 53. Calculate their standard score by hand.

8. Calculate the effect size or state why not needed.

For problems 9-11, assume you ask people to rate the severity of their daily problems both before ($7,8,5,4,8$) and after working in a homeless shelter ($6,7,6,3,7$).
9. Use SPSS to calculate the $\mathrm{t}_{\text {obtained }}$.
10. Provide the symbol and value of the standard error used by SPSS to produce $\mathrm{t}_{\text {obtained }}$.
11. Explain the results in a paragraph. Assume tobtained $=1.7$ (do not use the $t_{\text {obtained }}$ you calculated). [12 points]
,
For the following set of problems (12-15), compare the number of walls rats bump into if they are taking the drug Dizzorex $(4,3,7,7)$ vs. a placebo ($2,4,2,0$).
12. Calculate $\mathrm{t}_{\text {obtained }}$ using SPSS.
$\mathrm{t}_{\text {obtained }}=$ \qquad
13. Using the two tables below (not your results above), calculate the effect size or state why not needed.

	Group	N	Mean	Std. Deviation	Std. Error Mean
Bumps	Dizzorex	4	5.50	1.732	.866
	Placebo	4	2.50	1.000	.500

		t-test for Equality of Means				
		t	df	$\begin{gathered} \text { Sig. } \\ \text { (2-tailed) } \\ \hline \end{gathered}$	Mean Diff	Std. Error Difference
Bumps	Equal variances assumed	3.000	6	. 024	3.000	1.000

15. Explain the results in paragraph form [12 points]. (Use the two tables above, not your results.)

All questions worth 6 pt unless otherwise marked.
For the following set of questions, assume normal people score 50 on the Ceespotrun verbal ability test ($\sigma=8$).

1. Bob scores 66. Calculate his standard score by hand.
$z=\frac{x-\mu}{\sigma}=\frac{66-50}{8}=\frac{16}{8}=2.0$
2. If Biff scores 39, what percent score higher?

$z=\frac{x-\mu}{\sigma}=\frac{39-50}{8}$	0.4162
$=\frac{-11}{8}=-1.375$	+0.5000
0.9162	

2. If $z=1.5$, what percent score higher?
6.68\% (Use "area beyond")
3. A class of 16 students average 53. Calculate their standard score by hand.

$$
\begin{aligned}
& \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{8}{\sqrt{16}}=2 \\
& z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{53-50}{2}=1.5
\end{aligned}
$$

For the following set of questions, assume normal people score 7 on the Wigginout Stress Test. Individuals meditating score $7,3,4, \& 6$. Answer the following questions relating to testing for a significance difference.
5. State the correct $\mathrm{t}_{\text {critical }}$. $\mathrm{t}_{\text {critical }}=3.182$
7. Calculate t obtained by hand assuming a standard error of 1.0 (don't use what you found in \#6).
$t=\frac{\bar{x}-\mu}{\hat{s}_{\bar{x}}}=\frac{5-7}{1}=-2$
6. Calculate standard error by hand. [Hint: $\Sigma x^{2}=110,(\Sigma x)^{2}=400$]
$\hat{s}_{x}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}=\sqrt{\frac{110-\frac{400}{4}}{4-1}}=1.8257$
$\hat{s}_{\bar{x}}=\frac{\hat{s}_{x}}{\sqrt{n}}=\frac{1.8257}{\sqrt{4}}=\frac{1.8257}{2}=.9129$
8. Calculate the effect size or state why not needed.

Difference not statistically significant, so no need to test for practical significance.

You ask people to rate the severity of their daily problems both before ($7,8,5,4,8$) and after working in a homeless shelter ($6,7,6,3,7$). Calculate the correct t-test on the computer.
9. Provide the $\mathrm{t}_{\text {obtained }}$ provided by SPSS.
$t=1.500$
10. Provide the symbol and value of the standard error used by SPSS to produce $\mathrm{t}_{\text {obtained }}$.
$\hat{s}_{\bar{D}}=0.4$
11. Explain the results in a paragraph. Assume tobtained $=1.7$ (do not use the t obtained you calculated). [12 points]

The hypothesis was not supported. Problem ratings after working ($M=5.8$) were not significantly lower than before ($M=6.4$), $\mathrm{t}(4)=1.7$, n.s.

14. Calculate the effect size or state why not needed. (Use the two tables above, not your results.)
$\hat{s}=\hat{s}_{\bar{x}_{1}-\bar{x}_{2}} * \sqrt{n}=1 * \sqrt{4}=2$
$d=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\hat{s}}=\frac{3.000}{2}=1.5000$
15. Explain the results in paragraph form [12 points]. (Use the two tables above, not your results.)

The hypothesis was supported. Dizzorex rats hit significantly more walls ($M=5.50$) than placebo rats ($M=2.50$), $\mathrm{t}(6)=3.000, \mathrm{p} \leq .05$. The effect of Dizzorex on wall bumping was large, $\mathrm{d}=1.5000$.

Homework 6.8: Conceptual Review T2 (closed book)

Fold paper on middle line. Correct answers on right. Correct letter choice is second to last letter..

1) You study the effect of social loafing (i.e., people slacking off when no one is watching) on team performance. Which of the following might increase the treatment effect? a) Using people from the same department in the corporation b) Using people from different departments within the corporation. c) Using only people named Bob, Brian, or Bartholomew d) M aking it harder for team members to track amount of work done by each person e) M aking it easier for team members to track amount of work done by each team member	abcededf Making monitoring of work done more difficult will likely increase the amount of social loafing (the potential treatment effect).
2) If $p_{\text {obt }}$ increases you become more likely to a) Retain the Ha b) Reject the Ho c) Reject the Ha d) Retain the Ho e) See $t_{\text {obt }}$ surpass $t_{\text {critical }}$ f) See $t_{\text {obt }}$ increase	bedegadb Because pobt indicates the chance the difference is just a fluke, a larger p value makes you more likely to retain Ho - the idea that any difference is just random. (We never retain/reject the Ha.)
3) The existence of a treatment effect becomes more likely when you ... a) Increase alpha b) Decrease alpha c) See $p_{\text {obt }}$ getting large d) See $t_{\text {obt }}$ getting smaller e) Sampling error increases f) Sampling error decreases g) None of the above	gabefsgf The answers $a, b, e, \& f$ only determine your ability to detect a treatment effect - not whether one exists or not. A larger tor smaller p would suggest the existences is more likely (but the choices are the reverse).
4) The effect size statistic "d" is most similar to in purpose to a) $t_{\text {obt }}$ b) $t_{\text {crit }}$ c) $Z_{o b t}$ d) regression e) r^{2} f) $p_{o b t}$	bcdedfcea Like d, r^{2} indicates something related to practical significance - the amount of variance accounted for.
5) You study whether people who attend church regularly are more or less likely to support the use of military force compared with a group who does not attend regularly. Which of the following would make it more likely you could reject the null hypothesis? a) $\mathrm{t}_{\text {obt }}$ increases; $\mathrm{t}_{\text {critical }}$ increases; alpha increases b) $\mathrm{t}_{\text {obt }}$ decreases; $\mathrm{t}_{\text {critical }}$ decreases; alpha decreases c) $t_{\text {obt }}$ increases; $t_{\text {critical }}$ decreases; alpha increases d) $t_{\text {obt }}$ increases; $t_{\text {critica }}$ increases; alpha decreases e) you threaten to "shoot 'em all and let God sort it out."	agbhdetcs We always want tobt large and tcritical small to optimize chance for rejection. Increasing alpha would increase our willingness to gamble on rejecting (e.g., increasing alpha from .05 to .10 would mean we'd reject 10% of the time rather than just 5\% of the time).

6) You study whether people who smoke are more likely to weigh more. You compare the weight of 10 smokers to 10 non-smokers. Detecting a treatment effect becomes more likely if you a) Use people of about the same age b) Use only smokers who smoke heavily c) Decrease alpha d) Use only smokers who smoke infrequently e) $a \& b$ f) $a, b, \& c$	adefabec (a) Using only people the same age decreases variability in weight. (b) Smoking is the potential treatment effect, so using heavy smokers would increase the effect if there is one. [Decreasing alpha makes us more conservative about rejecting.]
7) You ask people to compare a lower-fat and full-fat version of Chocolate M unky-Skunky to determine if people think one tastes better than the other. You use two different groups of people. What factors would decrease sampling error? a) M aking the ice cream extra cold instead of just regularly cold. b) Making the low-fat version taste better by adding extra sugar. c) Testing only people who had not eaten within the last 3 hours. d) Testing only people who admit to watching day-time television e) Putting only thin people in the full-fat condition. f) Eating three pounds of each just to make sure it is safe for your participants.	abdabcecd This is the only option that standardizes across conditions. Option "a" doesn't standardize any more - it's just shifting from one standardized value to another.
8) Using a standardized test of social anxiety ($\mu=40, \sigma=5$), a researcher determines whether social anxiety varies systematically with loneliness. Which statistical procedure is most appropriate? a) Standard deviation b) Sample mean c) Z-test d) One-sample t-test e) Independent t-test f) Dependent t-test g) Correlation h) Regression	aefcgh Testing whether two variables vary together is a testing for a relationship. It's not regression because you're not making any predictions.
9) You ask 10 women to rate how attractive they perceive a particular male to be, and determine the amount of variability in their ratings. a) Standard deviation b) Sample mean c) Z-test d) One-sample t-test e) Independent t-test f) Dependent t-test g) Correlation h) Regression	bfaefah Simply assessing variability is a descriptive statistic. Standard deviation is our preferred measure of variability.

10) You compare highly educated (M asters degree or higher) and modestly educated (High School degree) women according to their rankings of attractiveness for men they observe.
a) Standard deviation
b) Sample mean
c) Z-test
d) One-sample t-test
e) Independent t-test
f) Dependent t-test
g) Correlation
h) Regression
11) Using a standardized test of social anxiety ($\mu=40, \sigma=5$), a researcher determines whether a sample of construction workers is more anxious than normal. Which statistical procedure is most appropriate?
a) Standard deviation
b) Sample mean
c) Z-test
d) One-sample t-test
e) Independent t-test
f) Dependent t-test
g) Correlation
h) Regression
i) a, e, and g- just to cover all her bases
12) A researcher examines whether eliminating sugary drinks (soft drinks, sweetened tea, Gatorade, etc.) causes weight loss. She measures the weight of 20 college students before and one month after the change. She might commit a type II error if she
a) Rejects the Ho
b) Retains the Ho
c) Concludes the diet causes weight loss
d) Concludes the diet does not cause weight loss
e) Finds that t-obt exceeds t-crit
f) $b \& d$
g) $a \& c$
13) When conducting a correlation, which of the following makes it more likely to reject the Ho?
a) a small p; a small r ; a large ρ
b) a small p; a large r ; a large ρ
c) a small p; a small r ; a small ρ
d) a large p; a large r;a small ρ
e) a large p; a small r ; a small ρ
f) a large p; a large r; a large ρ
eabbdcec This implies you're looking for a difference between independent groups.
aghbiecf One group, hypothesis of difference, standard deviation in the population is known.
bcadefa You can only commit type ll errors when not rejecting the hypothesis (the same as concluding there is no effect of the independent variable).

Bdaabdbc A small p means you're more confident there is a correlation. A large r means you're observing a stronger correlation, and a large ρ means there actually exists a large correlation in the population for you to observe if you were to sample from it.

Homework 6.9 Practice Test for Test \#2 -- (Excluding Essay)-Key

Conceptual: Multiple Choice (5 points each)

1) As n increases, the shape of the t-distribution becomes \qquad and t-critical \qquad
a) less like a z-distribution; increases
b) less like a z-distribution; decreases
c) more like a z-distribution; increases
d) more like a z-distribution; decreases
2) When doing a t-test, a larger difference between the sample and population mean makes which thing more likely?
a) the presence of sampling error
b) the presence of a treatment effect
c) that you can retain the Ho
d) that you can reject the Ha
3) If the probability level associated with a t-test is .007 , we would do which of the following?
a) reject the Ho
b) recognize the chance of a treatment effect is 0.7
c) conclude there is too much error to say there is a treatment effect
d) $a \& b$
4) When doing a t-test, a decrease in the variability of the raw scores gives the experimenter
a) more sampling error
b) more power
c) a higher standard error
d) a larger treatment effect
5) Which of the following indicates the degree of impact of the independent variable on the dependent variable?
a) power
b) inferential statistics
c) the d statistic
d) the t statistic
6) If Beta (β) increases, which of the following must be true?
a) treatment effect increases
b) alpha (α) decreases
c) sampling error decreases
d) power decreases
7) If an author reports " $t(59)=3.19, p<=05$ " she is telling you...
a) the probability of Type I error is equal or less than 5%
b) the probability of Type II error is equal or less than 5\%
c) there is too much sampling error to conclude that a treatment effect is present
d) there is a 3.19% chance the observed difference is due to chance
8) If z-obtained equals 1.99 , one could conclude that....
a) the chance of obtaining this result by chance is less than or equal to 99%
b) there is no treatment effect
c) the sample comes from a different population than the Ho distribution
d) the chance of a type I error is zero
9) A sampling distribution
a) shows the distribution of scores based on sampling error
b) shows the size of the treatment effect
c) shows the amount of power from the treatment effect
d) is based on the assumption the null hypothesis is true
10) When doing an independent t-test, the \qquad hypothesis states the means are \qquad _.
a) null; equal
b) null; not equal
c) research; equal
d) research; not equal
11) Cohen's d statistic expresses the effect size in terms of \qquad
a) standard deviation units
b) variance units
c) variance accounted for
d) mean units
12) You want to know if the advertized average class size for a university (20 students) differs significantly from the average class size in your sample of 9 different classes. Which statistic would be the most appropriate?
a) correlation
b) effect size
c) one-sample t-test
d) two-sample t-test, independent
13) You want to know if job satisfaction is related to job performance. You have data from 60 people. Which statistical procedure is most appropriate?
a) Regression
b) Correlation
c) Independent t-test
d) Dependent t-test
14) You want to know if the attractiveness of job applicants affects the assessment of their credentials. You have people rate two applicants each by looking at resumes with pictures. The supposed applicants are matched on their job-relevant qualifications. Which statistical procedure is most appropriate?
a) Independent t-test
b) Correlation
c) Regression
d) Dependent t-test
15) Which of the following statements is TRUE?
a) True differences are more likely to be detected if the sample size is large.
b) A very low significance level (p-value) increases the chances of a Type I error.
c) If the d statistic is a small number, a Type II error is unlikely.
16) Rejecting the null hypothesis means the population means are not equal. What does it mean to say a result is statistically significant?
a) The observed difference exceeded the expected difference due to sampling error
b) The observed difference is too large to be reasonably attributed to sampling error
c) Sampling error was so small as to be insignificant
d) Sampling error was less than the observed difference
17) In regression, we call the variable on the " x " axis the \qquad .
18) Decreasing sampling error in an experiment gives the experimenter more \qquad _.
19) When doing a t-test, the standard error of the difference tells you the difference \qquad between means due to sampling error.
20) A \qquad [two-words] pictures the variability of means expected from sampling error alone.
21) The chance that an experimenter will fail to reject the Ho when it should be rejected is represented by \qquad [symbol].
22) The abbreviation used by statisticians for the Sum of the Squared Deviation Scores is \qquad _.
23) The measure of variability used in a two-sample dependent t-test is called standard error of the \qquad [one or two words].
24) Both r^{2} and d are examples of \qquad -size statistics.
25) Both z and t are examples of tests for \qquad significance.
26) If the IV affects the $D V$ we call this impact a \qquad . [two-words].

Computational Portion, Open Book (100 points total; 5 pts unless noted.)

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	warthogs	4.71	7	1.380	.522
	wombats	6.86	7	1.676	.634

A researcher tested whether people prefer warthogs or wombats as pets. Each person had both types for one month; participants then rated their satisfaction with each of the two.

Paired Samples Test								
	Paired Differences					t	df	Sig. (2-tailed)
	Mean	Std. Deviation	Std. ErrorMean	95\% Confiden Diffe	erval of the			
				Lower	Upper			
Pair 1 warthogs - wombats	-2.143	2.035	. 769	-4.025	$-.260$	-2.785	6	. 032

9. What percent of time 10 . Using the output above, calculate the effect size, or if not appropriate, state "NA."
would you see this would you see this difference between the means solely by chance?

Paragraph \#1. (10 pts) Write a paragraph explanation of the this outcome on the answer sheet.
11. By hand, test whether biker-gang members $\left(\mathrm{M}=8.67, \mathrm{n}=9, \mathrm{~s}_{\mathrm{x}}=1.658\right)$ eat more or less than the recommended serving of 10 fruits and vegetables per day. Formally summarize the statistic (you do not need to show hypothesis testing steps).

Group Statistics

	group	N	Mean	Std. Deviation	Std. Error Mean
helping	unattractive	9	8.00	1.581	.527
	attractive	9	10.33	2.291	.764

(for 12-14) An experimenter manipulated the attractiveness of a person who dropped pencils in an elevator and then measured the number of pencils people helped pick up.
12. Indicate the difference observed and expected.

Paragraph \#2. Write a paragraph explanation of this outcome in the space provided.
13. Calculate the effect size statistic or state "NA" if not appropriate.

Correlations						
		A	B	C	D	E
A	Pearson Correlation	1	. $654{ }^{\text {² }}$. $766^{\text {* }}$. 487	-. 599
	Sig. (2-tailed)		. 040	. 010	. 154	. 067
	N	10	10	10	10	10
B	Pearson Correlation	. $654{ }^{\text { }}$	1	. $827{ }^{\text {** }}$. $867^{\text {x }}$	$-.819^{\text {xx }}$
	Sig. (2-tailed)	. 040		. 003	. 001	. 004
	N	10	10	10	10	10
C	Pearson Correlation	$.766^{\text {x }}$. $827{ }^{\text {** }}$	1	. $856{ }^{\text {x }}$	$-.850^{\text {\%x }}$
	Sig. (2-tailed)	. 010	. 003		$.002$. 002
	N	10	10	10	10	10
D	Pearson Correlation	.487	. $867{ }^{\text {** }}$	$.856{ }^{\text {x }}$	1	$-.861^{\text {*x }}$
	Sig. (2-tailed)	. 154	. 001	. 002		. 001
	N	10	10	10	10	10
E	Pearson Correlation	-. 599	$-.819^{\text {x] }}$	$-.850^{\text {xx }}$	$-.861^{\pi \pi}$	1
	Sig. (2-tailed)	. 067	. 004	. 002	. 001	
	N	10	10	10	10	10

${ }^{*}$ Correlation is significant at the 0.05 level (2-tailed).
\rightarrow Correlation is significant at the 0.01 level (2-tailed)
14. Recalculate t-obt by hand assuming the mean for the unattractive condition was 7.00 .
15. The correlation between which two variables is most likely due to chance?
16. How many significant correlations are represented in this matrix?
17. A researcher wanted to estimate the variability of scores in a population based on her sample. Calculate the standard deviation where $\mathrm{SS}=64$ and $\mathrm{n}=5$

Conceptual: Multiple Choice (5 points each)

1) As n increases, the shape of the t-distribution becomes \qquad and t-critical \qquad
a) less like a z-distribution; increases
b) less like a z-distribution; decreases
c) more like a z-distribution; increases
d) more like a z-distribution; decreases
2) When doing a t-test, a larger difference between the sample and population mean makes which thing more likely?
a) the presence of sampling error
b) the presence of a treatment effect
c) that you can retain the Ho
d) that you can reject the Ha
3) If the probability level associated with a t-test is .007 , we would do which of the following?
a) reject the Ho
b) recognize the chance of a treatment effect is 0.7
c) conclude there is too much error to say there is a treatment effect
d) $a \& b$
4) When doing a t-test, a decrease in the variability of the raw scores gives the experimenter
a) more sampling error
b) more power
c) a higher standard error
d) a larger treatment effect
5) Which of the following indicates the degree of impact of the independent variable on the dependent variable?
a) power
b) inferential statistics
c) the d statistic
d) the t statistic
6) If Beta (β) increases, which of the following must be true?
a) treatment effect increases
b) alpha (α) decreases
c) sampling error decreases
d) power decreases
7) If an author reports " $t(59)=3.19, p<=05$ " she is telling you...
a) the probability of Type I error is equal or less than 5%
b) the probability of Type II error is equal or less than 5\%
c) there is too much sampling error to conclude that a treatment effect is present
d) there is a 3.19% chance the observed difference is due to chance
8) If z-obtained equals 1.99 , one could conclude that....
a) the chance of obtaining this result by chance is less than or equal to 99%
b) there is no treatment effect
c) the sample comes from a different population than the Ho distribution
d) the chance of a type I error is zero
9) A sampling distribution
a) shows the distribution of scores based on sampling error
b) shows the size of the treatment effect
c) shows the amount of power from the treatment effect
d) is based on the assumption the null hypothesis is true
10) When doing an independent t-test, the \qquad hypothesis states the means are \qquad _.
a) null; equal
b) null; not equal
c) research; equal
d) research; not equal
11) Cohen's d statistic expresses the effect size in terms of \qquad
a) standard deviation units
b) variance units
c) variance accounted for
d) mean units
12) You want to know if the advertized average class size for a university (20 students) differs significantly from the average class size in your sample of 9 different classes. Which statistic would be the most appropriate?
a) correlation
b) effect size
c) one-sample t-test
d) two-sample t-test, independent
13) You want to know if job satisfaction is related to job performance. You have data from 60 people. Which statistical procedure is most appropriate?
a) Regression
b) Correlation
c) Independent t-test
d) Dependent t-test
14) You want to know if the attractiveness of job applicants affects the assessment of their credentials. You have people rate two applicants each by looking at resumes with pictures. The supposed applicants are matched on their job-relevant qualifications. Which statistical procedure is most appropriate?
a) Independent t-test
b) Correlation
c) Regression
d) Dependent t-test
15) Which of the following statements is TRUE?
a) True differences are more likely to be detected if the sample size is large.
b) A very low significance level (p-value) increases the chances of a Type I error.
c) If the d statistic is a small number, a Type II error is unlikely.
16) Rejecting the null hypothesis means the population means are equal. What does it mean to say a result is statistically significant?
a) The observed difference exceeded the expected difference due to sampling error
b) The observed difference is too large to be reasonably attributed to sampling error
c) Sampling error was so small as to be insignificant
d) Sampling error was less than the observed difference
17) In regression, we call the variable on the " x " axis the \qquad . Predictor
18) Decreasing sampling error in an experiment gives the experimenter more \qquad . Power
19) When doing a t-test, the standard error of the difference tells you the difference \qquad between means due to sampling error. expected
20) A \qquad [two-words] pictures the variability of means expected from sampling error alone. Sampling distribution.
21) The chance that an experimenter will fail to reject the Ho when it should be rejected is represented by \qquad [symbol]. β (Beta)
22) The abbreviation used by statisticians for the Sum of the Squared Deviation Scores is \qquad . SS
23) The measure of variability used in a two-sample dependent t-test is called standard error of the \qquad [one or two words]. Mean difference.
24) Both r^{2} and d are examples of \qquad -size statistics. Effect
25) Both z and t are examples of tests for \qquad significance. statistical
26) If the IV affects the $D V$ we call this impact a \qquad . [two-words] treatment effect

Computational Portion, Open Book (100 points total; 5 pts unless noted.)

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	warthogs	4.71	7	1.380	.522
	wombats	6.86	7	1.676	.634

> A researcher tested whether people prefer warthogs or wombats as pets. Each person had both types for one month; participants then rated their satisfaction with each of the two.

Paired Samples Test

	Paired Differences					t	df	Sig. (2-tailed)
	Mean	Std. Deviation	Std. Error Mean	95\% Confiden Diffe	erval of the			
				Lower	Upper			
Pair 1 warthogs - wombats	-2.143	2.035	. 769	-4.025	$-.260$	-2.785	6	. 032

26. What percent of time 27. Using the output above, calculate the effect size, or if not appropriate, state "NA." would you see this difference between the means solely by chance?

$$
d=\frac{|\bar{x}-\bar{x}|}{\hat{s}_{D}}=\frac{|4.71-6.86|}{2.035}=1.0531
$$

3.2\%

Paragraph \#1. (10 pts) Write a paragraph explanation of the this outcome on the answer sheet.
28. By hand, test whether biker-gang members $\left(\mathrm{M}=8.67, \mathrm{n}=9, \mathrm{~s}_{\mathrm{x}}=1.658\right)$ eat more or less than the recommended serving of 10 fruits and vegetables per day. Formally summarize the statistic (you do not need to show hypothesis testing steps).
$\mathrm{M}=8.67$
$\mathrm{n}=9$
$\mathrm{s}_{\mathrm{x}}=1.658$

$$
\begin{aligned}
& \hat{s}_{\bar{x}}=\frac{\hat{s}_{x}}{\sqrt{n}}=\frac{1.658}{\sqrt{9}}=.5527 \\
& t=\frac{\bar{x}-\mu}{\hat{s}_{\bar{x}}}=\frac{8.67-10}{.5527}=.-2.4064
\end{aligned}
$$

Group Statistics

	group	N	Mean	Std. Deviation	Std. Error Mean
helping	unattractive	9	8.00	1.581	.527
	attractive	9	10.33	2.291	.764

Independent Samples Test								
		Levene's Test for Equal of var		t-test for Equality of Means				
		$\frac{F}{1.426}$	$\frac{\text { Sig. }}{\text {. } 250}$	t	df	Sig. (2tailed)	Mean Differ ence	$\begin{gathered} \text { Std. } \\ \text { Error } \\ \text { Differe } \\ \text { nce } \\ \hline \end{gathered}$
helping	Equal variances assumed				16	. 023	-2.33	. 928
	Equal variances not assumed			-2.514	14.211	. 025	-2.33	. 928

Find t-critical in table. With df $=8$ so t-critical $= \pm 2.3060$.

$$
t(8)--2.4064, p \leq .05
$$

(for 12-14) An experimenter manipulated the attractiveness of a person who dropped pencils in an elevator and then measured the number of pencils people helped pick up.
29. Indicate the difference
observed and expected.

2.33, . 928

Paragraph \#2. Write a paragraph explanation of this outcome in the space provided.

See below.

30. Calculate the effect size statistic or state "NA" if not appropriate.
31. Recalculate t-obt by hand assuming the mean for the unattractive condition was 7.00 .

$$
\begin{aligned}
& t_{o b t}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\hat{s}_{\bar{x}_{1}-\bar{x}_{2}}} \\
& t_{\text {obt }}=\frac{(7-10.33)-(0)}{928}=-3.5884
\end{aligned}
$$

The hypothesis was supported. Participants picked up significantly more pencils when the person was attractive ($M=10.33$) than when unattractive ($M=8.00$), $\mathrm{t}(16)$ $=-2.514, p \leq .05$. The effect of attractiveness on helping was large, $d=.8370$

Correlations						
		A	B	C	D	E
A	Pearson Correlation Sig. (2-tailed) N	$\begin{array}{r} 1 \\ 10 \end{array}$	$\begin{array}{r} .654^{\pi} \\ .040 \\ 10 \end{array}$	$\begin{array}{r} .766^{\pi x} \\ .010 \\ 10 \end{array}$	$\begin{array}{r} .487 \\ .154 \\ 10 \end{array}$	$\begin{array}{r} -.599 \\ .067 \\ 10 \end{array}$
B	Pearson Correlation Sig. (2-tailed) N	$\begin{array}{r} 494^{\pi} \\ .040 \\ 10 \end{array}$	10	$\begin{array}{r} .827^{\pi \pi} \\ .003 \\ 10 \end{array}$	$\begin{array}{r} .867^{* \pi} \\ .001 \\ 10 \end{array}$	$\begin{array}{r} -.819^{\pi x} \\ .004 \\ 10 \end{array}$
C	Pearson Correlation Sig. (2-tailed) N	$\begin{array}{r} .700 \\ .010 \\ 10 \end{array}$	$\begin{array}{r} .003 \\ 10 \end{array}$	1	$\begin{array}{r} .856^{\pi x} \\ .002 \\ 10 \end{array}$	$\begin{array}{r} -.850^{\pi x} \\ .002 \\ 10 \end{array}$
D	Pearson Correlation Sig. (2-tailed) N	$\begin{array}{r} .487 \\ .154 \\ 10 \end{array}$	$\begin{array}{r} 857^{\pi \pi} \\ .001 \\ 10 \end{array}$	$\begin{array}{r} 020 \\ 10 \end{array}$	1 10	$\begin{array}{r} -.861^{\pi \pi} \\ .001 \\ 10 \end{array}$
E	Pearson Correlation Sig. (2-tailed) N	$\begin{array}{r} -.599 \\ .067 \\ 10 \end{array}$	$\begin{array}{r} .019^{x 8} \\ .004 \\ 10 \end{array}$	$\begin{array}{r} .050^{* 8} \\ .002 \\ 10 \end{array}$	$\begin{array}{r} 86187 \\ .001 \\ 10 \end{array}$	1 10

*. Correlation is significant at the 0.05 level (2-tailed).
$*$. Correlation is significant at the 0.01 level (2-tailed)
32. The correlation between which two variables is most likely due to chance? Largest $\mathrm{p}=.154$, A\&D
33. How many significant correlations are represented in this matrix? There are 8 starred relationships
34. A researcher wanted to estimate the variability of scores in a population based on her sample. Calculate the standard deviation where $\mathrm{SS}=64$ and $\mathrm{n}=5$

$$
\hat{s}_{x}=\sqrt{\frac{S S}{n-1}}=\sqrt{\frac{64}{4}}=4
$$

Homework 6.9A: Overview of z-tests and t-tests
The following questions presents different questions one could answer with different types of statistics. Each assumes a measure of job satisfaction where an individual or group of individuals rates how satisfied they are with their job on a 1 to 7 scale.

Remember, each stat always asks how \qquad is \qquad _.

Problem	Info	Type of Distribution \& What's Known	M easure of Variability	Formula	Distribution
Is John more/less satisfied with his job compared to normal people?	$\begin{aligned} & \mu=6 \\ & x=8 \\ & \sigma=2 \end{aligned}$				
Is the salesgroup more/less satisfied compared to normal people?	$\begin{aligned} & \mu=6 \\ & M=4 \\ & \sigma=2 \\ & n=16 \end{aligned}$				
Is the salesgroup more/less satisfied than normal people?	$\begin{aligned} & \mu=6 \\ & x=2,4,3, \& 2 \\ & n=4 \end{aligned}$				
Are day-shift workers more/less satisfied than night-shift workers?	$\begin{aligned} & N: 2,1,2,3,2,1,4 \\ & D: 5,3,4,6,2,4,4 \end{aligned}$				
Are night-shift workers more/less satisfied after moving to the day shift?	$\begin{aligned} & N: 2,1,2,3,2,1,4 \\ & D: 5,3,4,6,2,4,4 \end{aligned}$				X

Homework 7.1a: 1-way ANOVA

1. Fear \& Persuasion: A researcher examines the effect of fear on persuasion. She randomly assigns participants to read an ad for anti-virus software, designed to create (1) Low, (2) Medium, or (3) High fear about computer viruses. Participants then report the amount of money they would be willing to spend on anti-virus software. For each different outcome below (1) Indicate if you reject or retain the outcome, and (2) Write a paragraph explanation of each outcome. Calculate η^{2} as necessary.

Homework 7.1b: 1-way ANOVA

2. Caffeine, Power: In the caffeine study described in class, the difference between 0 mg and 10 mg was not significant. It's possible that there really is a difference between these levels, but that there just wasn't enough power in the experiment's design to pick it up. For the following, explain whether power increases and why.

a. Changing from $0,10, \& 20 \mathrm{mg}$ to 0,5 , and 10 mg ?	
b. Using only rats that have a moderate metabolism?	
c. Using only rats that are hungry?	
d. Using only rats that are named Oscar?	

3. Packing Freshmen, Power: An unethical sociologist manipulates levels of crowding for 6 freshmen, randomly assigning them to different conditions of crowding for the semester (2,3 , or 4 roommates in a $10^{\prime} \times 10^{\prime}$ dorm-room) and observing acts of hostility (number of unflattering comments about a roommate's mother). For each of the following, indicate (a) what could be done with that item (if anything) to increase power, and (b) why the change would increase power.

a. Size of the dorm-room	
b. Number of subjects in the study	
c. The level of agreeableness among participants	
d. The type of tennis shoes worn by participants	
e. The number of roommates (2, 4, or 8)	
f. The duration of the study	

1. Fear \& Persuasion: A researcher examines the effect of fear on persuasion. She randomly assigns participants to read an ad for anti-virus software, designed to create (1) Low, (2) Medium, or (3) High fear about computer viruses. Participants then report the amount of money they would be willing to spend on anti-virus software. For each different outcome below (1) Indicate if you reject or retain the outcome, and (2) Write a paragraph explanation of each outcome. Calculate η^{2} as necessary.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1361.667	2	680.833	15	.000
Within Groups	1205.000	27	44.630		
Total	2566.667	29			

> Student-Newman-Keuls ${ }^{\text {a }}$

		Subset for alpha $=.05$		
Group	N	1	2	3
1	10	13.50		
2	10		21.50	
3	10			30.00
Sig.		1.000	1.000	1.000

Means for groups in
> a. Uses Harmonic Mean Sample Size $=10.000$.

Outcome \#1: Ho: \checkmark Reject or Retain?
$\eta^{2}=$ SS $_{\text {BG }} /$ SS $_{T}=1361.667 \div 2566.667=.5305$
The hypothesis was supported. Participants in the High fear condition were willing to spend significantly more on the anti-virus software ($M=\$ 30$) than those in the M edium condition ($M=\$ 21.5$), who in turn would spend more than those in the Low condition ($\mathrm{M}=\$ 13.5$), $\mathrm{F}(2,27)=15, \mathrm{p} \leq .05$. Fear accounts for approximately 53% of the variance in amount to spend, $\eta^{2}=.5305$.

Outcome \#2: Ho: \checkmark Reject or Retain?
$\eta^{2}=$ SS $_{B G} / S S_{T}=581.667 \div 2104.167=.2764$
The hypothesis was supported. Participants in the High fear condition were willing to spend significantly more on the anti-virus software ($M=\$ 22$) than those in the M edium ($M=$ $\$ 13.5$) or Low condition ($M=\$ 12$), $F(2,27)=5.158, p \leq .05$. Fear accounts for approximately 27.64% of the variance in amount to spend, $\eta^{2}=.2764$.

Outcome \#3: Ho: Reject or \checkmark Retain?

$\eta^{2}=$ not required because Ho Retained

The hypothesis was not supported. Participants in the High ($M=\$ 15.50$), M edium ($M=\$ 13.5$), and Low ($M=\$ 12$) fear conditions did not differ in willingness to spend on anti-virus software, $\mathrm{F}(2,27)=.601$, n.s.
2. Caffeine, Power: In the caffeine study described in class, the difference between 0 mg and 10 mg was not significant. It's possible that there really is a difference between these levels, but that there just wasn't enough power in the experiment's design to pick it up. For the following, explain whether power increases and why.

e. Changing from $0,10, \& 20 \mathrm{mg}$ to 0,5 , and 10 mg ?	Power decreases: Less treatment effect to cause a difference between groups.
f. Using only rats that have a moderate metabolism?	Power increases: Standardizing metabolism should decrease within group variability in amount of food found (less sampling error).
g. Using only rats that are hungry?	Power increases: Standardizing hunger should decrease within group variability in amount of food found (less sampling error).
h. Using only rats that are named Oscar?	No change: No conceivable way rat name could affect DV of food found.

3. Packing Freshmen, Power: An unethical sociologist manipulates levels of crowding for 6 freshmen, randomly assigning them to different conditions of crowding for the semester (2,3 , or 4 roommates in a $10^{\prime} \times 10^{\prime}$ dorm-room) and observing acts of hostility (number of unflattering comments about a roommate's mother). For each of the following, indicate (a) what could be done with that item (if anything) to increase power, and (b) why the change would increase power.

g. Size of the dorm-room	Reducing would increase treatment effect (crowding)			
h. Number of subjects in the study	Increasing would decrease sampling error (larger n).			
i. The level of agreeableness among participants	Standardizing would decrease sampling error			
j. The type of tennis shoes worn by				
participants		\quad Not relevant,$~$	Increasing would increase treatment effect (crowding)	
:---	:---			
k. The number of roommates (2,4, or 8)	Lengthening would increase treatment effect (cumulative impact of crowding) and decrease sampling error (better measurement, similar to increase the number of subjects in the study).			
I. The duration of the study				

Study Background: Karpicke, J. D., \& Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772. Summary: Educators tend to favor elaborative learning activities (such as concept mapping) over the retrieval and reconstruction of knowledge (such as taking practice tests). This research examined which learning techniques people thought would be most effective (their metacognitive predictions) AND actual effectiveness. Participants divided into four conditions: Study, Repeated Study, Concept Mapping, \& Retrieval Practice. After experiencing the study technique, participants predicted the percent of information they would recall in one week ("metacognitive predictions"). Note: Data are bogus, but designed to mimic the actual results.
 previous page!)

Study Background: Karpicke, J. D., \& Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772. Summary: Educators tend to favor elaborative learning activities (such as concept mapping) over the retrieval and reconstruction of knowledge (such as taking practice tests). This research examined which learning techniques people thought would be most effective (their metacognitive predictions) AND actual effectiveness. Participants divided into four conditions: Study, Repeated Study, Concept M apping, \& Retrieval Practice. After experiencing the study technique, participants predicted the percent of information they would recall in one week ("metacognitive predictions"). Note: Data are bogus, but designed to mimic the actual results.

Study	Rpt Study	Cncpt Map	Retrv Practc
0.52	0.80	0.60	0.50
0.87	0.72	0.70	0.62
0.79	0.90	0.56	0.72
0.59	0.63	0.82	0.45
0.53	0.78	0.70	0.79
0.77	0.90	0.50	0.54
0.52	0.79	0.78	0.57
0.81	0.86	0.81	0.47

To the left is a
graph taken from the actual study. Let's pretend we collected the following data. First, show how you'd enter it into SPSS for doing a 1first row enter appropriate variable names.
2. What's the IV: Study Technique
3. What are the levels of the IV:

Study, Repeated Study, Concept M apping, Retrieval Pract.
4. Which condition had the highest mean? What was it?

$$
\text { Repeated Study, M = } 7975
$$

5. Which condition had the lowest mean? What was it?

$$
\text { Retrieval Practice, } M=. .5825
$$

6. What's the formula for df-BG? Show that SPSS is correct.

$$
\mathrm{df}-\mathrm{BG}=\mathrm{K}-1=4-1=3
$$

7. What's the formula for df - WG? Show SPPS is correct.

$$
\mathrm{df}-\mathrm{WB}=\mathrm{NT}=\mathrm{K}=32-4=28
$$

8. What's the formula for F? Write it out, then plug-in, and show that you get the same value.

$$
F=M \text { Sbg } / M \text { Swg }=.062 / .015=4.133
$$

11. On the post-hoc table, circle the means that differ significantly from one another and draw a line between them. Show the same on the "M eans Plot" graph below.
12. What percent of the time would the difference between study and repeated study be observed just by chance? (HINT: think "sig") $p=.129,12.9 \%$
way ANOVA. In the

Grp	Scr
1	0.52
1	0.87
1	0.79
1	0.59
1	0.53
1	0.77
1	0.52
1	0.81
2	0.80
2	0.72
2	0.90
2	0.63
2	0.78
2	0.90
2	0.79
2	0.86
3	0.60
3	0.70
3	0.56
3	0.82
3	0.70
3	0.50
3	0.78
3	0.81
4	0.50
4	0.62
4	0.72
4	0.45
4	0.79
4	0.54
4	0.57
4	0.47

13. Calculate η^{2} here:

$$
\begin{aligned}
\eta^{2}=\text { SSbg/SST } & =.186 / .603 \\
& =.3085
\end{aligned}
$$

14. Summarize the outcome here (I've given you some hints):

The hypothesis was.....supported
Participants in the retrieval practice predictedsig. Iower scores ($M=.5825$) than those in the repeated study condition ($M=.7975$). Predicted scores in the study ($M=6750$) and concept mapping conditions ($M=.6838$) showed no sig diference, $F(3,28)=4.167, p \leq .05$.
Study technique accounted for a _large_ amount of variance in _recall perf._, _ $\eta^{2}=3085$ _-. previous page!)

Study Background: Read Carefully!!

Social psychologists have studied extensively the variables that influence the ability of a speaker to persuade an audience to take the speaker's position on an issue. One important factor that influences the amount of attitude change a speaker can generate is the discrepancy between the position advocated by the speaker and the position of the audience. Up to a point, the more discrepant the speaker's position, the greater the attitude change that will result. However, if the speaker's position becomes too discrepant, the speaker looses credibility and the message is less persuasive.

It has been hypothesized that the nature of the relationship between message discrepancy and attitude change differs, depending on the expertise of the speaker, formally referred to as the source. According to this perspective, speakers with high expertise can take much more discrepant positions that speakers with low expertise and still obtain large amounts of attitude change. As an example of how this proposition could be tested, consider the following hypothetical experiment.
College students evaluated the quality of a passage of poetry on a 21-point scale and then listened to a taped message concerning this passage that was presented as representing the opinion of either an expert (a famous poetry critic) or a non-expert (an undergraduate student enrolled in a creative writing class). The messages were identical except for which source they were attributed to. In addition, the messages were constructed to be either slightly discrepant, moderately discrepant, or highly discrepant from students' initial ratings of quality. For example, in the large-discrepancy condition, if a student rated the passage as being relatively high in quality, the message argued that the passage was low in quality. For example, in the large-discrepancy condition, if a student rated that the relatively high in quality, the message, argued that the passage was low in quality. After listening to the message, students re-rated the poetry. The resulting design was a 3 x 2 factorial with three levels of message discrepancy (small, medium, or large) and two levels of source expertise (high versus low). The dependent variable was the amount of change in the quality ratings after listening to the message. Scores could range from -20 to +20 , with higher values indicating grater attitude change in the direction advocated by the source. The data for the experiment are presented below along with intermediate statistics necessary to calculate the sums of squares.

2. State the 3 null hypotheses you can test with a 2-way ANOVA.
3. Describe the study design:
$a=\quad b=$

Design:
4. Determine the typical Attitude Change occurring when participants experienced a large discrepancy from a source low in expertise? Report the appropriate mean (row, column, or cell).
5. What condition produced the most attitude change? Report the appropriate mean (row, column, or cell).
6. Which type of authority produces the most attitude change? Report the appropriate mean (row, column, or cell).
7. Which type of message discrepancy produced the largest attitude change? Report the appropriate mean (row, column, or cell).
8. Explain why we can't just base our interpretation of the results on the graph. Why must we do an ANOVA? M ention the difference between sample means and population means in your answer.
9. Complete this source of variation table.

Source of V.	SS	df	MS	F-obt	F-crit	η^{2}
M sg Discrep.	50.40					
Source Expertise	192.53	1		361.00		
A*B	45.067					
Error	12.8		.533			
Total		29				

Post-hoc test

descrepancy		Subset	
		1	2
small	10	2.00	
medium	10		4.40
large	10		5.00
Sig.		1.000	.079

10. Summarize the three F tests and the relation between the μ 's.
11. On a separate piece of paper, explain the outcome of the analysis in paragraph form.

Study Background: Read Carefully!!

Social psychologists have studied extensively the variables that influence the ability of a speaker to persuade an audience to take the speaker's position on an issue. One important factor that influences the amount of attitude change a speaker can generate is the discrepancy between the position advocated by the speaker and the position of the audience. Up to a point, the more discrepant the speaker's position, the greater the attitude change that will result. However, if the speaker's position becomes too discrepant, the speaker looses credibility and the message is less persuasive.
It has been hypothesized that the nature of the relationship between message discrepancy and attitude change differs, depending on the expertise of the speaker, formally referred to as the source. According to this perspective, speakers with high expertise can take much more discrepant positions that speakers with low expertise and still obtain large amounts of attitude change. As an example of how this proposition could be tested, consider the following hypothetical experiment.
College students evaluated the quality of a passage of poetry on a 21-point scale and then listened to a taped message concerning this passage that was presented as representing the opinion of either an expert (a famous poetry critic) or a nonexpert (an undergraduate student enrolled in a creative writing class). The messages were identical except for which source they were attributed to. In addition, the messages were constructed to be either slightly discrepant, moderately discrepant, or highly discrepant from students' initial ratings of quality. For example, in the large-discrepancy condition, if a student rated the passage as being relatively high in quality, the message argued that the passage was low in quality. For example, in the large-discrepancy condition, if a student rated that the relatively high in quality, the message, argued that the passage was low in quality. After listening to the message, students re-rated the poetry. The resulting design was a 3×2 factorial with three levels of message discrepancy (small, medium, or large) and two levels of source expertise (high versus low). The dependent variable was the amount of change in the quality ratings after listening to the message. Scores could range from 20 to +20 , with higher values indicating grater attitude change in the direction advocated by the source. The data for the experiment are presented below along with intermediate statistics necessary to calculate the sums of squares.

2. State the 3 null hypotheses you can test with a 2-way ANOVA.

Ho: Message Discrepancy: $\mu_{\text {small }}=\mu_{\text {med }}=\mu_{\text {Iarge }}$
Ho: Source Expertise: $\mu_{\text {high }}=\mu_{\text {low }}$
Ho: No Interaction
4. Determine the typical Attitude Change occurring when participants experienced a large discrepancy from experienced a large discrepancy from
a source low in expertise? Report the appropriate mean (row, column, or cell).
Large Disc ($M=1$) Large Disc (M = 1)
5. What condition produced the most attitude change? Report the appropriate mean (row, column, or cell).

High Expertise \& Large Discrepancy ($M=9$)
3. Describe the study design:
$2 \times 3 a=2 b=3$
[OR 3x2 a=3 b=2]
6. Which type of authority produces the most attitude change? Report the appropriate mean (row, column, or cell).

High Expertise ($M=6.33$)
7. Which type of message discrepancy produced the largest attitude change? Report the appropriate mean (row, column, or cell).

Large Discrp ($\mathrm{M}=5$)

8. Explain why we can't just base our interpretation of the results on the graph. Why must we do an ANOVA? M ention the difference between sample means and population means in your answer.

The graph only shows differences between sample means trying to represent population means. To determine if apparent differences are reliable (i.e., reflect true differences among population means), we conduct an ANOVA.
9. Complete this source of variation table.

Source of V.	SS	df	MS	F-obt	F-crit	η^{2}
M sg Discrep.	50.40	2	25.2	47.279	3.40	.1676
Source Expertise	192.53	1	192.53	361.00	4.26	.64
A*B	45.067	2	22.533	42.277	3.40	.15
Error	12.8	24	.533			
Total	300.8	29				

Post-hoc test

descrepancy		Subset	
		1	2
small	10	2.00	
medium	10		4.40
large	10		5.00
Sig.		1.000	.079

10. Summarize the three F tests and the relation between the μ 's.

$$
\begin{array}{ll}
F(2,24)=47.279, p \leq .05 & \mu \text { medium and } \mu \text { large }>\mu \text { small } \\
F(1,24)=361.00, p \leq .05 & \mu \text { high exp }>\mu \text { low exp } \\
F(2,24)=42.277, p \leq .05 &
\end{array}
$$

11. On a separate piece of paper, explain the outcome of the analysis in paragraph form.

Homework 8.2: Setting up Data for 2-way ANOVA

1. As you watch the website lecture video SPSS data entry for 2-way ANOVA, show proper data setup for problems \#1 \& \#2
2. Study Design: Participants rate the morality (DV) of described behaviors (bad or good) under different lighting levels (low, med, high).

(check against lecture slides)
3. Examine the effect of attachment style (avoidant, secure) and extraversion (low, high) on number of close friends. Show below how the data should be entered into SPSS.

$\begin{aligned} & \delta \\ & \text { 哥 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Attachment Style	
		Avoidant	Secure
		0	5
	Low	2	7
		1	6
		2	7
	High	4	5
		3	4

4. Does user age (young, middle-aged, or old) interact with web design (alpha, beta) in determining number of user errors (per 50 website orders)?
DV: errors per 50 orders

		User Age		
		Young	M iddle	Old
	Alpha	4	7	10
	Alpha	5	6	8
	Beta	2	4	3
	Beta	3	1	1

5. Does age (5, 10, 15), type of Day-Time Care (Home, High Quality Day-Care, Low Quality DayCare), or the interaction between the two affect number of aggressive acts per month?

		Age		
		5	10	15
	Home	2	7	2
	High Qlty	6	4	2
	Day Care	5	1	3
	Low Qlty	7	6	3
	Day Care	8	5	2

Homework 8.2B: 2-way ANOVA Annotation Exercise

Dependent Variable: SCORE

TASK	AGE	Mean	Std. Deviation	N
fluid	65	100.00	4.082	4
	75	88.75	4.787	4
	85	80.00	4.082	4
	Total	89.58	9.405	12
crystalized	65	101.25	6.292	4
	75	101.25	4.787	4
	85	100.00	4.082	4
	Total	100.83	4.687	12
Total	65	100.63	4.955	8
	75	95.00	8.018	8
	85	90.00	11.339	8
	Total	95.21	9.264	24

A developmental

 psychologist examines how type of Task (ones requiring Fluid vs. Crystallized intelligence) and Age (65,75 , or 85 years old) affect cognitive performance Scores.

Source
Corrected Model
Intercept
TASK
AGE
TASK* AGE
Error
Total
Corrected Total

	Type III Sum of Squares	df
1567.708^{a}	5	
217551.042	1	
759.375	1	
452.083	2	
356.250	2	
406.250	18	
219525.000	24	
1973.958	23	

	Mea
5	
1	21
1	
2	
2	
18	
24	
23	

2. Highlight the following useing one color for Factor A (e.g., yellow) and another for Factor B (e.g., blue). In other words, make everything pertaining to Factor A one color, and everything for Factor B another color:

- In the Source of Variation table, the rows for Factors A \& B
- In the Descriptive Stats table, the means for Factor A (collapsing across B)
- In the Descriptive Stats table, the means for Factor B (collapsing across A)
- In the M eans Plot, the levels of Factor A and the levels of Factor B
- In the Post Hoc table, the levels of the Factor shown

3. Formally summarize the F-test results for the three Factors ($A, B, \& A * B$)

A: \qquad , B: \qquad A*B: \qquad
4. What was the average score for 65 year olds? \qquad
5. Which statement best describes the interaction?
a. The interaction was not significant
b. As age increases, fluid intelligence decreases while crystalized intelligence increases
c. As age increases, both fluid and crystalized intelligence decrease
d. As age increases, fluid intelligence decreases while crystalized intelligence remains about the same

1. Please show in an equation which numbers from the output you would use to calculate each of the folloing:
$\mathrm{F}_{\mathrm{A}}=\frac{M S_{A}}{M S_{e r r}}=-\cdots---=33.646$

$\mathrm{df}_{\mathrm{B}}=$ \qquad
2. Which pattern of significant difference is shown in the post hoc table?
a. $90<95<100.63$
b. $\quad[90=95]<100.63$
c. $90<95=100.63]$
d. There is no post hoc
Dependent Variable:depress

therapy	cardioex	Mean	SD	N
control	cardio	41.67	2.887	3
	no cardio	45.00	5.000	3
	Total	43.33	4.082	6
drug	cardio	21.67	2.887	3
therapy	no cardio	16.67	2.887	3
	Total	19.17	3.764	6
talk	cardio	18.33	7.638	3
therapy	no cardio	13.33	2.887	3
	Total	15.83	5.845	6
Total	cardio	27.22	11.756	9
	no cardio	25.00	15.411	9
	Total	26.11	13.346	18

Dependent Variable: depress

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	2794.444^{g}	5	558.889	28.743	.000
Intercept	12272.222	1	12272.222	631.143	.000
therapy	2702.778	2	1351.389	69.500	.000
cardioex	22.222	1	22.222	1.143	.306
therapy * cardioex	69.444	2	34.722	1.786	.209
Error	233.333	12	19.444		
Total	15300.000	18			
Corrected Total	3027.778	17			

Student-Newman-Khuls
Student-Newman-Keuls

		Subset	
therapy	N	1	2
tak therap.	6	15.83	
drug theras	6	19.17	
control	6		43.33
Sig.		215	1.000

A clinical psychologist
examined the impact of
Therapy (drug, talk, or
neither) and Cardio
Exercise (cardio or no
cardio) on Depression.

2. Highlight the following useing one color for Factor A (e.g., yellow) and another for Factor B (e.g., blue). In other words, make everything pertaining to Factor A one color, and everything for Factor B another color:

- In the Source of Variation table, the rows for Factors A \& B
- In the Descriptive Stats table, the means for Factor A (collapsing across B)
- In the Descriptive Stats table, the means for Factor B (collapsing across A)
- In the M eans Plot, the levels of Factor A and the levels of Factor B
- In the Post Hoc table, the levels of the Factor shown

3. Formally summarize the F-test results for the three Factors ($A, B, \& A * B$)

A: \qquad , B: \qquad , A*B: \qquad
4. What was the average score for drug therapy? \qquad
5. Which statement best describes the interaction?
a. The interaction was not significant
b. As therapy levels changed, people doing cardio had decreased levels of depression
c. As therapy levels changed, people not doing cardio had more decrease in their levels of depression than people doing cardio
d. As therapy levels changed, people doing cardio had no change in depression, while people not doing cardio had decreased levels of depression.
6. Which pattern of significant difference is shown in the post hoc table?
a. $\quad 15.83<19.17<43.33$
b. $\quad[15.83=19.17]<43.33$
c. $\quad 15.83 \varangle 19.17=43.33]$
d. $\quad 15.83=19.17=43.33$

Tests of Between-Subjects Effects
Materialism can "bum you out." People listed either good or bad things about Greed and then saw images prompting a Comparison of their life with different levels of lifestyle luxury (low, medium, or high). Participants then rated their own

Dependent Vanable life_satsif

Source	Type ill Sum or Squares	dr	Mean Square	F	Sig.
Corrected Model	92.167^{2}	5	18.433	16.50	.000
Intercept	644.033	1	644.03	576.7	.000
Greed	61.633	1	61.633	55.19	.000
Comparison	2.467	2	1.233	1.104	.348
Oreed *Comparison	28.087	2	14.033	12.56	.000
Error	28.800	24	1.117		
Total	763.000	30			
Corrected Total	118.967	29			

a. R Squared $=.775$ (Adjusted R Squared $=.728$) Life Satisfaction.
2. Highlight the following useing one color for Factor A (e.g., yellow) and another for Factor B (e.g., blue). In other words, make everything pertaining to Factor A one color, and everything for Factor B another color:

- In the Source of Variation table, the rows for Factors A \& B
- In the Descriptive Stats table, the means for Factor A (collapsing across B)
- In the Descriptive Stats table, the means for Factor B (collapsing across A)
- In the M eans Plot, the levels of Factor A and the levels of Factor B

3. Formally summarize the F-test results for the three Factors ($A, B, \& A * B$)

A: \qquad , B: \qquad A*B: \qquad
4. What was the average life satisfaction for the high luxury condition? \qquad
5. Which statement best describes the interaction?
a. The interaction was not significant
b. When people listed good things about greed, their life satisfaction decreased as luxury levels increased
c. When people listed bad things about greed, their life satisfaction increased as luxury levels increased
d. When luxury levels were low and medium, people that listed bad or good things about greed did not have vast differences, but when luxury levels were high, people that listed bad things had a sharp increase in life satisfaction, while people that listed good things had a sharp decrease in satisfaction

1. Please show in an equation which numbers from the output you would use to calculate each of the following:
$\mathrm{F}_{\mathrm{A}}=\frac{M S_{A}}{M S_{e r r}}=\ldots=55.19$

$M S_{A * B}=$ $=14.033$

2. Which pattern of significant difference is shown in the post hoc table?
a. There is no post hoc table
b. $4.30<4.60<5.00$
c. $\quad 4.30=4.60=5.00$
d. $\quad[4.30=4.60]<5.00$

Homework 8.2B: 2-way ANOVA Annotation Exercise - KEY

Dependent Variable: SCORE

TASK	AGE	Mean	Std. Deviation	N
fluid	65	100.00	4.082	4
	75	88.75	4.787	4
	85	80.00	4.082	4
	Total	89.58	9.405	12
crystalized	65	101.25	6.292	4
	75	101.25	4.787	4
	85	100.00	4.082	4
	Total	100.83	4.687	12
Total	65	100.63	4.955	8
	75	95.00	8.018	8
	85	90.00	11.339	8
	Total	95.21	9.264	24

A developmental psychologist examines how type of Task (ones requiring Fluid vs. Crystallized intelligence) and Age (65,75 , or 85 years old) affect cognitive performance Scores.

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	1567.708^{a}	5	313.542	13.892	.000
Intercept	217551.042	1	217551.042	9639.185	.000
TASK	759.375	1	759.375	33.646	.000
AGE	452.083	2	226.042	10.015	.001
TASK*AGE	356.250	2	178.125	7.892	003
Error	406.250	18	22.569		
Total	219525.000	24			
Corrected Total	1973.958	23			

Student-Newman-Keuls

AGE		Subset			
		1	2	3	
85	8	90.00			
75	8		95.00		
65	8			100.63	
Sig.			1.000	1.000	

2. Highlight the following useing one color for Factor A (e.g., yellow) and another for Factor B (e.g., blue). In other words, make everything pertaining to Factor A one color, and everything for Factor B another color:

- In the Source of Variation table, the rows for Factors A \& B
- In the Descriptive Stats table, the means for Factor A (collapsing across B)
- In the Descriptive Stats table, the means for Factor B (collapsing across A)
- In the M eans Plot, the levels of Factor A and the levels of Factor B
- In the Post Hoc table, the levels of the Factor shown

3. Formally summarize the F-test results for the three Factors ($A, B, \& A * B$)

$$
A: _F(1,18)=33.646, p<05 _, B: _F(2,18)=10.015, p<05 _, A * B: _F(2,18)=7.892, p<05
$$

4. What was the average score for 65 year olds? \qquad 100.63
5. Which statement best describes the interaction?
e. The interaction was not significant
f. As age increases, fluid intelligence decreases while crystalized intelligence increases
g. As age increases, both fluid and crystalized intelligence decrease
h. As age increases, fluid intelligence decreases while crystalized intelligence remains about the same
6. Please show in an equation which numbers from the output you would use to calculate each of the folloing:
$\mathrm{F}_{\mathrm{A}}=\frac{M S_{A}}{M S_{\text {err }}}=\frac{759.375}{22.569}=33.646$
$\mathrm{F}_{\mathrm{B}}=\frac{226.042}{22.569}=10.015$
$\mathrm{F}_{\mathrm{A} * \mathrm{~B}}=\frac{178.125}{22.569}=7.892$
$\mathrm{MS}_{B}=\frac{452.083}{2}=226.042$
$\mathrm{n}^{2}{ }_{\mathrm{A}}=\frac{759.375}{1973.958}$
$d f_{B}=3-1=2$
7. Which pattern of significant difference is shown in the post hoc table?
e. $90<95<100.63$
f. $\quad[90=95]<100.63$
g. $90<95=100.63]$
h. There is no post hoc

therapy	cardioex	Mean	SD	N
control	cardio	41.67	2.887	3
	no cardio	45.00	5.000	3
	Total	43.33	4.082	6
$\begin{array}{\|l\|} \hline \text { drug } \\ \text { therapy } \\ \hline \end{array}$	cardio	21.67	2.887	3
	no cardio	16.67	2.887	3
	Total	19.17	3.764	6
talk therapy	cardio	18.33	7.638	3
	no cardio	13.33	2.887	3
	Total	15.83	5.845	6
Total	cardio	27.22	11.756	9
	no cardio	25.00	15.411	9
	Total	26.11	13.346	18

Dependent Variable: depress

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	2794.444^{9}	5	558.889	28.743	.000
Intercept	12272.222	1	12272.222	631.143	.000
therapy	2702.778	2	1351.389	69.500	.000
cardioex	22.222	1	22.222	1.143	.306
therapy * cardioex	69.444	2	34.722	1.786	.209
Error	233.333	12	19.444		
Total	15300.000	18			
Corrected Total	3027.778	17			

Student-Newman-Kéuls
Student-Newman-Keuls

	Subset			
				N
	1	2		
tak therap.	6	15.83		
drug theraf	6	19.17		
control	6		43.33	
Sig.				

A clinical psychologist
examined the impact of
Therapy (drug, talk, or
neither) and Cardio
Exercise (cardio or no
cardio) on Depression.

2. Highlight the following useing one color for Factor A (e.g., yellow) and another for Factor B (e.g., blue). In other words, make everything pertaining to Factor A one color, and everything for Factor B another color:

- In the Source of Variation table, the rows for Factors A \& B
- In the Descriptive Stats table, the means for Factor A (collapsing across B)
- In the Descriptive Stats table, the means for Factor B (collapsing across A)
- In the M eans Plot, the levels of Factor A and the levels of Factor B
- In the Post Hoc table, the levels of the Factor shown

3. Formally summarize the F-test results for the three Factors ($A, B, \& A * B$)

$$
A: \quad F(2,12)=69.500, p<05 _, B: \quad F(1,12)=1.143, \text { n.s.__, } A^{*} B: \quad F(2,12)=1.786, \text { n.s. }
$$

4. What was the average score for drug therapy? _19.17__
5. Which statement best describes the interaction?
e. The interaction was not significant
f. As therapy levels changed, people doing cardio had decreased levels of depression
g. As therapy levels changed, people not doing cardio had more decrease in their levels of depression than people doing cardio
h. As therapy levels changed, people doing cardio had no change in depression, while people not doing cardio had decreased levels of depression.
6. Please show in an equation which numbers from the output you would use to calculate each of the following:

$$
\mathrm{F}_{\mathrm{A}}=\frac{M S_{A}}{M S_{\text {err }}}=\frac{1351.389}{19.444}=69.500
$$

$$
\mathrm{F}_{\mathrm{B}}=\frac{22.222}{19.444}=1.143
$$

$\mathrm{df}_{\mathrm{A}}=3-1=2$
6. Which pattern of significant difference is shown in the post hoc table?
e. $\quad 15.83<19.17<43.33$
f. $\quad[15.83=19.17]<43.33$
g. $15.83 \subset 19.17=43.33]$
h. $\quad 15.83=19.17=43.33$

Homework 8.3: 2-Way ANOVA Write-ups

This homework will help you practice the paragraph write-ups required for 2-way ANOVAs.
Industrial/Organizational psychology studies factors that effect job performance, so let's imagine an I/O psychologists studying two different independent variables that might affect the amount of effort someone puts into a task: size of team and evaluation arrangement.

IV\#1: Size of team: Social psychologists have studied diffusion of responsibility - the tendency for the effort of individuals to decrease as the number of individuals on a team increases. (You might also call this the slacker effect). As the number of teammates increases, each person tends to feel less responsible for the overall outcome, and so he or she tends to get lazy. We can imagine the psychologist putting people in situations with two, four, or eight teammates.
IV\#2: Peer evaluation: I/O psychologist can tell you that if people are held accountable for their performance they have more incentive to put forth effort. Perhaps having people evaluate their teammates can counteract the slacker effect described above. Maybe having more teammates could even increase effort if you knew there would be more people evaluating you. Lets imagine the researcher establishing two conditions: One where participants expect peer evaluation and one where they don't.

Note: The following three pages have three distinct outcomes that might occur. I've generated three different SPSS outcomes so that you can practice writing-up different outcomes.

- For HW 8.3a: Write up outcomes \#1 and \#2. (Two paragraphs.)
 - For HW 8.3b: Write up outcome \#3. (One paragraph).

You can find a key for outcomes \#1 and \#3 on the website

All 2-way write-ups can follow the same simple pattern:

1. Statement about how hypotheses overall.
2. Explain outcome for hypothesis \#1 - a possible main effect (e.g., for number of teammates)
3. Explain outcome for hypothesis \#2 - another possible main effect (e.g., for peer evaluations)
4. Explain outcome for hypothesis \#3-a possible interaction
5. Explain practical significance for any significant effects.

Outcome \#1: Some of the hypotheses were supported. There was a main effect for teammates. Participants with two teammates worked harder ($M=12.70$) than those with four teammates ($M=6.8$), who in turn worked harder than those with 8 teammates ($\mathrm{M}=3.8$), $\mathrm{F}(2,24)=34.751$, $\mathrm{p} \leq .05$. However, there was no main effect for peer evaluations. Those who expected peer evaluations ($M=8.33$) did not differ significantly from those who did not expect evaluations $(M=7.20), F(1,24)=1.633$, n.s. The two variables did not interact, $\mathrm{F}(2,24)=.684$, n.s. Number of teammates accounted for a large amount of variance in effort, $\eta^{2}=.7202$.

Outcome \#3: Some of the hypotheses were supported. There was no main effect for number of teammates. Participants with two teammates ($M=7.10$), four teammates ($M=6.70$, or eight teammates ($M=7.60$) did not differ significantly in effort, $\mathrm{F}(2,24)=.359$, n.s. Participants expecting a peer evaluation put forth greater effort ($M=10.13$) than those not expecting an evaluation $(M=4.13), F(1,24)=47.647, p \leq .05$. Finally, there was a significant interaction, $F(2,24)=16.535, p \leq .05$. With peer evaluations, an increase in teammates increases effort. Without peer evaluations, an increase in teammates decreases effort. Peer evaluation accounts for the most variance in effort, $\eta^{2}=.4519$, although the interaction also accounted for a large amount of variance, $\eta^{2}=.3137$.

Homework 8.4: Paragraphs \& Name that Stat Review

1. Paragraph Write-up: To compare different techniques for reducing aggression in kids, you measure the number of aggressive acts seen during one day after 4 weeks of role-playing therapy ($1,2,1,4$), time-out restrictions ($3,4,2,4$), pink-room restrictions ($6,5,7,6$), and watching Barney ($9,8,7,8$).
2. Paragraph Write-up: Are extraverts more likely to enjoy scary movies? You reason that extraverts will tend to seek stimulation, and so should be more inclined to like the stimulation of getting scared senseless. You collect the following extraversion scores: $15,15,20,30,35,35,40$ and desire to see scary movies $3,2,3,6,4,5,4$. Test the hypothesis that the two variables are related.
3. Paragraph Write-up: You've developed a test of persistence that you think will nicely complement the SAT in predicting college grades. After all, obtaining a high GPA requires not only intelligence but (perhaps more importantly) hard work. For a single group of students, you obtain both the following GPAs
($2.00,2.50,3.20,3.00,3.20,3.60,3.75$) and persistence scores ($10,13,16,17,17,20,25$), respectively. (Do both a correlation write-up and regression analysis.)

4. Identify the correct statistic

a. Test a weight loss clinic's claim that customers lose 15 pounds on average. You've talked to 9 people and recorded their weight lost.
b. Do women who receive social support during pregnancy have healthier babies at birth? You compare the weights of 7 new-borns from women receiving the extra social-support and compare this to the weights of 7 women receiving no special support.
c. A mother claims her child is smarter than 1 in 100 kids; she scored 120 on an IQ test ($\mu=100, \sigma=7$).
d. A developmental psychologist argues that social skills tend to correlate strongly with intelligence. You have assessments of social skills and IQ for 10 kids.
e. A developmental psychologist argues that corporeal punishment causes kids to resent their parents. He measures resentment levels before and after corporeal punishment.
f. A developmental psychologist suggests he can predict the number of inappropriate, attention grabbing behaviors by the number of attentive parent-child interactions initiated by the parent. He observers the interaction of 20 parent-child dyads, and records the number of each behavior.
g. A developmental psychologist argues that kids will have less discipline problems if their parents both explain why particular behaviors are inappropriate AND reinforce good behavior. He compares the behavior problems displayed by kids with four types of discipline techniques: (1) punishment, (2) explanation, (3) reinforcement, (4) explanation +reinforcement.
5. Paragraph Write-up: Does hunger make food smell better? From previous research you know that most people rate the smell of a Whopper as a 4 on a 7 point scale. A statistics professor administers a 24 hour exam (to ensure her students won't eat during this time), then ask those still conscious to rate the smell of a Whopper. They rate the Whopper as follows ($5,6,3,4,6,2,3,5,5$)
6. Paragraph Write-up: You wonder if perfume really makes people appear more attractive. Six male participants rate a female confederate (i.e., your assistant) who is wearing perfume ($6,7,5,6,7$) and another six participants rate the same assistant when not wearing perfume $(7,6,6,6,8)$.
7. Paragraph Write-up: You are interested in the relationship between stress and laughter. The research literature suggests that laughter can actually change someone's physiological response to stress. In your study you tell participants that they will perform a learning task in which they will receive a mild shock for wrong answers. You measure their galvanic skin response (a measure of stress) before ($6,9,7,8$) and after you make them laugh ($4,5,7,5$).

aggressn								
	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
role-play	4	2.00	1.414	. 707	-. 25	4.25	1	4
time-out	4	3.25	. 957	. 479	1.73	4.77	2	4
pink-room	4	6.00	. 816	. 408	4.70	7.30	5	7
Barney	4	8.00	. 816	. 408	6.70	9.30	7	9
Total	16	4.81	2.588	. 647	3.43	6.19	1	9

aggressn					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	87.688	3	29.229	27.510	. 000
Within Groups	12.750	12	1.063		
Total	100.438	15			

Student-Newman-Keuls ${ }^{\text {a }}$				
group	N	Subset for alpha $=0.05$		
		1	2	3
role-play	4	2.00		
time-out	4	3.25		
pink-room	4		6.00	
Barney	4			8.00
Sig.		. 112	1.000	1.000

1. The hypothesis was supported. Participants watching Barney engaged in significantly more aggressive acts ($\mathrm{M}=8.00$) than those in the pink room ($M=6.00$), who in turn engaged in more aggressive acts than those in either the time-out ($M=3.25$) or role-play ($M=2.00$) conditions, $F(3,12)$ $=27.51, p \leq .05$. The effect of technique on aggression was large, $\eta^{2}=8731$.

2. a. one-sample t-test
b. ind. t-test
C. z-score
d. correlation
e. dep t-test
f.regression g. one-way ANOVA

One-Sample Statistics							5. The hypothesis was not supported. The rating hungry participants give the Whopper ($M=4.33$) is not significantly higher than for normal participants ($\mu=$ 4), $\mathrm{t}(8)=.707$, n.s. Note: You'd calculate the d statistic if you had rejected the Ho .
	N	Mean	Std. Deviation	$\begin{aligned} & \text { Std. Error } \\ & \text { Mean } \end{aligned}$			
rating	9	4.33	1.414	. 471			
One-Sample Test							
Test Value $=4$							
					95% Confiden	erval of the	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper	
rating	. 707	8	. 500	. 333	-. 75	1.42	

Group Statistics

	group	N	Mean	Std. Deviation	Std. Error Mean
rating	perfume	5	6.20	.837	.374
	no perfume	5	6.60	.894	.400

Independent Samples Test

		Levene's Test for Equality of Variances		t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2tailed)	Mean Diff	$\begin{gathered} \text { Std. } \\ \text { Error Diff } \end{gathered}$	95\% Confidence Interval of the Difference		
		Lower							Upper		
rating	Equal variances assumed		. 094	. 767		8	486	-. 400	. 548	-1.663	. 863
	Equal variances not assumed			-. 730	7.96	. 486	-. 400	. 548	-1.664	. 864	

6. The hypothesis was not supported. Participants in the perfume condition did not give significantly higher ratings ($M=6.20$) than participants in the non-perfume condition $(M=6.60), \mathrm{t}(8)=.730$, n.s. Note: You'd calculate the d statistic if you had rejected the Ho .

Paired Samples Test

	Paired Differences					t	df	Sig. (2tailed)
	Mean	Std. Deviation	Std. Error Mean	95\% Confidence Interval of the Difference				
				Lower	Upper			
Pair 1 before - after	2.250	1.708	. 854	-. 468	4.968	2.635	3	. 078

7. The hypothesis was not supported. Participants in the laughing condition did not show significantly lower stress levels after laughing ($M=5.25$) than before $(M=7.50), t(3)=2.635$, n. . Note: You'd calculate the d statistic if you had rejected the Ho.

HW 8.4 Instructors Key -- Students can ignore this.

1. The hypothesis was supported. Participants watching Barney engaged in significantly more aggressive acts ($M=8.00$) than those in the pink room ($M=6.00$), who in turn engaged in more aggressive acts than those in either the time-out ($M=3.25$) or role-play ($M=2.00$) conditions, F $(3,12)=27.51, p \leq .05$. The effect of technique on aggression was large, $\eta^{2}=8731$.
2. The hypothesis was not supported. Extraversion did not correlate significantly with desire to see a scary movie, r(5) = .684, n.s.
3. The hypothesis was supported. Persistence and GPA correlated significanctly, r(5) =.943, $\mathrm{p} \leq .05$. Persistence accounts for a large amount of variance in GPA, $\mathrm{r}^{2}=.8892$.
$y^{\prime}=.120 x+1.016$
4.

a. one-sample t-test
b. ind. t-test
c. z-score
d. correlation
e. dep t-test
f.regression
g. one-way ANOVA
5. The hypothesis was not supported. The rating hungry participants give the Whopper ($\mathrm{M}=4.33$) is not significantly higher than for normal participants $(\mu=4), \mathrm{t}(8)=.707$, n.s.
6. The hypothesis was not supported. Participants in the perfume condition did not give significantly higher ratings ($M=6.20$) than participants in the non-perfume condition ($\mathrm{M}=6.60$), $\mathrm{t}(8)=.730$, n.s.
7. The hypothesis was not supported. Participants in the laughing condition did not show significantly higher stress levels after laughing ($M=5.25$) than before laughing ($\mathrm{M}=7.50$), $\mathrm{t}(3)=2.635$, n.s.

Homework 8.5: Practice Quiz \#1

A researcher tests whether 1 month of daily meditation ($10,20,30$, or $40 \mathrm{~min} /$ day) and religiosity (religious or not religious) affects happiness. She obtained the following results.

Dependent Variable: Happiness

Meditati on	Relig ious	Mean	Std. Deviation	N
10 min	yes	3.75	.957	4
	no	3.50	1.291	4
	Total	3.63	1.061	8
20 min	yes	3.75	1.258	4
	no	3.50	.577	4
	Total	3.63	.916	8
30 min	yes	5.50	.577	4
	no	4.00	.816	4
	Total	4.75	1.035	8
40 min	yes	7.50	.577	4
	no	4.25	1.258	4
	Total	5.88	1.959	8
Total	yes	5.13	1.784	16
	no	3.81	.981	16
	Total	4.47	1.565	32

Dependent Variable: Happiness

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	53.719^{a}	7	7.674	8.278	.000
Intercept	639.031	1	639.031	689.292	.000
Meditation	27.844	3	9.281	10.011	.000
Religious	13.781	1	13.781	14.865	.001
Meditation * Religious	12.094	3	4.031	4.348	.014
Error	22.250	24	.927		
Total	715.000	32			
Corrected Total	75.969	31			
$\quad \sim$					

Estimated Marginal Means of Happiness
Student-Newman-Keuls ${ }^{\text {a,b }}$

		Subset	
Meditation	N	1	2
10 min	8	3.63	
20 min	8	3.63	
30 min	8	4.75	
40 min	8		5.88
Sig.		.070	1.0

1. Formally summarize the result of the F-test for Factor B. (e.g.: $t(7)=\ldots$...)
2. Calculate η^{2} for Factor A (if appropriate)
3. What two specific values (give numbers) are used to calculate the F value for the interaction?
4. What specific means (give numbers) would you use in describing whether there was a main effect for Factor B?
5. What was the average happiness level for religious people doing 10 minutes of meditation?
6. Little "a" is equal to what numeric value?
7. The things that can affect the dependent variable in a two-way ANOVA are called \qquad [one-word].
8. Which statement best describes the interaction
a. The interaction was not significant.
b. As meditation time increased, happiness increased for both religious \& non-religious participants.
c. As meditation time increased, happiness increased more for religious (vs. non-religious) participants.
d. Increasing meditation time from 10 to 20 minutes doesn't increase happiness, but increasing it from 20 to 30 , and from 30 to 40 does.
9. Which pattern of significant differences is shown in the post-hoc table?
a. $10 \mathrm{~min}<20 \mathrm{~min}<30 \mathrm{~min}<40 \mathrm{~min}$
b. $[10 \mathrm{~min}=20 \mathrm{~min}=30 \mathrm{~min}]<40 \mathrm{~min}$
c. $10 \mathrm{~min}<[20 \mathrm{~min}=30 \mathrm{~min}=40 \mathrm{~min}$]
d. $[10 \mathrm{~min}=20 \mathrm{~min}]<[30 \mathrm{~min}=40 \mathrm{~min}$]
\square 10. Name a common household pet. Three letters, the first one is " D " and the last is " G ."

Homework 8.6: Practice Quiz \#2

A researcher tests the impact of practice time ($10,20,30,40,50 \mathrm{~min} /$ day) and material (video vs. workbook) on math test performance.

Dependent Variable: TestScr

Time	Material	Mean	Std. Deviation	N
10 min	video	4.00	.707	5
	workbook	3.80	.837	5
	Total	3.90	.738	10
20 min	video	3.80	.837	5
	workbook	4.00	.707	5
	Total	3.90	.738	10
30 min	video	4.00	.707	5
	workbook	5.40	.548	5
	Total	4.70	.949	10
40 min	video	4.00	.707	5
	workbook	6.00	.707	5
	Total	5.00	1.247	10
50 min	video	4.40	.548	5
	workbook	6.20	.837	5
	Total	5.30	1.160	10
Total	video	4.04	.676	25
	workbook	5.08	1.222	25
	Total	4.56	1.110	50

Dependent Variable: TestScr

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$39.520^{\text {a }}$	9	4.391	8.444	.000
Intercept	1039.680	1	1039.680	1999.38	.000
Time	16.320	4	4.080	7.846	.000
Material	13.520	1	13.520	26.000	.000
Time *Material	9.680	4	2.420	4.654	.004
Error	20.800	40	.520		
Total	1100.000	50			
Corrected Total	60.320	49			

TestScrStudent-Newman-Keuls ${ }^{\text {a,b }}$			
Time	N	Subset	
		1	2
20 min	10	3.90	
10 min	10	3.90	
30 min	10		4.70
40 min	10		5.00
50 min	10		5.30
Sig.		1.000	. 163

\square 1. Calculate $\eta 2$ for Factor B (if appropriate)
2. When discussing Factor B, what means would you use? (specific numbers)
3. Little " b " is equal to what value? (specific number)
4. The values that an Independent Variable takes on are called \qquad (a term).
5. What two specific numeric values yield the F value for $A * B$?
6. Formally summarize the F -test result for Factor A. e.g., $\mathrm{t}(7)=\ldots . .$. .etc.
7. Formally summarize the F-test result for Factor B.
8. Overall there were 2 significant \qquad effects and 1 significant \qquad _.
9. What was the average test score for people doing workbooks for 30 minutes per day?
10. Which statement best describes the interaction
a. The interaction was not significant.
b. As practice time increases video participants do worse while workbook participants do better.
c. As practice time increases in general both video and workbook participants do better.
d. As practice time increases workbook participants eventually improve but video participants do not.
11. Which pattern of significant differences is shown in the post-hoc table?
a. $10 \mathrm{~min}<20 \mathrm{~min}<30 \mathrm{~min}<40 \mathrm{~min}<50 \mathrm{~min}$
b. $10 \mathrm{~min}=20 \mathrm{~min}=30 \mathrm{~min}=40 \mathrm{~min}=50 \mathrm{~min}$
c. $10,20 \mathrm{~min}<30,40, \& 50 \mathrm{~min}$
d. $20,1030 \mathrm{~min}<40,50 \mathrm{~min}$

Homework 9.1- χ^{2} "Chi Squared"

1. Test whether you could say more than half of people favor gay marriage based on this sample. On this and other problems, look-up χ^{2} critical and state whether you retain or reject the Ho.

	Approve	Oppose	
OF	45	30	$N=$
EF	---	---	
	50\%	50\%	

$$
\chi^{2}=\sum \frac{(O F-E F)^{2}}{E F}=
$$

3. A researcher wants to know if those who had a heart attack (vs. those that didn't) were more likely to be redmeat eaters. Conduct the Test for Independence with the following data:

		Red-M eat Eater	
$\begin{aligned} & \text { y } \\ & \text { H } \\ & \text { 等 } \end{aligned}$		Yes	No
	Yes	20	8
	No	10	22

$\chi^{2}=$
2. You compare the beliefs about global warming of WU students to the national breakdown. Test the hypothesis that Winthrop Students are more supportive.

	True	False	Don't Know	
OF EF	37	10	7	
	50%	40%	10%	

$$
\chi^{2}=
$$

4. A researcher wonders if Political Affiliation (Dem, Rep, or Independent) relates to support for gay marriage.

$\chi^{2}=$

Homework 9.1 - x^{2} "Chi Squared" Key

1. Test whether you could say more than half of people favor gay marriage based on this sample. On this and other problems, look-up χ^{2} critical and state whether you retain or reject the Ho .

	Approve	Oppose	
OF	45	30	$\mathrm{~N}=75$
EF	_37.5_-	_37.5___	
	50%	50%	

$$
\begin{aligned}
& \chi^{2}=\sum \frac{(O F-E F)^{2}}{E F}=\frac{(45-37.5)^{2}}{37.5}+\frac{(30-37.5)^{2}}{37.5} \\
& \chi^{2}=1.5+1.5=3.0
\end{aligned}
$$

df $=2-1=1, \quad x^{2}$ critical $=3.841$
Retain Ho, $50 \%-50 \%$ split is possible.
3. A researcher wants to know if those who had a heart attack (vs. those that didn't) were more likely to be redmeat eaters. Conduct the Test for Independence with the following data:

		Red-M eat Eater		
$\begin{aligned} & \text { V } \\ & \frac{0}{4} \\ & \frac{1}{4} \\ & \frac{1}{1} \end{aligned}$		Yes	No	
	Yes	$\begin{aligned} & 20 \\ & 14 \end{aligned}$	$\begin{gathered} \hline 8 \\ 14 \end{gathered}$	28
	No	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	22 16	32
		30	30	$N=60$

$\chi^{2}=\frac{(20-14)^{2}}{14}+\frac{(8-14)^{2}}{14}+\frac{(10-16)^{2}}{16}+\frac{(22-16)^{2}}{16}$
$\chi^{2}=2.571+2.571+2.250+2.250=9.642$
$\mathrm{df}=(\mathrm{R}-1) *(\mathrm{C}-1)=1 * 1=1, \quad \chi^{2}$ critical $=3.841$
Reject Ho, Red-M eat eaters significantly more likely to have a heart attack.
2. You compare the beliefs about global warming of WU students to the national breakdown. Test the hypothesis that Winthrop Students are more supportive.

4. A researcher wonders if Political Affiliation (Dem, Rep, or Independent) relates to support for gay marriage.

Homey Work 9.4: Conceptual Review for Final

[Use the following scenario for questions 1-4] Researchers manipulate noise level (5,10,15, 20 decibels) and test for an impact on reading comprehension among college students.

1. Which of the following would increase the treatment effect?
a. changing the levels to $15,20,25,30$
b. changing the levels to $5,15,25,35$
c. using more subjects
d. decreasing M_{Bg}
e. $a \& b$
2. Which of the following would decrease sampling error?
a. making the sound quality more soothing
b. using a variety of reading materials to test reading comprehension
c. removing other possible distractions
d. getting more power
e. increasing $\mathrm{M}_{\text {BG }}$
3. Which of the following pairs of reading comprehension scores (for groups $1 \& 2$) show a large $M \mathrm{~S}_{\text {BG }}$ and a small MSws?
a. $10,20,10,15$ and $20,10,20,15$
b. 5,10,5,15 and $40,45,40,35$
c. $5,30,10,5$ and $40,70,80,40$
d. $10,30,5,40$ and $20,40,20,80$
4. If the ANOVA is significant, the experimenter will calculate a \qquad to examine difference between means and a
\qquad to assess practical significance.
a. η^{2}; post hoc
b. post hoc ; coefficient of determination
c. $F ; \eta^{2}$
d. post hoc; η^{2}
e. (nothing needed); post hoc
5. A researcher is testing whether social anxiety correlates with alcohol consumption. Which of the following would make it more likely that she could reject the null hypothesis?
a. large sample; small r
b. large ρ; large sample.
c. large r; small ρ
d. large Sy'; large sample
e. small Sy' and shallow slope of regression line
f. small p ; large Sy'
6. A researcher hopes to show that students studying 50 or more hours for the Baadwidnoombrs quantitative ability test do better than the overall average (50 points, with a known σ). Which of the following makes it more likely he and his pet parrot can reject the Ho?
a. The scores of participants who study have lower variability
b. The scores of participants who study have higher variability
c. The scores of the general population have lower variability
d. The scores of the general population have higher variability
e. The difference between $s x$ and σx is small
f. The difference between $5 x$ and σx is large
7. Which of the following will increase power?
a. Increase M S SG ; Increase M SWG
b. Increase treatment; Increase M Swg
c. Decrease sampling error; Decrease treatment error
d. Decrease $M \mathrm{~S}_{\mathrm{BG}}$; Decrease $M \mathrm{~S}_{\mathrm{WG}}$
e. Increase $\mathrm{M} \mathrm{S}_{\mathrm{BG}}$; Decrease error
8. As tcritical increases, \qquad
a. $t_{\text {obt }}$ decreases
b. treatment effect increases
c. rejection of Ho becomes less likely
d. power becomes more likely
e. size of d likely increases
9. When doing correlation \& regression we become more likely to reject Ho when
a. Sy' increases
b. r gets smaller
c. r^{2} gets smaller
d. prediction error decreases
e. slope of regression line gets flatter
10. For a given distribution, relative to variance
a. SS is larger
b. S_{x} is larger
c. $\Sigma\left(x-x_{\text {bar }}\right)$ is larger
d. $\quad \Sigma(x-\mu)$ is larger
e. $\sqrt{s_{x}{ }^{2}}$ is larger
11. As rincreases
a. prediction accuracy decreases
b. the likelihood of $\rho=0$ increases
c. Sy decreases
d. Sy' increases
e. β decreases
f. the chance of rejecting Ho increases
12. If we reject Ho , we then calculate an \qquad statistic. [2 words]
13. Deciding whether an observed correlation indicates an actual correlation in the population requires the process of
\qquad . [2 words]
14. As β decreases \qquad increases.
15. \qquad represents the chance of a Type I error. [symbol]
16. If the effect of one IV depends upon the level of another IV we call that a(n) \qquad effect [2-words].
17. With a z or t-test, standard error tells us the \qquad [2 words] based on sampling error alone.
18. The t-test differs from the z because we must estimate \qquad . [First 2 words of name]
19. When doing regression, the variability around the regression line is expressed by \qquad . [symbol]
[Use the following scenario for questions 1-4] Researchers manipulate noise level (5,10,15, 20 decibels) and test for an impact on reading comprehension among college students.
20. Which of the following would increase the treatment effect?
a. changing the levels to $15,20,25,30$
b. changing the levels to $5,15,25,35$
c. using more subjects
d. decreasing $M S_{B G}$
e. $a \& b$
21. Which of the following would decrease sampling error?
a. making the sound quality more soothing
b. using a variety of reading materials to test reading comprehension
c. removing other possible distractions
d. getting more power
e. increasing $\mathrm{M} \mathrm{S}_{\mathrm{BG}}$
22. Which of the following pairs of reading comprehension scores (for groups $1 \& 2$) show a large $M \mathrm{~S}_{\mathrm{BG}}$ and a small M Swg?
a. $10,20,10,15$ and $20,10,20,15$
b. $5,10,5,15$ and $40,45,40,35$
c. $5,30,10,5$ and $40,70,80,40$
d. $10,30,5,40$ and $20,40,20,80$
23. If the ANOVA is significant, the experimenter will calculate a \qquad to examine difference between means and a
\qquad to assess practical significance.
a. η^{2}; post hoc
b. post hoc ; coefficient of determination
c. $F ; \eta^{2}$
d. post hoc ; η^{2}
e. (nothing needed); post hoc
24. A researcher is testing whether social anxiety correlates with alcohol consumption. Which of the following would make it more likely that she could reject the null hypothesis?
a. large sample; small r
b. large ρ; large sample
c. large r; small ρ
d. large Sy'; large sample
e. small Sy' and shallow slope of regression line
f. small p ; large Sy'
25. A researcher hopes to show that students studying 50 or more hours for the Baadwidnoombrs quantitative ability test do better than the overall average (50 points, with a known σ). Which of the following makes it more likely he and his pet parrot can reject the Ho?
a. The scores of participants who study have lower variability
b. The scores of participants who study have higher variability
c. The scores of the general population have lower variability
d. The scores of the general population have higher variability
e. The difference between $s x$ and σx is small
f . The difference between $s x$ and σx is large
26. Which of the following will increase power?
a. Increase M S SG ; Increase M SWG
b. Increase treatment; Increase M SWG
c. Decrease sampling error; Decrease treatment error
d. Decrease $M \mathrm{~S}_{\mathrm{BG}}$; Decrease $M \mathrm{~S}_{\mathrm{wG}}$
e. Increase $M \mathrm{~S}_{\mathrm{BG}}$; Decrease error
27. As $\mathrm{t}_{\text {critical }}$ increases, \qquad
a. $t_{\text {obt }}$ decreases
b. treatment effect increases
c. rejection of Ho becomes less likely
d. power becomes more likely
e. size of d likely increases
28. As sampling error increases
a. $t_{\text {obt }}$ decreases
b. treatment increases
c. $t_{\text {crit }}$ increases
d. d increases
e. $t_{\text {obt }}$ remains unchanged
29. When doing correlation \& regression we become more likely to reject Ho when
a. Sy' increases
b. r gets smaller
c. r^{2} gets smaller
d. prediction error decreases
e. slope of regression line gets flatter
30. For a given distribution, relative to variance
a. SS is larger
b. S_{x} is larger
c. $\Sigma\left(\mathrm{x}-\mathrm{X}_{\mathrm{bar}}\right)$ is larger
d. $\quad \Sigma(x-\mu)$ is larger
e. $\sqrt{s_{x}{ }^{2}}$ is larger
31. As r increases
a. prediction accuracy decreases
b. the likelihood of $\rho=0$ increases
c. Sy decreases
d. Sy' increases
e. β decreases
f. the chance of rejecting Ho increases
32. If we reject Ho, we then calculate an \qquad effect size \qquad statistic. [2 words]
33. Deciding whether an observed correlation indicates an actual correlation in the population requires the process of
\qquad hypothesis testing \qquad ______-_. . [2 words]
34. As β decreases \qquad power \qquad increases.
35. \qquad α \qquad represents the chance of a Type I error. [symbol]
36. If the effect of one IV depends upon the level of another IV we call that a(n) \qquad interaction \qquad effect.
37. With a z or t-test, standard error tells us the __difference expected___ [2 words] based on sampling error alone.
38. The t-test differs from the z because we must estimate __standard error__. [First 2 words of name]
39. When doing regression, the variability around the regression line is expressed by _Sy' \qquad . [symbol]

Homework 10.1: Journal Reading

This exercise requires you to read and interpret actual passages regarding statistics from real psychological research journals. In several cases you will need to extrapolate on what you've learned and make your best guess. The purpose is to help prepare you for reading research articles in preparation for conducting your own research project in PSYC 302, Research M ethods.

Article \#1: Banerjee, P., Chatterjee, P., \& Sinha, J. (2012). Is It Light or Dark? Recalling M oral Behavior Changes Perception of Brightness. Psychological Science. HELPFUL HINTS: These authors hypothesize that people unconsciously associate bad behavior with darkness and good behavior with light. They prime people to think about one or the other and then see if this affects their perceptions and preferences regarding light.

1. IV:
2. DV:
3. Obtained t value:
4. Type of t-test:
5. Mean for the ethical condition
6. Was there a treatment effect? \qquad
7. Based on the effect size statistic, how many standard deviation units of difference does the IV cause?
8. The effect size is \qquad .
9. DV for brightness perception: \qquad
10. How big of difference did they find in perception of brightness? (State the statistic and its value):
11. What was the preference for the lamp in the ethical condition vs. the unethical condition: \qquad vs.
12. The largest effect size was for which object? \qquad
13. For which objects were there no significant differences?
14. Why would the above objects not show a significant difference?

Study 1: "Forty participants at a large public university participated in this study in return for partial course credit. We asked participants to recall and describe in detail either an ethical or an unethical deed from their past and to describe any feelings or emotions associated with it (Zhong \& Liljenquist, 2006). After completing a filler task, participants were asked to judge the brightness of the room, using a 7 -point scale ($1=$ low, $7=$ high). A t test revealed a significant difference in perception of the room's brightness between the two conditions (ethical condition: $\mathrm{M}=5.3$; unethical condition: $\mathrm{M}=4.71$), $\mathrm{t}(38)=2.03, \mathrm{p}<.05$, Cohen's $d=0.65$. As predicted, participants in the unethical condition judged the room to be darker than did participants in the ethical condition. In our next study, we sought to extend these findings by testing whether participants who recalled unethical behavior, relative to those who recalled ethical behavior, exhibited a greater preference for light-producing objects (i.e., lamp, candle, and flashlight) that would brighten the room."

Study 2: "Seventy-four students participated in this study in return for partial course credit. As in Study 1, we asked participants to recall and describe either an unethical or an ethical deed from their past, as well as the feelings or emotions they associated with it. Next, participants were asked to indicate their preferences for the following products: a jug, a lamp, crackers, a candle, an apple, and a flashlight. Responses were made using 7 -point scales ($1=$ low, $7=$ high). We also asked participants to estimate (in watts) the brightness of the light in the lab. As expected, participants in the unethical condition found the lab to be darker than did participants in the ethical condition (ethical condition: $\mathrm{M}=87.6 \mathrm{~W}$; unethical condition: $\mathrm{M}=74.3 \mathrm{~W}$), $\mathrm{t}(72)=2.7, \mathrm{p}<.01, \mathrm{~d}=0.64$. M oreover, as predicted, participants in the unethical condition demonstrated greater preference for the light-related objects (but not the other objects): lamp (ethical condition: $M=2.34$; unethical condition: $\mathrm{M}=4.16), \mathrm{t}(72)=5.23, \mathrm{p}<.0001, \mathrm{~d}=1.23$; candle (ethical condition: $\mathrm{M}=2.37$; unethical condition: $\mathrm{M}=3.62$), $\mathrm{t}(72)=3.36, \mathrm{p}<.01, \mathrm{~d}=0.79$; and flashlight (ethical condition: $M=2.35$; unethical condition: $M=4.33$), $t(72)=$ $5.68, p<.0001, d=1.33 . "$

Article \#2: Eppig, C., Fincher, C. L., \& Thornhill, R. (2011). Parasite prevalence and the distribution of intelligence among the states of the USA. Intelligence, 39(2-3), 155-160. HELPFUL HINTS: The authors hypothesize that in early childhood development the body makes a trade-off between maximizing brain functioning and maximizing immune system functioning. If the body detects a high parasite-stress environment, it will devote more resources to the immune system, thereby sacrificing a some level of intelligence. They therefore predict that people will be less intelligent in regions of the country where there are more risks from parasites (typically those areas that are closer to the equator - that is, lower in latitude). They conduct a hierarchical regression which tries to control for other potential variables (e.g., educational quality) that could provide another explanation for the relationship between IQ and parasite-stress).
15. Parasite-stress (PS) correlated with what geographical variable?
16. As you head south, PS \qquad _.
17. What amount of variance in PS could you account for with latitude: \qquad _.

Excerpt from literature review. Hint: The authors are providing evidence that their measure of parasite-stress (i.e., the level of risk for a parasite infection in a given area) measures what it is supposed to. "This index of parasite-stress, ParasiteStress USA, is validated by the fact that it shows a negative correlation with latitude ($-0.45, \mathrm{n}=50$, and $\mathrm{p}=0.001$; or after removing the latitudinal outliers Alaska and Hawaii, $-0.71, \mathrm{n}=48$, and $\mathrm{p}=0.0001$) just as do global measures of parasite-stress (Cashdan, 2001; Guernier, Hochberg, \& Guégan, 2004; Low, 1990). Furthermore,
18. What's the correlation between PS and life expectancy?
19. At what level was this relationship significant?
20. Which variable was standardized?
21. What's the cor between IQ and PS? \qquad
22. What percent of variance in IQ can you account for with PS?
23. The reason $n=50$ is because that's the number of \qquad _.
24. Based on the regression line, if PS is 2 standard deviations above average, the average IQ should be just a little above
\qquad -
25. What's the next best predictor of $I Q$?
26. Besides the PS, the only other negative correlation with IQ is with

Parasite-Stress USA was correlated strongly and negatively across US states with the average lifespan expectancy at birth for both sexes in the year 2000 according to data we collected from www.census.gov ($r=-0.67, n=50$, and $p=0.0001$). Similar strong relationships between infectious disease stress and lifespan expectancy are found in cross-national analyses (Thornhill et al., 2009). This variable was z-scored (mean $=-0.0044$, median $=-0.023$, and $S D=0.91$). See Fincher and Thornhill (in press) for further details and data."

Excerpt from Results:

"Average state IQ and parasite stress correlated at $r=-0.67$ ($n=50$, and $p=0.0001$; Fig. 1). Average IQ also correlated significantly with wealth ($r=0.32, n=50$, and $p=0.025$), percent of teachers highly qualified ($r=0.42, n=50$, and $\mathrm{p}=0.0023$), and studentteacher ratio ($\mathrm{r}=-0.31, \mathrm{n}=50$, and $p=0.031$) (see Table 1 for additional correlations).

Fig. 1. Bivariate relationship between average U.S. state IQ and infectious discase stress. Average state IQ and parasite stress correlated at $r=-0.67$ ($n=50$, and $p<0.0001$). The line is the least-squares line through the points.

Table 1
Zero-order correlations among all variables.

	1.	2.	3.	4.	5.	6.	7.	8.
1. Average IQ		$-0.67^{* *}$	-0.31 "	0.42 *	$0.27{ }^{\text { }}$	$0.34{ }^{*}$	0.28 *	$0.32{ }^{\text {* }}$
2. Parasite stress			-0.0069	-0.11	-0.15	-0.047	0.013	-0.065
3. Student-teacher ratio				-0.35^{*}	0.12	-0.0007	0.020	0.052
4. Percent of teachers highly qualified					-0.23	-0.07	0.029	-0.049
5. Median household income						$0.88{ }^{* 8}$	$0.77^{* *}$	$0.95{ }^{* *}$
6. Income per capita							0.80 **	0.95**
7. Gross state product								$0.91{ }^{* *}$
8. Wealth								

All others $\mathrm{p}>0.10$. All $\mathrm{n}=50$.
${ }^{* *} \mathrm{p}<0.001$.

* $p<0.05$.

27. What's the cor. IQ and Med. Household income? \qquad Is it significant?
28. What's the best predictor of Household income? \qquad What's the r value? \qquad
29. The relationship between IQ and household income isn't sig., but \qquad _.
30. If a relationship has two asterisks it's significant at the \qquad level.
31. What's the amount of variance accounted for in IQ after entering just PS in the first step?
32. What does the amount of variance accounted for reach after everything is entered in the third step?
33. Is PS still significant after they've controlled for wealth, education, etc.?

Excerpt from Results: Hierarchical regression was used to predict average state IQ using parasite stress, wealth, percent of teachers highly qualified, and student/teacher ratio (Table 2). Parasite stress was added in the first iteration of the model, resulting in a change in R^{2} of 0.445 . Wealth was added in the second iteration of the model, resulting in a change in R^{2} of 0.075 . Both education variables were added simultaneously in the third iteration of the model because they both measure the same theoretical construct, resulting in a change in R^{2} of 0.133. While these variables were added into the model in order of presumed causal priority, adding these variables in a different order did not appreciably change the additive R^{2} of each iteration. In the final model, parasite stress (Std Beta=-0.62, variance inflation factor $(\mathrm{VIF})=1.02$, and $\mathrm{p}=0.0001$), wealth (Std Beta $=0.30, \mathrm{VIF}=1.00$, and $\mathrm{p}=0.0006$), percent of teachers highly qualified (Std Beta $=0.29, \mathrm{VIF}=1.16$, and $\mathrm{p}=0.0019$), and student/teacher ratio (Std Beta $=-0.22, \mathrm{VIF}=1.15$, and $\mathrm{p}=0.015$) (Table 3) were all significant predictors of average state IQ. The whole model R^{2} was $0.698(\mathrm{p}=0.0001)$." Also see Table 2 below.

Fig. 2. The directions of influences predicted by our hypothesis among climate, infectious disease, intelligence, education, and wealth.

Table 2
Hierarchical regression model predicting average state IQ,

Model	Term	p	R^{2}	change in R^{2}
1		<0.0001	0.445	0.445
	Parasites	<0.0001		
2		<0.0001	0.520	0.075
	Parasites	<0.0001		
3	Wealth	0.0094		
		<0.0001	0.698	0.133
	Parasites	<0.0001		
	Wealth	0.0006		
	HQT	0.0019		
	STR	0.015		

$\mathrm{HQT}=$ percent of teachers highly qualified; and STR $=$ student/teacher ratio.

Answer the following based on the above model (not your own intuition).
34. What's the fundamental driver of infectious disease risk? \qquad
35. What's the direction of relationship between education and infectious disease risk? \qquad
36. As infectious disease risk increases, wealth \qquad
37. Can education increase intelligence? \qquad
38. As intelligence increases, what happens to infectious disease risk? \qquad . Speculate below on why they might suggest this relationship:

This exercise requires you to read and interpret actual passages regarding statistics from real psychological research journals. In several cases you will need to extrapolate on what you've learned and make your best guess. The purpose is to help prepare you for reading research articles in preparation for conducting your own research project in PSYC 302, Research M ethods.

Article \#1: Banerjee, P., Chatterjee, P., \& Sinha, J. (2012). Is It Light or Dark? Recalling M oral Behavior Changes Perception of Brightness. Psychological Science. HELPFUL HINTS: These authors hypothesize that people unconsciously associate bad behavior with darkness and good behavior with light. They prime people to think about one or the other and then see if this affects their perceptions and preferences regarding light.

1. IV: __recalling (un)ethical deed_
2. DV: __brightness perception, 1-7 scale___
3. Obtained t value: 2.03
4. Type of t-test: \qquad Independent
5. Mean for the ethical condition __5.3
6. Was there a treatment effect? __Yes
7. Based on the effect size statistic, how many standard deviation units of difference does the IV cause? \qquad
\qquad
8. The effect size is \qquad .
9. DV for brightness perception: __estimated Wattage
10. How big of difference did they find in perception of brightness? (State the statistic and its value): _ $\mathrm{d}=0.64$
11. What was the preference for the lamp in the ethical condition vs. the unethical condition: _M =2.34__vs._ _M = 4.16
12. The largest effect size was for which object? __Flashlight___
13. For which objects were there no significant differences? \qquad
\qquad
14. Why would the above objects not show a significant difference? _They do not give off light.

Study 1: "Forty participants at a large public university participated in this study in return for partial course credit. We asked participants to recall and describe in detail either an ethical or an unethical deed from their past and to describe any feelings or emotions associated with it (Zhong \& Liljenquist, 2006). After completing a filler task, participants were asked to judge the brightness of the room, using a 7 -point scale ($1=$ low, $7=$ high). A t test revealed a significant difference in perception of the room's brightness between the two conditions (ethical condition: $M=5.3$; unethical condition: $M=4.71$), $\mathrm{t}(38)=2.03, \mathrm{p}<.05$, Cohen's $\mathrm{d}=0.65$. As predicted, participants in the unethical condition judged the room to be darker than did participants in the ethical condition. In our next study, we sought to extend these findings by testing whether participants who recalled unethical behavior, relative to those who recalled ethical behavior, exhibited a greater preference for light-producing objects (i.e., lamp, candle, and flashlight) that would brighten the room."

Study 2: "Seventy-four students participated in this study in return for partial course credit. As in Study 1, we asked participants to recall and describe either an unethical or an ethical deed from their past, as well as the feelings or emotions they associated with it. Next, participants were asked to indicate their preferences for the following products: a jug, a lamp, crackers, a candle, an apple, and a flashlight. Responses were made using 7-point scales ($1=10 w, 7=$ high). We also asked participants to estimate (in watts) the brightness of the light in the lab. As expected, participants in the unethical condition found the lab to be darker than did participants in the ethical condition (ethical condition: $\mathrm{M}=87.6 \mathrm{~W}$; unethical condition: $\mathrm{M}=74.3 \mathrm{~W}$), $\mathrm{t}(72)=2.7, \mathrm{p}<.01, \mathrm{~d}=0.64$. M oreover, as predicted, participants in the unethical condition demonstrated greater preference for the light-related objects (but not the other objects): lamp (ethical condition: $M=2.34$; unethical condition: $\mathrm{M}=4.16), \mathrm{t}(72)=5.23, \mathrm{p}<.0001, \mathrm{~d}=1.23$; candle (ethical condition: $\mathrm{M}=2.37$; unethical condition: $\mathrm{M}=3.62$), $\mathrm{t}(72)=3.36, \mathrm{p}<.01, \mathrm{~d}=0.79$; and flashlight (ethical condition: $\mathrm{M}=2.35$; unethical condition: $\mathrm{M}=4.33$), $\mathrm{t}(72)=$ $5.68, p<.0001, d=1.33$."

Article \#2: Eppig, C., Fincher, C. L., \& Thornhill, R. (2011). Parasite prevalence and the distribution of intelligence among the states of the USA. Intelligence, 39(2-3), 155-160. HELPFUL HINTS: \$ The authors hypothesize that in early childhood development the body makes a trade-off between maximizing brain functioning and maximizing immune system functioning. If the body detects a high parasite-stress environment, it will devote more resources to the immune system, thereby sacrificing a some level of intelligence. They therefore predict that people will be less intelligent in regions of the country where there are more risks from parasites (typically those areas that are closer to the equator - that is, lower in latitude). They conduct a hierarchical regression which tries to control for other potential variables (e.g., educational quality) that could provide another explanation for the relationship between IQ and parasite-stress).

32. What's the amount of variance accounted for in IQ after entering just PS in the first step?
\qquad $R^{2}=0.445$
33. What does the amount of variance accounted for reach after everything is entered in the third step? __ $\mathrm{R}^{2}=0.698$ \qquad
34. Is PS still significant after they've controlled for wealth, education, etc.? \qquad Yes \qquad

Excerpt from Results: Hierarchical regression was used to predict average state IQ using parasite stress, wealth, percent of teachers highly qualified, and student/teacher ratio (Table 2). Parasite stress was added in the first iteration of the model, resulting in a change in R^{2} of 0.445. Wealth was added in the second iteration of the model, resulting in a change in R^{2} of 0.075 . Both education variables were added simultaneously in the third iteration of the model because they both measure the same theoretical construct, resulting in a change in R^{2} of 0.133 . While these variables were added into the model in order of presumed causal priority, adding these variables in a different order did not appreciably change the additive R^{2} of each iteration. In the final model, parasite stress (Std Beta $=-0.62$, variance inflation factor $(\mathrm{VIF})=1.02$, and $p=0.0001$), wealth (Std Beta $=0.30, \mathrm{VIF}=1.00$, and $p=0.0006$), percent of teachers highly qualified (Std Beta $=0.29, \mathrm{VIF}=1.16$, and $\mathrm{p}=0.0019$), and student/teacher ratio (Std Beta $=-0.22, \mathrm{VIF}=1.15$, and $\mathrm{p}=0.015$) (Table 3) were all significant predictors of average state IQ. The whole model R^{2} was 0.698 ($\mathrm{p}=0.0001$)." Also see Table 2 below.

Fig. 2. The directions of influences predicted by our hypothesis among climate, infectious disease, intelligence, education, and wealth.

Table 2
Hierarchical regression model predicting average state IQ,

Model	Term	P	R^{2}	change in R^{2}
1		<0.0001	0.445	0.445
2	Parasites	<0.0001		
		<0.0001	0.520	0.075
	Parasites	<0.0001		
3	Wealth	0.0094		
		<0.0001	0.698	0.133
	Parasites	<0.0001		
	Wealth	0.0006		
	HQT	0.0019		
	STR	0.015		

HQT $=$ percent of teachers highly qualified; and STR $=$ student/teacher ratio.

Answer the following based on the above model (not your own intuition).
35. What's the fundamental driver of infectious disease risk? \qquad Climate? \qquad
36. What's the direction of relationship between education and infectious disease risk? \qquad Negative \qquad
37. As infectious disease risk increases, wealth \qquad Decreases
38. Can education increase intelligence? ___No, the model shows causality running from Intelligence to Education \qquad
39. As intelligence increases, what happens to infectious disease risk? _Decreases? _. Speculate below on why they might suggest this relationship: As intelligence increases, people invest more resources in public health and prevention (e.g., vaccinations).

Homework 10.2: Conceptual Final Review, MC \& FIB practice

1) A researcher tested whether participants would recommend longer prison sentences if the description of the crime was paired with a disgusting smell. Which of the following would increase the treatment effect?
a) more serious crimes
b) more disgusting crimes
c) more disgusting odors
d) standardize smelling ability (e.g., no people with colds)
e) standardize participants (e.g., no law enforcement people)
2) An educational psychologist examined the effect of peer teaching on writing skills. She randomly placed students in freshman composition into one of three groups, 0,5 , or 10 hours peer teaching, and then compared grades on final papers at the semester's end. Which of the following would likely decrease MSwg?
a) including a wider range of students in the study
b) giving more guidance in effective peer teaching
c) switching to 0,10 , and 20 hrs of peer teaching
d) basing the assessment on two final papers (averaged together) rather than just one
3) Which of the following is affected by treatment effect?
a) $M S_{b g}$
b) $d f_{b g}$
c) $M S_{w g}$
d) $\mathrm{SS}_{\mathrm{wg}}$
e) $a \& b$
4) Conceptually, \qquad influences both the top and bottom portions of the F ratio
a) $d f_{b g}$
b) $d g_{w g}$
c) sampling error
d) sample size
e) treatment effect
5) The statistic η^{2} is a measure of ...
a) practical significance
b) statistical significance
c) sampling error
d) power
6) In a 2-way ANOVA, we do a \qquad test if there are 3 or more \qquad of an IV.
a) post-hoc, factors
b) η^{2}, levels
c) η^{2}, factors
d) post-hoc, levels
7) Variance is defined as the
a) square root of the average deviation around the mean
b) square root of the average squared deviation around the mean
c) average of the squared deviations around the mean
d) sum of the squared deviations around the mean
8) When doing a t-test, $t_{\text {obt }}$ will get larger if
a) treatment effect increases
b) sampling error increases
c) $\mathrm{t}_{\text {critical }}$ decreases
d) α increases
e) the observed difference gets smaller
9) Retaining the Ho means:
a) You claim the sample comes from an alternative distribution
b) Power was too large
c) There is no chance of a treatment effect being present
d) There is no chance of a Type I error
10) If God tells you that for a given t-test the true treatment effect for the sample is zero, then the true treatment effect is
a) $d=1$
b) $d=0$
c) $d<.05$
d) $d>0$
11) At-test is less powerful than a z-test because it
a) use more degrees of freedom
b) estimates standard error
c) estimates the treatment effect
d) requires a larger n
12) With a t-test, as n decreases the shape of the distribution becomes
a) more like a z-distribution
b) more accurate
c) shorter in the middle and taller at the tails
d) more like an F distribution
13) A researcher tests whether a sample ($n=16$) of students from Hogwartz High do significantly better on an end of grade test ($M=107$) than normal ($\mu=$ 88). Rejecting the Ho in this case means
a) concluding that the true population is $\mu=88$
b) there's no sampling error
c) β is large
d) claiming $\rho \neq 0$
e) claiming $\mathrm{d}>0$
14) If the variance accounted for in openness by promotion motivation increases from 29 to .45 , then \qquad is decreasing.
a) r^{2}
b) Sy^{\prime}
c) the slope of the line
d) Sy
15) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. Which of the following would increase power?
a) Including people with a wide variety of sleep disorders
b) Decrease α
c) Increase β
d) Accept only people with moderate intelligence
e) Ensure that participants are practicing the meditation regiment as directed
16) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. Which of the following would determine which groups differed significantly?
a) F-test
b) t-test
c) post hoc
d) d
e) η^{2}
17) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. If the researcher rejects the Ho when in fact meditation has no impact on sleep, which of the following is/are true?
a) the true treatment effect is zero
b) A type I error has occurred
c) Beta $=1$
d) the researcher is probably a bad person
e) $a \& b$
f) $a, b, \& c$
18) When doing a t-test, if the treatment effect gets stronger then
a) t-critical increases
b) df decreases
c) t obtained decreases
d) the difference expected increases
e) the difference observed increases
f) $a \& b$
19) $A \chi^{2}$ is performed with data at the level of measurement
20) The χ^{2} test for \qquad is similar to how a two-way Anova can detect an interaction.
21) In a 2-way ANOVA notation MS stands for \qquad and SS stands for \qquad _.
22) $A(n)$ \qquad graphs the frequency distribution of observed scores using vertical, touching columns.
23) If treatment effect increases dramatically when conducting an F-test, then \qquad should increases and \qquad should stay the same.
24) If the data are normal distributed, the \qquad is the preferred measure of central tendency.
25) A \qquad converts a raw score to a standard score (with a mean of zero and a standard deviation of 1).
26) In calculating an ANOVA, you compute MS by dividing \qquad by \qquad _.
27) In a 2-way ANOVA, there are 3 F tests, which could produce three different \qquad [one word] -- one for each of the 3 \qquad [one word].
28) In a 2-way ANOVA, there are two possible effects and one possible \qquad effect.
29) The "design" of a 2-way ANOVA concerns the respective \qquad of the two IVs.
30) To consider the main effect for factor A requires _____________ looking at the relevant means.
31) If a frequency distribution showed 2 distinct peaks we might consider the \qquad as the best measure of central tendency.
32) If you reject the Ho, you might make a \qquad decision making error.
33) As the slope of the regression line increases, r^{2} will
\qquad _-
34) Whereas " r " is a test of \qquad significance, r^{2} is a test of \qquad significance.
35) A researcher tested whether participants would recommend longer prison sentences if the description of the crime was paired with a disgusting smell. Which of the following would increase the treatment effect?
a) more serious crimes
b) more disgusting crimes
c) more disgusting odors
d) standardize smelling ability (e.g., no people with colds)
e) standardize participants (e.g., no law enforcement people)
36) An educational psychologist examined the effect of peer teaching on writing skills. She randomly placed students in freshman composition into one of three groups, 0,5 , or 10 hours peer teaching, and then compared grades on final papers at the semester's end. Which of the following would likely decrease M Swg?
a) including a wider range of students in the study
b) giving more guidance in effective peer teaching
c) switching to 0,10 , and 20 hrs of peer teaching
d) basing the assessment on two final papers (averaged together) rather than just one
37) Which of the following is affected by treatment effect?
a) $M S_{b g}$
b) $d f_{b g}$
c) $M S_{w g}$
d) $S S_{\mathrm{wg}}$
e) $a \& b$
38) Conceptually, \qquad influences both the top and bottom portions of the F ratio
a) $d f_{b g}$
b) $d^{w g}$
c) sampling error
d) sample size
e) treatment effect
39) The statistic η^{2} is a measure of ...
a) practical significance
b) statistical significance
c) sampling error
d) power
40) In a 2-way ANOVA, we do a \qquad test if there are 3 or more \qquad of an IV.
a) post-hoc, factors
b) η^{2}, levels
c) η^{2}, factors
d) post-hoc, levels
41) Variance is defined as the
a) square root of the average deviation around the mean
b) square root of the average squared deviation around the mean
c) average of the squared deviations around the mean
d) sum of the squared deviations around the mean
42) When doing a t-test, tobt will get larger if
a) treatment effect increases
b) sampling error increases
c) $t_{\text {critical }}$ decreases
d) α increases
e) the observed difference gets smaller
43) Retaining the Ho means:
a) You claim the sample comes from an alternative distribution
b) Power was too large
c) There is no chance of a treatment effect being present
d) There is no chance of a Type I error
44) If God tells you that for a given t-test the true treatment effect for the sample is zero, then the true treatment effect is
a) $d=1$
b) $d=0$
c) $d<.05$
d) $d>0$
45) A t-test is less powerful than a z-test because it
a) use more degrees of freedom
b) estimates standard error
c) estimates the treatment effect
d) requires a larger n
46) With a t-test, as n decreases the shape of the distribution becomes
a) more like a z-distribution
b) more accurate
c) shorter in the middle and taller at the tails
d) more like an F distribution
47) A researcher tests whether a sample ($n=16$) of students from Hogwartz High do significantly better on an end of grade test ($M=107$) than normal ($\mu=$ 88). Rejecting the Ho in this case means
a) concluding that the true population is $\mu=88$
b) there's no sampling error
c) β is large
d) claiming $\rho \neq 0$
e) claiming $d>0$
48) If the variance accounted for in openness by promotion motivation increases from 29 to .45 , then \qquad is decreasing.
a) r^{2}
b) Sy^{\prime}
c) the slope of the line
d) β
49) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. Which of the following would increase power?
a) Including people with a wide variety of sleep disorders
b) Decrease α
c) Increase β
d) Accept only people with moderate intelligence
e) Ensure that participants are practicing the meditation regiment as directed
50) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. Which of the following would determine which groups differed significantly?
a) F-test
b) t-test
c) post hoc
d) d
e) η^{2}
51) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. If the researcher rejects the Ho when in fact meditation has no impact on sleep, which of the following is/are true?
a) the true treatment effect is zero
b) A type I error has occurred
c) $\beta=1$
d) the researcher is probably a bad person
e) $a \& b$
f) $a, b, \& c$
52) When doing a t-test, if the treatment effect gets stronger then
a) t-critical increases
b) df decreases
c) t-obtained decreases
d) the difference expected increases
e) the difference observed increases
f) $a \& b$
53) $A \chi^{2}$ is performed with data at the __nominal level of measurement
54) The χ^{2} test for __independence_is similar to how a two-way Anova can detect an interaction.
55) In a 2-way ANOVA notation MS stands for __means squared__ and SS stands for __sum of squares_.
56) A(n) __histogram__ graphs the frequency distribution of observed scores using vertical, touching columns.
57) If treatment effect increases dramatically when conducting an F-test, then __M Sbg__ should increases and _M Swg__ should stay the same.
58) If the data are normal distributed, the _mean_ is the preferred measure of central tendency.
59) A _z-score_ converts a raw score to a standard score (with a mean of zero and a standard deviation of 1).
60) In calculating an ANOVA, you compute MS by dividing \qquad by __ \qquad .
61) In a 2-way ANOVA, there are 3 F tests, which could produce three different_effects_[one word] -- one for each of the 3 _factors__ [one word].
62) In a 2-way ANOVA, there are two possible _main_ effects and one possible_interaction_ effect.
63) The "design" of a 2 -way ANOVA concerns the respective_levels_ of the two IVs.
64) To consider the main effect for factor A requires _collapsing_across the levels of factor B when looking at the relevant means.
65) If a frequency distribution showed 2 distinct peaks we might consider the _mode_ as the best measure of central tendency.
66) If you reject the Ho, you might make a_Type I_ decision making error.
67) As the slope of the regression line increases, r^{2} will _increase__
68) Whereas " r " is a test of _statistical__ significance, r^{2} is a test of \qquad practical significance.

[^0]: *. Correlation is significant at the 0.01 level (2 -tailed).

[^1]: e. Appropriate measure of standard error (precise name, symbol, \& value)?
 f. Chance you'd see a difference between the means of this size by sheer chance?
 i. Paragraph Write-up (can use separate paper)

