## PSYC 301: Statistics (rev. 1'30'2018) Homework Table of Contents

| Homework 1.1: Quant/Qual, Freq. Distribution, Graphs, Levels of Measurement         |          |
|-------------------------------------------------------------------------------------|----------|
| Homework 1.1: Quant/Qual, Freq. Distribution, Graphs, Levels of Measurement- Key    | 5        |
| Homework 1.2: Experimental Terminology, Treatment Effect, Sampling Error            | 7        |
| Homework 1.2: Experimental Terminology, Treat. Effect, Sampling Error-Key           |          |
| Homework 2.1: MCT vs. MV, Measures of Central Tendency, Samples vs. Populations     | 11       |
| Homework 2.1: MCT vs. MV, Measures of Central Tendency, Samples vs. Populations-Key |          |
| Homework 2.2: Measures of Variability                                               |          |
| Homework 2.2: Measures of Variability - Key                                         | 17       |
| Homework 3.1: Correlation & Regression                                              |          |
| Homework 3.1: Correlation & Regression – Key                                        |          |
| Homework 3.2: Correlation & Regression Practice                                     |          |
| Homework 3.2: Correlation & Regression Practice                                     |          |
| Homework 3.3: Conceptual Review (closed book)                                       |          |
| Homework 3.4: Computational Review #1 (open-book)                                   |          |
| Homework 3.4: Computational Review #1 (open-book) -key                              |          |
| Homework 3.5: Computational Review #2 (open book)                                   |          |
| Homework 3.5: Computational Review – Key , Test #1 (open book)                      | 42       |
| Homework 3.6 - Correlation & Regression Review                                      | 46       |
| Homework 3.6: Correlation & Regression Review - Key                                 |          |
| Homework 4.2: Z-scores, Sampling Distributions, Hypothesis Testing                  |          |
| Homework 4.2 – Z-scores, Sampling Distributions, Hypothesis Testing                 |          |
| Homework 4.1: Z-scores for scores.                                                  | J4<br>56 |
| Homework 4.1: Z-scores                                                              |          |
| Homework 5.1: t-scores                                                              |          |
| Homework 5.1: t-scores - Key                                                        |          |
|                                                                                     |          |
| Homework 5.2: Hypothesis Testing with T-Scores                                      |          |
| Homework 5.2: Hypothesis Testing with T-Scores - Key                                | 66       |
| Homework 5.3: One-sample t-test                                                     |          |
| Homework 5.3: One-sample t-testKey                                                  | /1       |
| Homework 6.1: Questions about Independent t-test                                    |          |
| Homework 6.2 – Independent t-test practice                                          |          |
| Homework 6.2 – Independent t-test practice- Key                                     |          |
| Homework 6.3 – Dependent t-tests                                                    |          |
| Homework 6.3 – Dependent t-tests- Key                                               |          |
| Homework 6.3A – Annotating Output                                                   |          |
| Homework 6.3A – Annotating Output-Key                                               | 83       |
| Homework 6.4: Independent & Dependent T-tests                                       | 84       |
| Homework 6.4: Independent & Dependent T-tests- Key                                  | 88       |
| Homework 6.6 – Conceptual Review                                                    |          |
| Homework 6.6 – Conceptual Review – KEY                                              |          |
| Homework 6.7 Computational Review (Test 2)                                          |          |
| Homework 6.7 Computational Review (Test 2) - Key                                    |          |
| Homework 6.8: Conceptual Review T2 (closed book)                                    |          |
| Homework 6.9 Practice Test for Test #2 (Excluding Essay)-Key                        | .103     |
| Homework 6.9 Practice Test for Test #2 (Excluding Essay)-Key                        | .107     |
| Homework 6.9A: Overview of z-tests and t-tests                                      | .111     |
| Homework 7.1a: 1-way ANOVA                                                          |          |
| Homework 7.1b: 1-way ANOVA                                                          |          |
| Homework 7.1a: 1-way ANOVA                                                          |          |
| Homework 7.1b: 1-way ANOVA                                                          |          |
| Homework 7.2 – 1-Way ANOVA                                                          |          |
| Homework 7.2 – 1-Way ANOVA *****KEY*****                                            | .118     |
| Homework 7.3: Statistics for Breakfast!!!                                           | .120     |
| Homework 7.3: Statistics for Breakfast!!!- Key                                      |          |
| Homework 8.1: 2-Way ANOVA                                                           |          |
| Homework 8.1: 2-Way ANOVA Key                                                       |          |
| Homework 8.2: Setting up Data for 2-way ANOVA                                       |          |
| Homework 8.2B: 2-way ANOVA Annotation Exercise                                      |          |
| Homework 8.2B: 2-way ANOVA Annotation Exercise - KEY                                |          |
| Homework 8.3: 2-Way ANOVA Annotation Exercise - KET                                 |          |
| Homework 8.3: 2-way ANOVA Write-ups                                                 |          |
| Homework 8.4: Paragraphs & Name that Stat Review                                    |          |
| ווטוופייטורט.א. דמו מצו מצווש נוומו שנו גו הציופיי                                  | . 130    |

| Homework 8.4 Paragraphs & Name that Stat Review Key            |     |
|----------------------------------------------------------------|-----|
| Homework 8.5: Practice Quiz #1                                 |     |
| Homework 8.6: Practice Quiz #2                                 | 141 |
| Homework 9.1 - $\chi^2$ "Chi Squared"                          | 142 |
| Homework 9.1 - $\chi^2$ "Chi Squared" Key                      | 143 |
| Homey Work 9.4: Conceptual Review for Final                    |     |
| Homey Work 9.4: Conceptual Review for Final - Key              |     |
| Homework 10.1: Journal Reading                                 | 148 |
| Homework 10.1: Journal Reading -Key                            |     |
| Homework 10.2: Conceptual Final Review, MC & FIB practice      |     |
| Homework 10.2 Conceptual Final Review, MC & FIB practice - Key |     |

# Homework 1.1: Quant/Qual, Freq. Distribution, Graphs, Levels of Measurement

| 1. Indicate if the following variable:                                                                                                                  |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| heightrelig                                                                                                                                             | on (type of)                                                                                                                 | (type of) religiosity (level of involvement with) |                                                                                                                                                                                                                  |  |  |  |
| gender regio                                                                                                                                            | on (e.g., South, North)                                                                                                      | grade in a clas                                   | s (e.g., A, B, C)                                                                                                                                                                                                |  |  |  |
| self-esteem mar                                                                                                                                         | tal status (single, etc.)                                                                                                    | ethnicity (Blac                                   | k, White, Martian)                                                                                                                                                                                               |  |  |  |
| 2. For each of the following data sets, de table and histograms or bar graph (which                                                                     |                                                                                                                              | ative or Quantitative                             | then construct an appropriate frequency                                                                                                                                                                          |  |  |  |
| a. On the seven item quiz people scored<br>as follows: 6,2,5,4,6,7,4,4,3,5,0,4,<br>3,5,2,3,5,7,4,6,3,3,5,4,2,4<br>Qualitative or Quantitative? (circle) | b. On a measure of social an<br>scored: 35, 40, 45, 40, 45,<br>60, 70, 70, 30, 40, 45, 50, 40<br>Qualitative or Quantitative | 35, 45, 50, 50, 60,<br>0, 40, 30                  | c. Survey participants indicated their<br>religious beliefs as follows: Christian (X),<br>Atheist (A), Agnostic (G), or Foodie (F): C A<br>G C F C G A C G C A G C C F F A C C C<br>Qualitative or Quantitative? |  |  |  |
|                                                                                                                                                         |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| 7                                                                                                                                                       |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| 6                                                                                                                                                       |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| 5 5                                                                                                                                                     |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| 4                                                                                                                                                       |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| 3                                                                                                                                                       |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| 2                                                                                                                                                       |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| 1                                                                                                                                                       |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| 0                                                                                                                                                       |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
|                                                                                                                                                         |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| Graph of this distribution:                                                                                                                             | Graph of this distribution:                                                                                                  |                                                   | Graph of this distribution:                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                         |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |
| Test2                                                                                                                                                   |                                                                                                                              |                                                   |                                                                                                                                                                                                                  |  |  |  |

|       |       | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|-------|-----------|---------|---------------|-----------------------|
| Valid | 45    | 1         | 6.7     | 6.7           | 6.7                   |
|       | 60    | 1         | 6.7     | 6.7           | 13.3                  |
|       | 65    | 1         | 6.7     | 6.7           | 20.0                  |
|       | 70    | 3         | 20.0    | 20.0          | 40.0                  |
|       | 80    | 1         | 6.7     | 6.7           | 46.7                  |
|       | 85    | 2         | 13.3    | 13.3          | 60.0                  |
|       | 90    | 1         | 6.7     | 6.7           | 66.7                  |
|       | 95    | 1         | 6.7     | 6.7           | 73.3                  |
|       | 100   | 4         | 26.7    | 26.7          | 100.0                 |
|       | Total | 15        | 100.0   | 100.0         |                       |

| <u>3.</u> | Reading Frequency Tables:                                      |
|-----------|----------------------------------------------------------------|
| а.        | How many people got a 60 on Test 2?                            |
| b.        | What percent of people got a 70?                               |
| C.        | What percent of people scored a 70 or below?                   |
| d.        | What percent of people scored between 45 and 100?              |
| e.        | What's a bit odd or unusual about this distribution of scores? |

vork

|                                                                                                                                        | iantian     |                                                                  |                                      |                                          |                                          |                                              | i. How many employees appear                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| MINORITY Minority Classifi                                                                                                             | Cumula      |                                                                  | EDUC E                               | lucational L                             | evel (years)                             |                                              | to have a high school education but not more than that?                                                                               |
| Frequency         Percent         Valid           Valid         0 No         370         78.1           1 Yes         104         21.9 |             | nt<br>78.1<br>100.0                                              | Frequency                            | Percent                                  | Valid Percent                            | Cumulative<br>Percent                        |                                                                                                                                       |
| Total 474 100.0                                                                                                                        | 100.0       | Valid 8                                                          | 53                                   | 11.2<br>40.1                             | 11.2<br>40.1                             | 11.2<br>51.3                                 |                                                                                                                                       |
| <ul><li>f. What percent of employees are mi</li><li>g. How many employees are not min</li></ul>                                        |             | 14<br>15<br>16<br>17<br>17<br>18<br>15                           | 5 116<br>5 59<br>7 11<br>3 9<br>9 27 | 1.3<br>24.5<br>12.4<br>2.3<br>1.9<br>5.7 | 1.3<br>24.5<br>12.4<br>2.3<br>1.9<br>5.7 | 52.5<br>77.0<br>89.5<br>91.8<br>93.7<br>99.4 | j. What percent of people might<br>have done graduate level work,<br>assuming they spent 12 years in<br>primary education and 4 years |
| h. Are these data qualitative or quan                                                                                                  | ititative?  | 20<br>21<br>                                                     |                                      | .4<br>.2<br>100.0                        | .4<br>.2<br>100.0                        | 99.8<br>100.0                                | in college?                                                                                                                           |
| 4. Level/scale of measureme<br>following four scales appropri<br>were born in                                                          |             | 5                                                                | •                                    |                                          |                                          |                                              |                                                                                                                                       |
| Nominal                                                                                                                                | <u>0</u>    | rdinal                                                           |                                      | lr                                       | nterval                                  |                                              | Ratio                                                                                                                                 |
| a.                                                                                                                                     |             |                                                                  |                                      |                                          |                                          |                                              |                                                                                                                                       |
| b.                                                                                                                                     |             |                                                                  |                                      |                                          |                                          |                                              |                                                                                                                                       |
| 5. Identify the levels of mea<br>used in the following exampl                                                                          |             | 6. See instr                                                     | uctions for                          | proble                                   | em 2 abov                                | <u>/e:</u>                                   |                                                                                                                                       |
| a. Group your friends in to the<br>categories (a) best friends, (b)<br>friends, (c) expendable in a cr                                 | e<br>) good | a. People ide<br>affiliation (R:<br>D=Democrat<br>follows: R I I | =Republica<br>;, I=Indeper           | n,<br>ndent)                             | as 2                                     |                                              | reported the following scores<br>: 16, 32, 34, 25, 18, 20, 24, 23,<br>26, 23                                                          |
| b. Time (measured in seconds<br>to duck after yelling "fore!" in<br>ear.                                                               |             | Qualitative or                                                   |                                      |                                          | Q                                        | ualitative c                                 | or Quantitative? (circle)                                                                                                             |
| c. Teaching effectiveness, sur responses across a five-item s item is on a 1-7 scale.                                                  |             |                                                                  |                                      |                                          |                                          |                                              | 5-19                                                                                                                                  |
| d. Ask students to self-assess procrastination ability on a 1-                                                                         |             |                                                                  |                                      |                                          |                                          |                                              | 20-24                                                                                                                                 |
| e. Dividing people into males,<br>and other.                                                                                           | females,    |                                                                  |                                      |                                          | -                                        | 2                                            | 25-29                                                                                                                                 |
| f. Ranking of 10 possible hero<br>(Abraham Lincoln, Martin Lut                                                                         |             |                                                                  |                                      |                                          |                                          | 3                                            | 30-34                                                                                                                                 |
| Jr., your stats instructor, etc.) to worst.                                                                                            |             | Graph of this o                                                  | distribution:                        |                                          | G                                        | raph of this                                 | s distribution:                                                                                                                       |
| g. The number of times a Soa<br>star is depicted sleeping with<br>other than his/her spouse.                                           | someone     |                                                                  |                                      |                                          |                                          |                                              |                                                                                                                                       |
| h. Level of understanding after<br>statistics course measured in<br>groans using a stopwatch.                                          |             |                                                                  |                                      |                                          |                                          |                                              |                                                                                                                                       |
| i. A survey instrument with 15<br>assessing the extent to which<br>endorses Right Wing Authorit<br>Each item is on a 1-10 scale.       | someone     |                                                                  |                                      |                                          |                                          |                                              |                                                                                                                                       |

## Homework 1.1: Quant/Qual, Freq. Distribution, Graphs, Levels of Measurement- Key



|                                                                                                                                                                                                             | MINORITY                                                                                                                                                                                                  | Minority C                    | lassification             |                        |                                                                        |                                                                         |                                                                       |                                                                       |                                                                       |                               |                                                                                                                                                               | i. How many employees appear                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                             | Frequency                                                                                                                                                                                                 | Percent                       | Valid Percent             | Cumulative<br>Percent  |                                                                        |                                                                         | EDUC Ed                                                               | ucational L                                                           | evel (years)                                                          |                               | _                                                                                                                                                             | to have a high school education<br>but not more than that?                                    |
| Valid 0 No<br>1 Yes<br>Total                                                                                                                                                                                | 370<br>104<br>474                                                                                                                                                                                         | 78.1<br>21.9                  | 78.1<br>21.9              | 78.<br>100.            |                                                                        | Valid 8                                                                 | Frequency<br>53                                                       | Percent<br>11.2                                                       | Valid Percent<br>11.2                                                 | Cumulative<br>Percent<br>11.2 |                                                                                                                                                               | 190                                                                                           |
| Total     474     100.0     100.0       f. What percent of employees are minorities?     21.9%       g. How many employees are not minorities?     370       h. Are these data qualitative or quantitative? |                                                                                                                                                                                                           |                               |                           |                        | valid 0<br>12<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>Total | 190<br>6<br>116<br>59<br>11<br>9<br>27<br>2<br>2<br>1<br>474            | 40.1<br>1.3<br>24.5<br>12.4<br>2.3<br>1.9<br>5.7<br>.4<br>.2<br>100.0 | 40.1<br>1.3<br>24.5<br>12.4<br>2.3<br>1.9<br>5.7<br>.4<br>.2<br>100.0 | 51.3<br>52.5<br>77.0<br>89.5<br>91.8<br>93.7<br>99.4<br>99.8<br>100.0 |                               | j. What percent of people might<br>have done graduate level work,<br>assuming they spent 12 years in<br>primary education and 4 years<br>in college?<br>10.5% |                                                                                               |
|                                                                                                                                                                                                             |                                                                                                                                                                                                           |                               | itative                   |                        |                                                                        |                                                                         |                                                                       |                                                                       |                                                                       |                               | -                                                                                                                                                             |                                                                                               |
|                                                                                                                                                                                                             | our scale                                                                                                                                                                                                 |                               |                           |                        |                                                                        |                                                                         |                                                                       |                                                                       |                                                                       |                               |                                                                                                                                                               | rement (b) sort the<br>les in a race, the State you                                           |
| <u>No</u>                                                                                                                                                                                                   | minal                                                                                                                                                                                                     |                               |                           | Ord                    | inal                                                                   |                                                                         |                                                                       | lr                                                                    | nterval                                                               |                               |                                                                                                                                                               | <u>Ratio</u>                                                                                  |
| a. <mark>Categoriz</mark>                                                                                                                                                                                   | ed                                                                                                                                                                                                        |                               | Ca                        | a <mark>tegorie</mark> | <mark>s in (</mark>                                                    | order                                                                   |                                                                       | <mark>Equa</mark>                                                     | l intervals                                                           |                               |                                                                                                                                                               | True zero                                                                                     |
| <mark>b. State</mark>                                                                                                                                                                                       |                                                                                                                                                                                                           |                               | Top 10                    |                        |                                                                        |                                                                         | Celsiu                                                                | <mark>S</mark>                                                        |                                                                       |                               | Ye                                                                                                                                                            | ears of age                                                                                   |
| <u>5. Identify</u><br>used in the                                                                                                                                                                           |                                                                                                                                                                                                           |                               |                           |                        | 6. S                                                                   | ee instruct                                                             | ions for                                                              | proble                                                                | em 2 abov                                                             | <u>e:</u>                     |                                                                                                                                                               |                                                                                               |
| a. Group yo<br>categories (<br>friends, (c) o<br>b. Time (me                                                                                                                                                | a. Group your mends in to the<br>categories (a) best friends, (b) good<br>friends, (c) expendable in a crisis. O<br>b. Time (measured in seconds) required<br>to duck after yelling "fore!" in a golfer's |                               |                           |                        | affili<br>D=De<br>follo                                                | eople identi<br>ation (R=Re<br>emocrat, I=<br>ws: RIRR<br>tative or Qua | publicar<br>Indepen<br>D D R D                                        | n,<br>Ident)<br>R R D                                                 | as 26<br>RTR<br>Qu                                                    | n the ACT<br>5, 25, 27, 1     | : 1<br>26,                                                                                                                                                    | ported the following scores<br>6, 32, 34, 25, 18, 20, 24, 23,<br>23<br>muantitative? (circle) |
| c. Teaching<br>responses a<br>item is on a                                                                                                                                                                  | cross a f<br>1-7 scal                                                                                                                                                                                     | five-ite<br>e. <mark>I</mark> | m scale. I                | Each                   |                                                                        |                                                                         |                                                                       |                                                                       |                                                                       | 6                             |                                                                                                                                                               | <u>q_</u>                                                                                     |
| d. Ask stude<br>procrastina                                                                                                                                                                                 |                                                                                                                                                                                                           |                               |                           | . <mark> </mark>       |                                                                        |                                                                         |                                                                       |                                                                       |                                                                       |                               | 2                                                                                                                                                             |                                                                                               |
| e. Dividing p<br>and other.                                                                                                                                                                                 | -                                                                                                                                                                                                         | nto ma                        | les, femal                | es,                    |                                                                        |                                                                         |                                                                       |                                                                       |                                                                       |                               |                                                                                                                                                               |                                                                                               |
| f. Ranking o<br>(Abraham L<br>Jr., your sta<br>to worst. <mark>O</mark>                                                                                                                                     | incoln, N<br>ts instru                                                                                                                                                                                    | Martin                        | Luther Kin                | voct                   | Grap                                                                   |                                                                         |                                                                       | •                                                                     |                                                                       |                               |                                                                                                                                                               |                                                                                               |
| g. The numl<br>star is depic<br>other than l                                                                                                                                                                | ted slee                                                                                                                                                                                                  | ping w                        | ith somec                 |                        | 10                                                                     |                                                                         |                                                                       |                                                                       |                                                                       | V                             |                                                                                                                                                               |                                                                                               |
| h. Level of u<br>statistics co<br>groans usin                                                                                                                                                               | urse me                                                                                                                                                                                                   | asured                        | l in length               | of                     | 8<br>6<br>4                                                            |                                                                         |                                                                       |                                                                       |                                                                       |                               |                                                                                                                                                               |                                                                                               |
| i. A survey i<br>assessing th<br>endorses Ri<br>Each item is                                                                                                                                                | e exten<br>ght Win                                                                                                                                                                                        | t to wh<br>g Auth             | nich someo<br>oritarianis | one                    | 2<br>0                                                                 |                                                                         |                                                                       |                                                                       |                                                                       |                               |                                                                                                                                                               |                                                                                               |

# Homework 1.2: Experimental Terminology, Treatment Effect, Sampling Error

| 1. <u>Terminology for Experiments</u> : For each<br>of the following research designs, draw a<br>diagram (like those shown in class) that<br>identifies the independent variable, the<br>levels of the independent variable (e.g.,<br>wings bent up vs. wings straight), the<br>dependent variable, and two possible<br>extraneous variables (other things that<br>affect the dependent variable). Here's an<br>example from the airplane demonstration<br>in class: | Wind currents in room (EV)<br>Wing Position<br>(IV)<br>> Straight<br>> Bent up<br>Wind currents in room (EV)<br>Treatment Effect<br>How hard thrown (EV) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. A developmental psychologist wants to<br>know if type of setting for care (day-care<br>vs. stay at home) affected childrens'<br>aggression levels. (For DV you might think<br>about counting certain types of behaviors<br>during an observation period. For<br>extraneous variables, you might think of<br>genetics, overall quality of care, number of<br>children per adult, etc.)                                                                             |                                                                                                                                                          |
| b. A social psychologist manipulates<br>appearance of job applicants to see if it<br>affects raters' perceptions of the<br>applicant's qualifications: The<br>experimenter uses identical resumes, but<br>switches pictures that supposedly show the<br>applicant, showing half the participants<br>attractive people, and half the subjects<br>unattractive people.                                                                                                 |                                                                                                                                                          |
| c. A class of students decides to see if they<br>can control a professor's lecture habits.<br>Whenever the professor moves to the left<br>side of the room, the students act<br>interested and awake. When the professor<br>moves to the right side of the room, the<br>students act bored and some pretend to be<br>drifting off to sleep.                                                                                                                          |                                                                                                                                                          |
| d. A researcher hypothesizes that<br>participants subtly primed with the words<br>of "sacrifice and "generous" would donate<br>more to a charity when propositioned. She<br>gave word puzzles to participants that<br>either primed key words or neutral words.<br>She then recorded amount given to charity<br>(\$1-10) in a purportedly unrelated task.                                                                                                            |                                                                                                                                                          |

| b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | а.          | type of setting:     | (day vs home-care) affected                                                                                       |                                         |                                          |                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------|
| d.<br>3. For each of the following, identify two sources of <u>sampling error</u> (hint: same as asking for extraneous variables):<br>a. Our ability to control our behavior tends to degrade as we get more tired. A<br>researcher examined whether time of day (morning vs. late afternoon) affected<br>the extent of cheating on a supposed IQ test.<br>b. Terror management theory predicts signs of destruction cause us to feel<br>under threat and more likely to display aggression. Researchers examined<br>whether pictures of buildings (intact or destroyed) affected support for military<br>action against Iran.<br>c. A researcher examined whether recent exposure to the US flag affected their<br>belief that the 'US healthcare system is the best in the world. <sup>41</sup><br>42.<br>4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma<br>a,<br>b,<br>c,<br>d,<br>e,<br>f,<br>g,<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b.          |                      |                                                                                                                   | the ratings gi                          | ven to the job ap                        | oplicants.                        |
| <ul> <li>3. For each of the following, identify two sources of sampling error (hint: same as asking for extraneous variables):</li> <li>a. Our ability to control our behavior tends to degrade as we get more tired. A file extent of cheating on a supposed IQ test.</li> <li>b. Terror management theory predicts signs of destruction cause us to feel under threat and more likely to display aggression. Researchers examined whether pictures of buildings (intact or destroyed) affected support for military action against Iran.</li> <li>c. A researcher examined whether recent exposure to the US flag affected their belief that the "US healthcare system is the best in the world."</li> <li>4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma ab b. c. d. f. f.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С.          |                      |                                                                                                                   |                                         |                                          |                                   |
| <ul> <li>3. For each of the following, identify two sources of sampling error (hint: same as asking for extraneous variables):</li> <li>a. Our ability to control our behavior tends to degrade as we get more tired. A the extent of cheating on a supposed IC test.</li> <li>b. Terror management theory predicts signs of destruction cause us to feel under threat and more likely to display aggression. Researchers examined whether fitters of buildings (intact or destroyed) affected support for military action against Iran.</li> <li>c. A researcher examined whether recent exposure to the US flag affected their belief that the "US healthcare system is the best in the world."</li> <li>4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma a begint in the world.</li> <li>a. Teresh. Eval Scores</li> <li>b. Terror bar of the space to the right, draw a normal distribution of human height. Label where the most common scores fall, the 5% statlest, the 5% shortest. Give on reason why someone might be on the far left and one reason they might</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d.          |                      |                                                                                                                   |                                         |                                          |                                   |
| <ul> <li>a. Our ability to control our behavior tends to degrade as we get more tired. A researcher examined whether time of day (morning vs. late afternoon) affected #1. #2.</li> <li>b. Terror management theory predicts signs of destruction cause us to feel whether pictures of buildings (intact or destroyed) affected support for military action against Iran.</li> <li>c. A researcher examined whether recent exposure to the US flag affected their belief that the "US healthcare system is the best in the world."</li> <li>4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma a, b, c, d, d, e, f, g, d, d, e, f, f, g, d, d, e, e, f, f, g, d, d, d, d, e, f, f, g, d, d, d, d, d, d, d, e, e, f, f, g, d, d, d, d, d, e, f, f, g, d, d, d, d, e, f, f, g, d, d, d, d, d, e, e, f, f, g, d, d,</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | h of the following,  | identify two sources of sampling                                                                                  | error (hint: same a                     | s asking for extra                       | aneous variables):                |
| researcher examined whether time of day (morning vs. late afternoon) affected<br>the extent of cheating on a supposed IO test.<br>b. Terror management theory predicts signs of destruction cause us to feel<br>under threat and more likely to display aggression. Researchers examined<br>whether pictures of buildings (intact or destroyed) affected support for military<br>action against Iran.<br>c. A researcher examined whether recent exposure to the US flag affected their<br>belief that the "US healthcare system is the best in the world."<br>4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma<br>a.<br>b.<br>c.<br>d.<br>e.<br>f.<br>g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | ·                    |                                                                                                                   |                                         | ·                                        | ,                                 |
| b. Terror management theory predicts signs of destruction cause us to feel<br>under threat and more likely to display aggression. Researchers examined<br>whether pictures of buildings (intact or destroyed) affected support for military<br>action against Iran.<br>c. A researcher examined whether recent exposure to the US flag affected their<br>belief that the "US healthcare system is the best in the world."<br>4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma<br>a.<br>b.<br>c.<br>d.<br>e.<br>f.<br>g.<br>$\frac{30}{220} \frac{25}{20} \frac{1}{1} \frac{2}{3} \frac{4}{3} \frac{5}{6} \frac{7}{7}$<br>Teach. Eval Scores<br>5. In the space to the right, draw a normal distribution of<br>human height. Label where the most common scores fall,<br>the 5% shortest. Give one reason why<br>someone might be on the far left and one reason they might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | researche   | examined whethe      | r time of day (morning vs. late af                                                                                |                                         | #2.                                      |                                   |
| under threat and more likely to display aggression. Researchers examined<br>whether pictures of buildings (intact or destroyed) affected support for military<br>action against Iran.<br>c. A researcher examined whether recent exposure to the US flag affected their<br>belief that the "US healthcare system is the best in the world."<br>4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma<br>a.<br>b.<br>c.<br>d.<br>e.<br>f.<br>g.<br>$\frac{2}{20} \frac{2}{20} \frac{1}{2} \frac{3}{4} \frac{5}{5} \frac{6}{7}$<br>$\frac{2}{1} \frac{2}{2} \frac{3}{4} \frac{5}{5} \frac{6}{7}$<br>$\frac{2}{1} \frac{2}{2} \frac{3}{4} \frac{5}{5} \frac{6}{7}$<br>$\frac{2}{1} \frac{2}{2} \frac{2}{2} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{5}{5} \frac{6}{7}$<br>$\frac{2}{1} \frac{2}{2} \frac{1}{3} \frac{1}{4} \frac{5}{5} \frac{6}{7}$<br>$\frac{5}{1}$ In the space to the right, draw a normal distribution of<br>human height. Label where the most common scores fall,<br>the 5% shortest. Give one reason why<br>$\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | ~                    |                                                                                                                   | use us to feel                          | #1                                       |                                   |
| action against Iran.<br>c. A researcher examined whether recent exposure to the US flag affected their<br>belief that the "US healthcare system is the best in the world."<br>4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma<br>a.<br>b.<br>c.<br>d.<br>e.<br>f.<br>g.<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | under thre  | eat and more likely  | to display aggression. Researche                                                                                  | ers examined                            | #2.                                      |                                   |
| 4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma<br>a.<br>b.<br>c.<br>d.<br>e.<br>f.<br>g.<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •           | •                    | (intact of destroyed) affected so                                                                                 | ipport for minitary                     |                                          |                                   |
| 4. For the following histograms, indicate whether the distribution appears normal or describe any deviations from norma<br>a.<br>b.<br>c.<br>d.<br>e.<br>f.<br>g.<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$<br>$\frac{30}{25}$ | c. A resear | cher examined whe    | ether recent exposure to the US                                                                                   | flag affected their                     | #1                                       |                                   |
| a.<br>b.<br>c.<br>d.<br>e.<br>f.<br>g.<br>$\frac{30}{220} \underbrace{12 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}}$<br>$\frac{30}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}_{\text{Teach. Eval Scores}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | belief that | the "US healthcare   | e system is the best in the world.                                                                                | 11                                      | #2                                       |                                   |
| b.<br>c.<br>d.<br>e.<br>f.<br>g.<br>$\frac{30}{220} \frac{25}{12 3 4 5 6 7}$<br>Teach. Eval Scores<br>5. In the space to the right, draw a normal distribution of<br>human height. Label where the most common scores fall,<br>the 5% shortest. Give one reason why<br>someone might be on the far left and one reason they might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. For the  | following histogran  | ns, indicate whether the distribut                                                                                | tion appears norma                      | l or describe any                        | deviations from normality.        |
| c.<br>d.<br>e.<br>f.<br>g.<br>$\frac{30}{220} \frac{30}{220} \frac{30}{20} $                                                                                                           | а.          |                      | 140                                                                                                               | 60                                      |                                          | 200                               |
| d.<br>e.<br>f.<br>g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b.          |                      | 120 -                                                                                                             | 50 ·<br>40 ·                            |                                          |                                   |
| e.<br>f.<br>g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С.          |                      | 80 -                                                                                                              | 30.                                     |                                          | 100-                              |
| f.<br>g.<br>$30^{25}_{0}^{20}_{12}^{20}_{0}^{12}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{12}^{20}_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                      | 40                                                                                                                |                                         | Std. Dev = 3.72E+08<br>Mean = 1.1802F+10 | St 5                              |
| g.<br>Querent Bainy<br>Due of Birb<br>Due of Birb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c           |                      | 20<br>0<br>                                                                                                       |                                         | N = 473.00                               |                                   |
| 5. In the space to the right, draw a normal distribution of human height. Label where the most common scores fall, the 5% shortest. Give one reason they might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                      | ొర్హోర్స్ రేస్ స్రీస్ ర్వీ సర్వీ రేస్ రోస్ రోస్ స్రీస్ రేస్ స్రీస్ రేస్ గ్రీస్ రీస్ గ్రీస్ రీస్<br>Current Salary | رمې | or or or or or or or or or               |                                   |
| 25<br>20<br>25<br>20<br>1 2 3 4 5 6 7<br>Teach. Eval Scores<br>5. In the space to the right, draw a normal distribution of<br>human height. Label where the most common scores fall,<br>the 5% tallest, the 5% shortest. Give one reason they might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |                      |                                                                                                                   | 25                                      |                                          |                                   |
| 5<br>0<br>1 2 3 4 5 6 7<br>Teach. Eval Scores<br>5<br>0<br>1 2 3 4 5 6 7<br>Teach. Eval Scores<br>5<br>0<br>1 2 3 4 5 6 7<br>Teach. Eval Scores<br>5<br>0<br>1 2 3 4 5 6 7<br>Movie Reviews<br>5<br>0<br>1 2 3 4 5 6 7<br>Movie Reviews<br>5<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7<br>Movie Reviews<br>5<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7<br>Movie Reviews<br>5<br>1 2 3 4 5 6 7<br>1 2 3 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 -        |                      | 25                                                                                                                | 20                                      |                                          | 20                                |
| 5<br>0<br>1 2 3 4 5 6 7<br>Teach. Eval Scores<br>5<br>0<br>1 2 3 4 5 6 7<br>Teach. Eval Scores<br>5<br>0<br>1 2 3 4 5 6 7<br>Teach. Eval Scores<br>5<br>0<br>1 2 3 4 5 6 7<br>Movie Reviews<br>5<br>0<br>1 2 3 4 5 6 7<br>Movie Reviews<br>5<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7<br>Movie Reviews<br>5<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7<br>Movie Reviews<br>5<br>1 2 3 4 5 6 7<br>1 2 3 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20          |                      | 20                                                                                                                | 15                                      |                                          | <b>5</b><br><b>5</b><br><b>15</b> |
| 0       1 2 3 4 5 6 7         1 2 3 4 5 6 7       1 2 3 4 5 6 7         Teach. Eval Scores       1 2 3 4 5 6 7         5. In the space to the right, draw a normal distribution of human height. Label where the most common scores fall, the 5% tallest, the 5% shortest. Give one reason why someone might be on the far left and one reason they might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                      |                                                                                                                   | 5 10                                    |                                          |                                   |
| Teach. Eval Scores     Teach. Eval Scores     Movie Reviews     Movie Reviews       5. In the space to the right, draw a normal distribution of human height. Label where the most common scores fall, the 5% tallest, the 5% shortest. Give one reason why someone might be on the far left and one reason they might     Image: Constraint of the space is the state of the space is the space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0           |                      | 0                                                                                                                 |                                         |                                          |                                   |
| 5. In the space to the right, draw a normal distribution of<br>human height. Label where the most common scores fall,<br>the 5% tallest, the 5% shortest. Give one reason why<br>someone might be on the far left and one reason they might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                      |                                                                                                                   |                                         | - 5 0 7                                  | 1 2 3 4 5 6 7<br>Movie Reviews    |
| human height. Label where the most common scores fall,<br>the 5% tallest, the 5% shortest. Give one reason why<br>someone might be on the far left and one reason they might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | nono to the sight of | row a normal distribution of                                                                                      |                                         |                                          |                                   |
| someone might be on the far left and one reason they might                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | human he    | ight. Label where t  | he most common scores fall,                                                                                       |                                         |                                          |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                                                                                                   |                                         |                                          |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | •                    |                                                                                                                   |                                         |                                          |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                                                                                                   |                                         |                                          |                                   |

# Homework 1.2: Experimental Terminology, Treat. Effect, Sampling Error-Key

| 1. <u>Terminology for Experiments</u> : For each<br>of the following research designs, draw a<br>diagram (like those shown in class) that<br>identifies the independent variable, the<br>levels of the independent variable (e.g.,<br>wings bent up vs. wings straight), the<br>dependent variable, and two possible<br>extraneous variables (other things that<br>affect the dependent variable). Here's an<br>example from the airplane demonstration<br>in class: | Wind currents in room (EV)<br>Wing Position<br>(IV)<br>> Straight<br>> Bent up<br>Wind currents in room (EV)<br>Treatment Effect<br>How hard thrown (EV)<br>Change in<br>Vertical<br>Position (DV) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. A developmental psychologist wants to<br>know if type of setting for care (day-care<br>vs. stay at home) affected childrens'<br>aggression levels. (For DV you might think<br>about counting certain types of behaviors<br>during an observation period. For<br>extraneous variables, you might think of<br>genetics, overall quality of care, number of<br>children per adult, etc.)                                                                             | Parental Behaviors (EV)<br>Care Setting<br>(IV) Treatment Effect Aggressive<br>Acts on<br>Plavoround Plavoround Temperament (EV)                                                                   |
| b. A social psychologist manipulates<br>appearance of job applicants to see if it<br>affects raters' perceptions of the<br>applicant's qualifications: The<br>experimenter uses identical resumes, but<br>switches pictures that supposedly show the<br>applicant, showing half the participants<br>attractive people, and half the subjects<br>unattractive people.                                                                                                 | Past work experience (EV)<br>Attractiveness<br>(IV) Treatment Effect Rating of<br>"applicants"<br>(DV) Negative Affect (EV)                                                                        |
| c. A class of students decides to see if they<br>can control a professor's lecture habits.<br>Whenever the professor moves to the left<br>side of the room, the students act<br>interested and awake. When the professor<br>moves to the right side of the room, the<br>students act bored and some pretend to be<br>drifting off to sleep.                                                                                                                          | Obi blocking movement<br>ge in<br>gral<br>n (DV)                                                                                                                                                   |
| d. A researcher hypothesizes that<br>participants subtly primed with the words<br>of "sacrifice and "generous" would donate<br>more to a charity when propositioned. She<br>gave word puzzles to participants that<br>either primed key words or neutral words.<br>She then recorded amount given to charity<br>(\$1-10) in a purportedly unrelated task.                                                                                                            | t of \$<br>(DV)                                                                                                                                                                                    |



|                     | 2                | -           |         | <u>^</u>           | 0.0                   | ~~~                    |                                                    |
|---------------------|------------------|-------------|---------|--------------------|-----------------------|------------------------|----------------------------------------------------|
| 1. Calculate the    | 3                | 3           |         | 3                  | 20                    | 30                     |                                                    |
| Mean (M),           | 4                | 3           |         | 3                  | 22                    | 40                     | Duck Dynasty                                       |
|                     | 4                | 3           |         | 5                  | 23                    | 40                     | Duck Dynasty<br>Duck Dynasty                       |
| Median (Md),        | 5                | 4           |         | 5                  | 24                    | 50                     |                                                    |
| and Mode (Mo)       | 6                | 4           |         | 5                  | 24                    | 50                     | How I met your Mother                              |
| for the following   | 6                | 5           |         | 12                 | 24                    | 50                     | How I met your Mother                              |
| distributions (or   | 6                | 6           |         | 12                 | 25                    | 60                     | How I met your Mother                              |
| state not           | 7                | 14          |         | 14                 | 30                    | 70                     | Breaking Bad                                       |
| appropriate)        | 8                | 26          |         | 14                 | 40                    | 75                     | Walking Dead                                       |
|                     | 0                | 20          | ,       | 14                 | 80                    | 75                     | Walking Slightly Impaired                          |
|                     |                  |             |         | 14                 | 100                   | 75                     |                                                    |
| Mean                |                  |             |         |                    |                       |                        |                                                    |
| Median              |                  |             |         |                    |                       |                        |                                                    |
| Mode                |                  |             |         |                    |                       |                        |                                                    |
| 2. Circle best M    | CT for each      | 1           |         |                    | ı                     |                        | 1                                                  |
| 3. Which measu      | ire of central   | tendend     | -       |                    | Mode is appropr       | iate, and why?         |                                                    |
|                     | on of reading    |             | b. The  | most popular m     | najor at Winthrop.    |                        | ome of people in a bar after Bi                    |
| scores for a c      | lass of third gr | aders.      |         |                    |                       | Gates walks in.        |                                                    |
|                     |                  |             |         |                    |                       |                        |                                                    |
|                     |                  |             |         |                    |                       |                        |                                                    |
|                     |                  |             |         |                    |                       |                        |                                                    |
|                     | er of hours stu  |             |         | nber of greeting   |                       |                        | gth of a baby born at St.                          |
|                     | y for a stats te |             |         | e including 1000   |                       |                        | me of the babies are Irish, and                    |
|                     | Susie Studiaho   |             |         | en. [Men tend to   | send far fewer        | others have stati      | sticians for parents.                              |
|                     | nore than anyo   | one         | cards   | than women].       |                       |                        |                                                    |
| else.               |                  |             |         |                    |                       |                        |                                                    |
|                     |                  |             |         |                    |                       |                        |                                                    |
|                     |                  |             |         |                    |                       |                        |                                                    |
|                     | ncarceration. [  |             |         | ch press strengt   |                       |                        | vies watched per week,                             |
|                     | ve life sentenc  |             |         | 0 0                | otball players and    | •                      | ful of people who work in mov                      |
|                     | typically sever  | e           | 50 ma   | ith majors.        |                       | theaters.              |                                                    |
| between 2 &         | TO years].       |             |         |                    |                       |                        |                                                    |
|                     |                  |             |         |                    |                       |                        |                                                    |
|                     |                  |             |         |                    |                       |                        |                                                    |
| 1. In a normal pop  | oulation distrib | oution the  |         | ,                  | and all f             | all in the exact cent  | ter of wean variability                            |
| the distribution. S | cores that fall  | far from t  | he mida | dle of the distrib | ution are considere   | d scor                 | es; median                                         |
| scores falling near | the mean are     | very        |         | The                | [2 wo                 | rds] will tell you the | e overall mode                                     |
| annood of the open  | es and is the m  | nost precis | se meas | ure of             | In contrast, the      | mode, median, and      | d mean central tendency common                     |
| spread of the scor  |                  |             |         |                    |                       |                        |                                                    |
| are all measure of  |                  |             | [2 w    | vords]. A norma    | I curve is considered | d hypothetical beca    |                                                    |
| are all measure of  |                  |             |         |                    | l curve is considered |                        | vords). standard deviation<br>fashionable<br>vords |
| are all measure of  |                  |             |         |                    |                       |                        | fashionable                                        |

|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             | Homey                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 5. Imagine a distribution of extraversion scores based on a set of Lik                                                                                                                                                                                                                                                                                                     | kert scales. The scores can be ranked so the                                                                                                                                | statistics<br>right                                                                |
| data must be and the level of measurement is If                                                                                                                                                                                                                                                                                                                            | the distribution is symmetrical then the                                                                                                                                    | alternative                                                                        |
| distribution is NOT If we have the entire population of                                                                                                                                                                                                                                                                                                                    | scores then both the mean and the standard                                                                                                                                  | parameters<br>ordinal                                                              |
| deviation will be considered rather than                                                                                                                                                                                                                                                                                                                                   | Now assume that we have a sample of sales                                                                                                                                   | Piggly Wiggly<br>interval                                                          |
| people who are more extraverted than the normal population. If we                                                                                                                                                                                                                                                                                                          | e compare the mean of this sample (                                                                                                                                         | skewed                                                                             |
| )[symb.] to the mean of the population () [symb.] we would exp                                                                                                                                                                                                                                                                                                             | pect the sample mean to fall to the of                                                                                                                                      | M<br>quantitative                                                                  |
| the population mean. The farther the sample mean of sales people                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             | ,<br>qualitative<br>razzle dazzle                                                  |
| into the tail it goes) the more likely we would be to assume that sale                                                                                                                                                                                                                                                                                                     | es people come from a(n)                                                                                                                                                    | bimodal                                                                            |
| distribution with a higher population mean. The South Carolina gro                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             | μ<br>σ                                                                             |
| [2-words].                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             | left                                                                               |
| [z words].                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             | identical                                                                          |
| 6. Which would have greater variability? Circle the correct ar                                                                                                                                                                                                                                                                                                             | nswer.                                                                                                                                                                      | <u> </u>                                                                           |
| a. Baseball vs. Football scores                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                    |
| b. Hours practiced by professional vs. amateur athletes                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                    |
| c. Hours spent in class vs. watching TV for WU students.                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                    |
| d. Books read by English vs. non-English majors                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                    |
| e. The salaries of Hollywood secretaries vs. actors                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |                                                                                    |
| f. Amount paid in taxes vs. given to a church.                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                    |
| <ul> <li>7. Assume a researcher administers a drug thought to lower drug (i.e., a sugar pill that does nothing) to the <u>control group</u> groups and finds the intervention group has a lower anxiety s</li> <li>a. The 41 and 49 are <u>sample means</u> or <u>population means</u>? S</li> <li>b. We can think about the sample mean of 41 as striving to r</li> </ul> | <u>o</u> (n=10). After six weeks she measures an score on average (41) than the control group of the correct symbol for each should be <u>represent the</u> mean of all the | xiety levels in both<br>up (49).<br><u>VI</u> or <u>µ</u> ?<br>people in the world |
| that <u>might take the drug</u> or <u>not take the drug?</u> The 41 will li                                                                                                                                                                                                                                                                                                | ikely not perfectly represent the populatic                                                                                                                                 | on mean because of                                                                 |
| c. The difference we observe between a statistic and the para                                                                                                                                                                                                                                                                                                              | ameter it is trying to represent is called                                                                                                                                  | ·                                                                                  |
| d. If the people who took the drug now really do on average affected the DV and that means there was a                                                                                                                                                                                                                                                                     |                                                                                                                                                                             | that the IV                                                                        |
| e. The difference observed between 41 and 49 may be due to                                                                                                                                                                                                                                                                                                                 | o either a or                                                                                                                                                               | ·                                                                                  |
| f. If the population means of the two conditions really do diff                                                                                                                                                                                                                                                                                                            | fer then that means there was a                                                                                                                                             |                                                                                    |
| g. We can be more confident that there really is a significant sample scores is (high/low)?                                                                                                                                                                                                                                                                                | t difference between the sample means if t                                                                                                                                  | , , , , , , , , , , , , , , , , , , ,                                              |
|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                    |

| Home                                                                                                                                                                                                                                                                                    | ework 2.1                                                                                                                                                                                                                 | I: MC                                                                                              | <mark>T vs</mark> .                                                                                                 | MV, Measu                                                                                                                                   | Jr                                                                  | <mark>es of Cent</mark>                                                                                                                                                        | ral T                                                                             | <mark>endency</mark>                                                                                                                           | <mark>, Sam</mark>                                                                                                                   | Hom<br><mark>ples vs.</mark>                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                           |                                                                                                    |                                                                                                                     | Popula <sup>1</sup>                                                                                                                         | tic                                                                 | ons-Key                                                                                                                                                                        |                                                                                   |                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                     |
| 1. Calculate the<br>Mean (M),<br>Median (Md),<br>and Mode (Mo)<br>for the following<br>distributions (or<br>state not<br>appropriate)                                                                                                                                                   | 3<br>4<br>5<br>6<br>6<br>6<br>7<br>8                                                                                                                                                                                      | 3<br>3<br>4<br>5<br>6<br>14<br>26                                                                  |                                                                                                                     | 3<br>5<br>5<br>12<br>12<br>14<br>14<br>14<br>14                                                                                             |                                                                     | 20<br>22<br>23<br>24<br>24<br>24<br>25<br>30<br>40<br>80<br>100                                                                                                                |                                                                                   | 30<br>40<br>50<br>50<br>50<br>60<br>70<br>75<br>75                                                                                             | How<br>How<br>How                                                                                                                    | Duck Dynasty<br>Duck Dynasty<br>I met your Mother<br>I met your Mother<br>I met your Mother<br>Breaking Bad<br>Walking Dead<br>ing Slightly Impaired                                                                                                |
| Mean                                                                                                                                                                                                                                                                                    | <mark>5.4444</mark>                                                                                                                                                                                                       | 7.5                                                                                                | 5556                                                                                                                | 8.7                                                                                                                                         |                                                                     | 12                                                                                                                                                                             |                                                                                   | <mark>54</mark>                                                                                                                                | I                                                                                                                                    | not appropriate                                                                                                                                                                                                                                     |
| Median                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                         |                                                                                                    | <mark>4</mark>                                                                                                      | 8.5                                                                                                                                         |                                                                     |                                                                                                                                                                                | 1                                                                                 | 50                                                                                                                                             | I                                                                                                                                    | not appropriate                                                                                                                                                                                                                                     |
| Mode                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                         |                                                                                                    | 3                                                                                                                   | <mark>5,14</mark>                                                                                                                           |                                                                     | 100                                                                                                                                                                            | 1                                                                                 | 50                                                                                                                                             | How                                                                                                                                  | I met your Mother                                                                                                                                                                                                                                   |
| <ol> <li>2. Circle best MC</li> <li>3. Which measu</li> </ol>                                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                    |                                                                                                                     |                                                                                                                                             |                                                                     | 3                                                                                                                                                                              | -                                                                                 |                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                     |
| scores for a cl<br>Mean – no s<br>modality ind<br>d. The number<br>typically study<br>knowing that<br>studies way m<br>else. Mediar<br>an extreme<br>causes skew<br>g. Length of ir<br>prisoners serv<br>vast majority<br>between 2 &<br>the "lifers" v<br>scores and s<br>distribution | r of hours stud<br>y for a stats tes<br>Susie Studiaho<br>nore than anyo<br>n – Susie will<br>score, which<br>/.<br>ncarceration. [/<br>ve life sentence<br>typically sever<br>10 years]. Me<br>will be extren<br>kew the | Aders.<br>Jents<br>st,<br>blic<br>one<br>create<br>create<br>A few<br>es, the<br>e<br>dian –<br>ne | e. Gra<br>inclua<br>[Men<br>wom<br>bimo<br>mod<br>wom<br>h. Be<br>inclua<br>50 m<br>train<br>have<br>thus<br>distin | nch press strength<br>ding 50 college foc<br>ath majors. Mode<br>ing of football p<br>a large effect o<br>causing a split in<br>nct groups. | ata<br>oys<br>d 1<br>few<br>will<br>nd<br>otb<br>e –<br>olay<br>nto | a.<br>sample<br>000 Women.<br>ver cards than<br>Il likely see a<br>say maybe a<br>I 10 for<br>ith a sample<br>all players and<br>the weight<br>yers will<br>strength,<br>o two | Gates<br>f. The<br>Snufa<br>other<br>no sl<br>i. Nur<br>inclue<br>theat<br>will f | typical lengt<br>alufagus. Son<br>rs have statist<br>kew or mult<br>mber of movi<br>ding a handfu<br>cers Media<br>see many m<br>fall high abo | edian po<br>h of a ba<br>ne of the<br>cicians for<br>i-modal<br>i-modal<br>es watch<br>il of peop<br>on – the<br>ore; the<br>ove whe | ople in a bar after Bill<br>ositively skewed.<br>by born at St.<br>babies are Irish, and<br>r parents. Mean –<br>ity indicated.<br>ed per week,<br>ble who work in movie<br>few movie workers<br>fir extreme scores<br>re most people fall.<br>mean |
| 4. In a normal pop<br>distribution. Score<br>falling near the me<br>spread of the score<br>are all measure of<br>based on a(n) _infi                                                                                                                                                    | es that fall far f<br>ean are very _ <mark>c</mark><br>es and is the m<br><mark>central tenc</mark>                                                                                                                       | rom the n<br>ommon_<br>lost precis<br>lency [2                                                     | niddle<br>The _<br>se mea<br>2 word:                                                                                | of the distribution <mark>standardc</mark> sure of _ <mark>variability</mark> s]. A normal curve                                            | n ar<br><mark>dev</mark><br>y<br>e is                               | e considered _e<br><u>/iation</u> _ [2 worc<br>In contrast, th<br>considered hyp                                                                                               | extreme<br>ls] will t<br>e mode<br>pothetic                                       | e scores ; so<br>ell you the ov<br>, median, and<br>al because it                                                                              | cores<br>verall<br>d mean<br>is                                                                                                      | variability<br>median<br>fruit cake<br>mode<br>central tendency<br>common<br>standard deviation<br>fashionable<br>extreme<br>infinitely<br>insanely                                                                                                 |

|                                                                                              |                                                                                                         | Homew                                             |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 5. Imagine a distribution of extraversion scores based on a set of                           | Likert scales. The scores can be ranked so the                                                          | statistics<br>right                               |
| data must be _Quantitative_ and the level of measurement is _in                              | terval If the distribution is symmetrical then                                                          | alternative                                       |
| the distribution is NOT _skewed If we have the entire population                             | on of scores then both the mean and the                                                                 | parameters<br>ordinal                             |
| standard deviation will be considered _ <mark>parameters</mark> _ rather than _              | statistics Now assume that we have a                                                                    | Piggly Wiggly<br>interval                         |
| sample of sales people who are more extraverted than the norma                               | al population. If we compare the mean of this                                                           | skewed                                            |
| sample <mark>( M</mark> ) [symb.] to the mean of the population <mark>( µ</mark> ) [symb.] w | e would expect the sample mean to fall to the                                                           | M<br>quantitative                                 |
| <b></b> right_ of the population mean. The farther the sample mean of s                      | sales people falls from the population mean                                                             | qualitative                                       |
| (the farther into the tail it goes) the more likely we would be to a                         |                                                                                                         | razzle dazzle<br>bimodal                          |
|                                                                                              | • •                                                                                                     | μ                                                 |
| _alternative_ distribution with a higher population mean. The So                             | buth Carolina grocery store with the best name                                                          | σ<br>left                                         |
| is _ <mark>Piggly Wiggly</mark> [2-words].                                                   |                                                                                                         | identical                                         |
|                                                                                              |                                                                                                         |                                                   |
| 6. Which would have greater variability? Circle the correct                                  | answer.                                                                                                 | •                                                 |
| a. Baseball vs <mark>. Football</mark> scores                                                | Football scores (because you get 7 points for a to scores with bigger spreads, say 7 to 28. Baseball    | uchdown) will produce<br>scores tend to be scores |
|                                                                                              | like 2 to 5, 0 to 2, 2 to 7 – much less spread.                                                         |                                                   |
| b. Hours practiced by professional vs <mark>. amateur</mark> athletes                        | Professional athletes are required to practice – an<br>practice much more or much less than this amount | nateur athletes might<br>it.                      |
| c. Hours spent in class vs. watching TV for WU students.                                     | Hours spent in class will be standardized (betwee<br>whereas TV hours could vary from 0 to 20+ per w    |                                                   |
| d. Books read by English vs. non-English majors                                              | English majors are required to read a particular nu students may read zero or maybe even as many (      |                                                   |
| e. The salaries of Hollywood secretaries vs. actors                                          | Depending on level of fame, actors can make eith amount – secretaries will tend to make about the s     |                                                   |
| f. Amount paid in taxes vs. given to a church.                                               | Taxes are mandatory for all. Amount given to ch will therefore be much more variable.                   | urches is voluntary, and                          |
| 7. Assume a researcher administers a drug thought to low                                     |                                                                                                         |                                                   |
| drug (i.e., a sugar pill that does nothing) to the control groups                            | up (n=10). After six weeks she measures ar<br>ge (41) than the control gro                              | hup (49).                                         |
| a. The                                                                                       | symbol for each should be                                                                               | <u>Μ</u> or <u>μ</u> ?                            |
| b. We                                                                                        | population_ mean of all the                                                                             |                                                   |
| world becaus                                                                                 | t perfectly represent the po                                                                            | pulation mean                                     |
| c. The                                                                                       | ing to represent is called s                                                                            | ampling error                                     |
| d. lf th                                                                                     | viety scores then we can say                                                                            |                                                   |
| affecte                                                                                      |                                                                                                         |                                                   |
| e. The                                                                                       | atment effect_ or _sampling                                                                             |                                                   |
| f. If the                                                                                    | leans there was a _treatme                                                                              |                                                   |
| g. We (                                                                                      | ween the sample means if t                                                                              | he variability in the                             |
|                                                                                              |                                                                                                         |                                                   |

# Homework 2.2: Measures of Variability

| 1. The symbol for                                                                                                                            | The following symbol represents                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| a. The standard deviation of a population:                                                                                                   | d. ŝ:                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| b. The variance of population                                                                                                                | θ. σ:                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| c. The stand. dev. of a population as an estimate                                                                                            | f. SS:                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 2. Contrasting measures of central tendency and variabi                                                                                      | lity                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| can give the ball either to <u>Bruno (averages 10 yards, <b>ŝ</b> =1)</u> or<br>b. Assume you need \$700 per month to cover your expenses    | e and thereby win. You need to move the ball 13 yards to score. You<br>Rocky (averages 5 yards, <b>\$</b> =10). Who should get the ball?<br>and not get evicted. You have no savings and you will spend whatever<br>job A (average pay \$1000, <b>\$</b> =500) or job B (average pay \$800, <b>\$</b> =100)? |  |  |  |  |  |
| Note: For guidance on the following problems, find in you                                                                                    | r course-pack a page of example standard deviation problems.                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 3. Calculate standard<br>deviation: 3, 6, 3, 7<br>$\underline{X}  \underline{X^2}$ $\hat{s}_x = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n}}{n-1}$ | <ul> <li>4. Calculate standard deviation:</li> <li>7, 7, 6, 6, 5</li> <li><u>x</u> <u>x<sup>2</sup></u></li> </ul>                                                                                                                                                                                           |  |  |  |  |  |
| 5. Calculate standard<br>deviation: 4, 5, 4, 5<br><u>X</u> <u>X<sup>2</sup></u>                                                              | 6. Calculate standard deviation:<br>1, 6, 2, 3, 7<br>$\underline{x}$ $\underline{x^2}$                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                                                              | two week period: 2,0,2,1,3. Find the sum of squares (i.e., the sum of                                                                                                                                                                                                                                        |  |  |  |  |  |
| the squared deviation scores) and the standard deviation as a po                                                                             |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 22                                                                                                                                           | ŝ                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

| <ul> <li>6. Assume a group of 10 depressed people have a SS of 81. Calculate standard deviation.</li> </ul>                                                                          | 7. A group of computer geeks report how many times they check their email in a 4 hour period: 4, 19, 3, 0, 14. Calculate SS. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 8. A class of six stats students reports having 3, 4, 5, 6,<br>7, & 1 nightmares the night before a stats test.<br>Calculate variance.                                               | 9. Assume SS equals 10,000, n=1,000. Calculate σ.                                                                            |
| 10. Assume you're trying predict how students will score<br>8,10,5,8,2,3,6. Students in class #2 score 13,9,10,10,10,8,<br>11. Consider the results for the previous problem. For wh |                                                                                                                              |
| prediction about additional scores. Why? What piece of i                                                                                                                             |                                                                                                                              |
| 12. Using these same results, calculate the 68% confidence subtract and add the standard deviation to get the range of scor                                                          | interval for each class. That is, take the mean for each group, then<br>res in which the mean will fall 68% of the time.     |

## Homework 2.2: Measures of Variability - Key

| 1. The symbol for                                              | The following symbol represents                  |
|----------------------------------------------------------------|--------------------------------------------------|
| a. The standard deviation of a population: $\sigma_x$          | d. s: _Estimate of the std. dev. of a population |
| b. The variance of population $\sigma^{2}x$                    | e. <b>o</b> x: The std. dev. of a population.    |
| c. The stand. dev. of a population as an estimate. $\hat{s}_x$ | f. SS: _ Sum of Squares                          |

2. Contrasting measures of central tendency and variability

a. Assume you have one play left in the football game to score and thereby win. You need to move the ball 13 yards to score. You can give the ball either to Bruno (averages 10 yards,  $\hat{s} = 1$ ) or Rocky (averages 5 yards,  $\hat{s} = 10$ ). Who should get the ball? Rocky. You'd go with Bruno on a typical play, since you'd expect a reliable  $10 \pm 1$  yards (9 to 11 yards). But he probably won't get the necessary 13 yards. Rocky will get  $5 \pm 10$  yards (-5 to 15 yards). Though he might even lose yardage, 13 yards is clearly within the expected outcome.

b. Assume you need to earn at least \$700 per month to cover your expenses and not get evicted. You have no savings and you will spend whatever you earn within the month. Would you rather work for tips at <u>job A (average pay \$1000,  $\hat{s}=500$ )</u> or <u>job B (average pay \$800,  $\hat{s}=100$ </u>? You'd expect to earn \$1000 ± 500 (\$500 to \$1500) with job A, and \$800 ± \$100 (\$700-\$900) with job B. It's more likely you'd make your minimum of \$700 with job B.

| 3. Calculate<br>deviation: 3                                                                                   |                                                        | $\sum x^2 - \frac{(\sum x)^2}{(\sum x)^2}$                                                                                          | 3. Calculate deviation: 7                                                                                           |                                                                              | $\overline{\sum x^2 - \frac{(\sum x)^2}{2}}$                                                                                        |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\underline{x}}{3}$ 6 3 7 Σx = 19 (Σx) <sup>2</sup> =361                                                 | $\frac{x^2}{9}$ $\frac{36}{9}$ $49$ $\Sigma x^2 = 103$ | $\hat{s} = \sqrt{\frac{2 n}{n-1}} \frac{n}{n-1}$ $\hat{s} = \sqrt{\frac{103 - \frac{361}{4}}{4-1}}$ $\hat{s} = 2.0616$              | x     7     7     6     6     5     Σx = 31     (Σx)2=961                                                           | <u>x<sup>2</sup></u><br>49<br>36<br>36<br>25<br><b>Σ</b> x <sup>2</sup> =195 | $\hat{s} = \sqrt{\frac{2 n}{n-1}} \frac{n}{n-1}$ $\hat{s} = \sqrt{\frac{195 - \frac{961}{5}}{5-1}}$ $\hat{s} = 0.8367$              |
| 5. Calculate<br>deviation: 4<br>$\underline{x}$<br>4<br>5<br>4<br>5<br>$\Sigma x = 18$<br>$(\Sigma x)^2 = 324$ |                                                        | $\hat{s} = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$ $\hat{s} = \sqrt{\frac{82 - \frac{324}{4}}{4-1}}$ $\hat{s} = 0.5774$ | 6. Calculate<br>deviation: 1<br>$\underline{x}$<br>1<br>6<br>2<br>3<br>7<br>$\Sigma x = 19$<br>$(\Sigma x)^2 = 361$ |                                                                              | $\hat{s} = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$ $\hat{s} = \sqrt{\frac{99 - \frac{361}{5}}{5-1}}$ $\hat{s} = 2.5884$ |

5. You ask a group of students how many videos they rent in a two week period and get the following data: 2,0,2,1,3. Find the sum of squares (i.e., the sum of the squared deviation scores) and the standard deviation as a population estimate. (Note: you should get a s of 1.1402)

| SS                                                                                                                        | ŝ                                                         |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $\begin{vmatrix} \frac{x}{2} & \frac{x^2}{4} \\ 0 & 0 \\ 2 & 4 \end{vmatrix} \qquad SS = \sum x^2 - \frac{(\sum x)^2}{n}$ | $\hat{s} = \sqrt{\frac{SS}{n-1}}$                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                     | $\hat{s} = \sqrt{\frac{5.2}{5-1}}$ $\hat{s} = \sqrt{1.3}$ |
| $(\mathbf{\Sigma}\mathbf{X})^2 = 64$                                                                                      | $\frac{\hat{s} = \sqrt{1.5}}{\hat{s} = 1.1402}$           |



## Homework 3.1: Correlation & Regression

This study tries to predict how persuasive someone is based on several factors. Imagine that you watched people with varying levels of EXPERTISE, ATTRACTIVENESS, LIKABILITY, & BELIGENERENCE (hostility in argumentation) try to persuade someone to change their mind, and that you then measure the resulting amount of ATTITUDE-CHANGE. You have data from 20 such observations.

| 📰 persua                  | ision, correla        | tion & regressio                | n hw       | .sav          | - SPSS Data Editor                               |       |      |     |       | _ 🗆 🗵    |
|---------------------------|-----------------------|---------------------------------|------------|---------------|--------------------------------------------------|-------|------|-----|-------|----------|
| <u>F</u> ile <u>E</u> dit | ⊻iew <u>D</u> ata     | <u>T</u> ransform <u>A</u> naly | ze         | <u>G</u> rapł | ns <u>U</u> tilities <u>W</u> indow <u>H</u> elp |       |      |     |       |          |
| <b>2</b>                  | 8 🔍 🗠                 | · ~ 🗐 🔚                         | [ <u>?</u> | βģ            |                                                  | 80    |      |     |       |          |
|                           | Name                  | Туре                            | Wi         | De            | Label                                            | Value | Miss | Col | Align | Measur 📤 |
| 1                         | id                    | Numeric                         | 8          | 0             | ID                                               | None  | None | 8   | Right | Scale    |
| 2                         | att_chng              | Numeric                         | 8          | 0             | Attitude Change                                  | None  | None | 8   | Right | Scale    |
| 3                         | attract               | Numeric                         | 8          | 0             | Attractiveness                                   | None  | None | 8   | Right | Scale    |
| 4                         | expertis              | Numeric                         | 8          | 0             | Expertise                                        | None  | None | 8   | Right | Scale    |
| 5                         | likabil               | Numeric                         | 8          | 0             | Likability                                       | None  | None | 8   | Right | Scale    |
| 6                         | beleger               | Numeric                         | 8          | 0             | Belligerence                                     | None  | None | 8   | Right | Scale    |
| 7                         |                       |                                 |            |               |                                                  |       |      |     |       |          |
|                           | ita View <b>λ</b> Var | iable View /                    |            |               |                                                  | 1     |      |     | 1     |          |
| J                         |                       |                                 |            |               | SPSS Processor is ready                          |       |      |     |       |          |

#### 1. Correlations:

- a. We call the thing to the right a
- b. The strongest correlation is between

\_\_\_\_\_, with an r

value of \_\_\_\_\_.

c. The weakest correlation is between

\_\_\_\_\_, with an r value

of \_\_\_\_\_.

## Correlations

|          |                     | ATT CHNG | ATTRACT | EXPERTIS | LIKABIL | BELEGER |
|----------|---------------------|----------|---------|----------|---------|---------|
| ATT_CHNG | Pearson Correlation |          | .208    | .511*    | .710**  | 506*    |
|          | Sig. (2-tailed)     |          | .378    | .021     | .000    | .023    |
|          | Ν                   | 20       | 20      | 20       | 20      | 20      |
| ATTRACT  | Pearson Correlation | .208     | 1.000   | .344     | .084    | 055     |
|          | Sig. (2-tailed)     | .378     |         | .138     | .724    | .819    |
|          | Ν                   | 20       | 20      | 20       | 20      | 20      |
| EXPERTIS | Pearson Correlation | .511*    | .344    | 1.000    | .545*   | 295     |
|          | Sig. (2-tailed)     | .021     | .138    |          | .013    | .206    |
|          | Ν                   | 20       | 20      | 20       | 20      | 20      |
| LIKABIL  | Pearson Correlation | .710**   | .084    | .545*    | 1.000   | 080     |
|          | Sig. (2-tailed)     | .000     | .724    | .013     |         | .738    |
|          | Ν                   | 20       | 20      | 20       | 20      | 20      |
| BELEGER  | Pearson Correlation | 506*     | 055     | 295      | 080     | 1.000   |
|          | Sig. (2-tailed)     | .023     | .819    | .206     | .738    |         |
|          | Ν                   | 20       | 20      | 20       | 20      | 20      |

\* Correlation is significant at the 0.05 level (2-tailed).

\*\*. Correlation is significant at the 0.01 level (2-tailed).

d. The biggest inverse relationship is between \_\_\_\_\_\_ & \_\_\_\_\_\_.

e. What is the p-value for the weakest correlation? \_\_\_\_\_. What is the standard cut-off level we use? \_\_\_\_\_

f. Check all the correlations that are significant.

g. Explain the difference between negative and positive correlations.

h. Explain what the p-value means.

i. Explain the difference between r and  $\rho$ .

j. Why can't we say likeability causes attitude change?



| Model Summary |                   |          |                      |                            |  |  |  |  |
|---------------|-------------------|----------|----------------------|----------------------------|--|--|--|--|
| Model         | R                 | R Square | Adjusted<br>R Square | Std. Error of the Estimate |  |  |  |  |
| 1             | .710 <sup>a</sup> | .505     | .477                 | 2.83                       |  |  |  |  |

a. Predictors: (Constant), LIKABIL Likability

#### Coefficients<sup>a</sup>

|       |                    |       | ndardized<br>fficients | Stan<br>dardi<br>zed<br>Coeff<br>icient<br>s |       |      |
|-------|--------------------|-------|------------------------|----------------------------------------------|-------|------|
| Model |                    | В     | Std. Error             | Beta                                         | t     | Sig. |
| 1     | (Constant)         | 3.932 | 1.844                  |                                              | 2.132 | .047 |
|       | LIKABIL Likability | 2.182 | .510                   | .710                                         | 4.282 | .000 |

a. Dependent Variable: ATT\_CHNG Attitude Change

# 3. Using the regression formula:

a. label r2, a, b, the criterion, & the predictor.

b. Define:

| y': |  |    |
|-----|--|----|
| a:  |  | b: |
| x:  |  |    |

c. Write the regression equation:

d. Draw the regression line on the appropriate graph

e. Is the regression coefficient significant? What's the p-value?

f. What amount of attitude change would you predict with a likeability score of 4? (Use your regression equation and plug in 4.)

| Model Summary                          |           |               |            |            |  |  |  |  |  |
|----------------------------------------|-----------|---------------|------------|------------|--|--|--|--|--|
| Model R R Square R Square the Estimate |           |               |            |            |  |  |  |  |  |
| 1                                      | .506a     | .256          | .215       | 3.46       |  |  |  |  |  |
| a. Pr                                  | edictors: | (Constant), E | BELEGER Be | lligerence |  |  |  |  |  |

Coefficients<sup>a</sup>

|                      |        | dardized   | Stan<br>dardi<br>zed<br>Coeff<br>icient<br>s |        |      |
|----------------------|--------|------------|----------------------------------------------|--------|------|
| Model                | В      | Std. Error | Beta                                         | t      | Sig. |
| 1 (Constant)         | 17.033 | 2.409      |                                              | 7.070  | .000 |
| BELEGER Belligerence | 174    | .070       | 506                                          | -2.491 | .023 |

a. Dependent Variable: ATT\_CHNG Attitude Change

## 4. Integrative Wrap-up. Important!

Which predictors of attitude change can you safely use? Why?

Which is the best predictor? Why?

- g. Write the regression equation for this regression analysis.
- h. Draw the regression line on the appropriate graph
- i. Is the regression coefficient significant? What's the p-value?

## Homework 3.1: Correlation & Regression – Key

This study tries to predict how persuasive someone is based on several factors. Imagine that you watched people with varying levels of EXPERTISE, ATTRACTIVENESS, LIKABILITY, & BELIGENERENCE (hostility in argumentation) try to persuade someone to change their mind, and that you then measure the resulting amount of ATTITUDE-CHANGE. You have data from 20 such observations.

| 📰 persua                                                                                                                   | ision, correla        | tion & regressio | n hw | .sav | - SPSS Data Editor      |       |      |     |       |         |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|------|------|-------------------------|-------|------|-----|-------|---------|
| <u>File Edit V</u> iew <u>D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp |                       |                  |      |      |                         |       |      |     |       |         |
|                                                                                                                            |                       |                  |      |      |                         |       |      |     |       |         |
|                                                                                                                            | Name                  | Туре             | Wi   | De   | Label                   | Value | Miss | Col | Align | Measur- |
| 1                                                                                                                          | id                    | Numeric          | 8    | 0    | ID                      | None  | None | 8   | Right | Scale   |
| 2                                                                                                                          | att_chng              | Numeric          | 8    | 0    | Attitude Change         | None  | None | 8   | Right | Scale   |
| 3                                                                                                                          | attract               | Numeric          | 8    | 0    | Attractiveness          | None  | None | 8   | Right | Scale   |
| 4                                                                                                                          | expertis              | Numeric          | 8    | 0    | Expertise               | None  | None | 8   | Right | Scale   |
| 5                                                                                                                          | likabil               | Numeric          | 8    | 0    | Likability              | None  | None | 8   | Right | Scale   |
| 6                                                                                                                          | beleger               | Numeric          | 8    | 0    | Belligerence            | None  | None | 8   | Right | Scale   |
| 7                                                                                                                          |                       |                  |      |      |                         |       |      |     |       |         |
| < ▶\_De                                                                                                                    | ata ∨iew <b>∖</b> Vai | riable View /    |      |      | SPSS Processor is ready |       |      |     |       |         |

## 1. Correlations:

a. We call the thing to the left a \_\_\_\_\_Correlation Matrix\_\_\_\_\_

b. The strongest correlation is between \_\_\_\_Likeability\_ & \_Attitude
 Change\_\_\_\_\_, with an r value of \_\_\_r=.710\_\_\_\_\_.

c. The weakest correlation is between \_Belligerence \_& \_Attractive.\_, with an r value of \_\_r=-.055\_\_.

|                     | ATT_CHNG                                                                                                                                                                                                                           | ATTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EXPERTIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LIKABIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BELEGER                                               |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Pearson Correlation | 1.000                                                                                                                                                                                                                              | .208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .511*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .710**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 506*                                                  |
| Sig. (2-tailed)     |                                                                                                                                                                                                                                    | .378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .023                                                  |
| Ν                   | 20                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                    |
| Pearson Correlation | .208                                                                                                                                                                                                                               | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 055                                                   |
| Sig. (2-tailed)     | .378                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .819                                                  |
| N                   | 20                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                    |
| Pearson Correlation | .511*                                                                                                                                                                                                                              | .344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .545*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 295                                                   |
| Sig. (2-tailed)     | .021                                                                                                                                                                                                                               | .138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .206                                                  |
| Ν                   | 20                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                    |
| Pearson Correlation | .710*                                                                                                                                                                                                                              | .084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .545*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 080                                                   |
| Sig. (2-tailed)     | .000                                                                                                                                                                                                                               | .724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .738                                                  |
| N                   | 20                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                    |
| Pearson Correlation | 506*                                                                                                                                                                                                                               | 055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.000                                                 |
| Sig. (2-tailed)     | .023                                                                                                                                                                                                                               | .819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| N                   | 20                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                    |
|                     | Pearson Correlation<br>Sig. (2-tailed)<br>N<br>Pearson Correlation<br>Sig. (2-tailed)<br>N<br>Pearson Correlation<br>Sig. (2-tailed)<br>N<br>Pearson Correlation<br>Sig. (2-tailed)<br>N<br>Pearson Correlation<br>Sig. (2-tailed) | Pearson Correlation         1.000           Sig. (2-tailed)         .           N         20           Pearson Correlation         .208           Sig. (2-tailed)         .378           N         20           Pearson Correlation         .378           Sig. (2-tailed)         .371           N         20           Pearson Correlation         .511*           Sig. (2-tailed)         .021           N         20           Pearson Correlation         .710*           Sig. (2-tailed)         .000           N         20           Pearson Correlation         .506*           Sig. (2-tailed)         .023 | Pearson Correlation         1.000         .208           Sig. (2-tailed)         .         .378           N         20         20           Pearson Correlation         .208         1.000           Sig. (2-tailed)         .378         .           N         20         20           Pearson Correlation         .511*         .344           Sig. (2-tailed)         .021         .138           N         20         20           Pearson Correlation         .710*         .084           Sig. (2-tailed)         .000         .724           N         20         20           Pearson Correlation         .506*         .055           Sig. (2-tailed)         .023         .819 | Pearson Correlation         1.000         .208         .511*           Sig. (2-tailed)         .         .378         .021           N         20         20         20           Pearson Correlation         .208         1.000         .344           Sig. (2-tailed)         .378         .138           N         20         20         20           Pearson Correlation         .511*         .344         1.000           Sig. (2-tailed)         .021         .138         .           N         20         20         20           Pearson Correlation         .511*         .344         1.000           Sig. (2-tailed)         .021         .138         .           N         20         20         20           Pearson Correlation         .710*         .084         .545*           Sig. (2-tailed)         .000         .724         .013           N         20         20         20           Pearson Correlation         .506*         .055         .295           Sig. (2-tailed)         .023         .819         .206 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Correlations

\* Correlation is significant at the 0.05 level (2-tailed).

\*\* Correlation is significant at the 0.01 level (2-tailed).

- d. The one biggest inverse relationship is between \_Belligerence\_\_\_ & \_Attitude Change\_\_\_.
- e. What is the p-value for the weakest correlation?  $_p_{obt} = .819_$ . What is the standard cut-off level we use?  $_\alpha \le .05_$

f. Check all the correlations that are significant.

g. Explain the difference between negative and positive correlations.

<u>Positively correlated</u> variables move in the same direction (e.g., SAT scores & GPA). <u>Negatively</u> <u>correlated</u> variables move in opposite directions (e.g., as SAT scores increase, time spent watching TV decreases).

h. Explain what the p-value means.

The p-value indicates the percentage chance that the observed correlation (r) would occur just by chance (i.e., when in the population  $\rho = 0$  & the H<sub>0</sub> hypothesis is true).

i. Explain the difference between r and  $\rho$ .

The sample statistic r gives the observed correlation in a give sample – the values shown in the correlation matrix. The population parameter  $\rho$  is the value we try to estimate with r. We are always want to reject the null hypothesis H<sub>0</sub>:  $\rho$  = 0, by getting an r large enough that we can "trust" it.

j. Why can't we say likeability causes attitude change?

Correlation only tests for relationship, not causality. Some other factor may be influencing both likeability and attitude change, making it appear one causes the other.



| Descripti                   | ve Sta | tistics | -    |
|-----------------------------|--------|---------|------|
|                             | Ν      | Mean    | SD   |
| ATT_CHNG<br>Attitude Change | 20     | 11.35   | 3.91 |
| Valid N (listwise)          | 20     |         |      |

Note: Each scatterplot shows a flat, horizontal line intersecting the y axis at 11.35 - this represents the mean of y – not the regression line.

#### 2. Scatterplots with Regression Lines:

a. Label the predictor, criterion, slope, and y-intercept, x-axis, and y-axis.

b. What's the r value for the relationship graphed here? Is it significant? r(18)=.208, n.s.

c. What's the r<sup>2</sup> value?  $r^2 = .0433$ 

d. What's the r value for the relationship graphed here? Is it significant? r(18)=.511,  $p\le.05$ 

e. What's the  $r^2$  value?  $r^2 = .2611$ 

f. Is this a better or worse predictor? More or less prediction error? better, less error

g. Label prediction error for the score of 80 Expertise.

h. What two things differ about this regression line and the one above? Greater slope, actual scores fall closer to regression line.

i. What's the r value for the relationship graphed here? Is it significant? r (18)=.710, p $\le .05$ .

i. Is this a weaker or stronger relationship?

#### stronger

k. The actual y values now fall \_\_\_\_\_ to the reg. line.

#### closer

I. This means there will be \_\_\_\_\_ prediction error with the regression line.

#### less

m. How does the strength of the regression line impact the mean amount of attitude change? [Sneaky question!]

It doesn't. The mean of y (attitude change) stays the same regardless of what you use to try to predict it. (Note the read horizontal line is always at 11.35, because  $M_y = 11.35$ ).



f. What amount of attitude change would you predict with a likeability score of 4? (Use your regression equation and plug in 4.)

y' = 2.182(x) + 3.932 y' = 2.182(4) + 3.932 y' = 12.66

| Model Summary |                   |          |                      |                            |  |  |  |  |  |
|---------------|-------------------|----------|----------------------|----------------------------|--|--|--|--|--|
| Model         | R                 | R Square | Adjusted<br>R Square | Std. Error of the Estimate |  |  |  |  |  |
| 1             | .506 <sup>a</sup> | .256     | .215                 | 3.46                       |  |  |  |  |  |

a. Predictors: (Constant), BELEGER Belligerence

Coefficients

| В    | icients<br>Std Error | s<br>Beta             | t                        | Sig.            |
|------|----------------------|-----------------------|--------------------------|-----------------|
| .033 | 2.409                |                       | 7.070                    | .000            |
| .174 | .070                 | 506                   | -2.491                   | .023            |
| .0   | )33<br> 74           | 033 2.409<br>174 .070 | 033 2.409<br>174 .070506 | 033 2.409 7.070 |

## 4. Integrative Wrap-up. Important!

Which predictors of attitude change can you safely use? Why?

# Expertise, Likeability, and Belligerence all produced significant regression coefficients for predicting Attitude Change.

Which is the best predictor? Why?

## Likeability is the best predictor of Attitude Change because it had the highest r (r=.710).

With this predictor, how much more accurate are you relative to just guessing the mean of y?

You can explain about 50% of the variability in Attitude Change ( $r^2 = .505$ ).

Homework

Pick a large number for

belligerence (x), like 60

y' = -.174(x) + 17.033

g. Write the regression equation for this regression analysis.

h.  $\ensuremath{\not\!\!\!\!\!\!\!\!\!}$  have the regression line on the appropriate graph

i. Is the regression coefficient significant? What's the p-value?

# Homework 3.2: Correlation & Regression Practice

From the website, get <u>Smoking & Four Lung Cancers</u> -- These are 1960s data relating Cigarettes smoked and deaths per 100k in 44 states.

| 1. Correlate Cigarettes Smoked & tl<br>of cancer. Report the number of un<br>correlations in the matrix.                       |                                                                                             | 2. For the relatic<br>Cancer, summar   | onship between Cig. and B-<br>ize the stat.                                          |                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                                                                |                                                                                             |                                        | e statistics for the three<br>ips (between Cig and other<br>➔                        |                                                                                                       |
| 4. How likely is it that the correlation<br>Lung-Cancer and K-Cancer is due to<br>What hypothesis testing conclusion<br>reach? | chance?                                                                                     | between K-Canc                         | t that the correlation<br>er and B-Cancer is simply a<br>pothesis testing conclusion | 6. What percent of variance in Lung-Cancer is explained by Cigarettes?                                |
| 7. What percent of variance in B-Cancer is explained by K-Cancer?                                                              |                                                                                             |                                        | , state the regression<br>licting B-Cancer based on                                  | 9. How much more accurate are you using the regression formula in the previous problem?               |
| 10. If appropriate, state the reg. for predicting Lung-Cancer based on Ci                                                      |                                                                                             |                                        | ent of variance in Lung-<br>led by Cigarettes? What's<br>e residual?                 | 12. Predict Lung-Cancer deaths based on 40<br>Cigarettes per capita.                                  |
| 13. If appropriate, state the reg. formula predicting Leuk-Cancer based on Cigarettes.                                         |                                                                                             |                                        | atterplot with regression<br>ung-Cancer with Cigarettes.<br>                         |                                                                                                       |
| Open the <u>employee selection</u> data<br>Correlate (in this order) job perf, as                                              |                                                                                             | 15. How many unique sig. correlations? |                                                                                      |                                                                                                       |
| avg, cog abil, structured interview,<br>handwriting analysis.                                                                  |                                                                                             | 16. Summarize<br>job performance       | the four correlations with<br>here→                                                  |                                                                                                       |
| 17. How likely is it that the correla chance? What hypothesis testing c                                                        |                                                                                             |                                        | d job performance is due to                                                          |                                                                                                       |
| 18. How likely is it that the correla chance? What hypothesis testing co                                                       |                                                                                             |                                        | ew and job perf is due to                                                            |                                                                                                       |
| 19. What percent of variance in job perform explained by cog abil?                                                             | 9. What percent of variance in<br>b perform explained by cog structured int score explained |                                        |                                                                                      | e problem with using Ass Cntr avg to predict job                                                      |
| 22. If appropriate, state<br>formula for predicting job perf<br>based on cog ability.                                          | 23. Predict j                                                                               | ob perf with cog a                     | l<br>bility of 700.                                                                  | 24. For prior problem, how much overall error in predictions? How much var accounted for in job perf? |
| 25. If appropriate, state formula for predicting cog ability based on job perf.                                                | 26. Predict                                                                                 | cognitive ability                      | with job perf scr of 7.                                                              | 27. If appropriate, state formula for predicting job perf based on assessment center average.         |
|                                                                                                                                |                                                                                             |                                        |                                                                                      |                                                                                                       |

# Output for HW #3.2

|                                                                                         |                                                                                                                                                              | Correl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ations                                                                                                                        |                                          |              |                                                                        |                                                                                                         |                                                                  |                                              |                                                                                                                 |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                         |                                                                                                                                                              | cig_smk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bladcncr                                                                                                                      | lungener                                 | kidener      | leukcncr                                                               | 10                                                                                                      | Descript                                                         | ive Statistics                               |                                                                                                                 |
| cig_smk                                                                                 | Pearson Correlation                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .704**                                                                                                                        | .697**                                   | .487**       | 068                                                                    |                                                                                                         | N                                                                | Mean                                         | Std. Deviation                                                                                                  |
|                                                                                         | Sig. (2-tailed)                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .000                                                                                                                          | .000                                     | .001         | .659                                                                   | cig_smk                                                                                                 |                                                                  | 44 24.9141                                   | 5.57329                                                                                                         |
|                                                                                         | N                                                                                                                                                            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                            | 44                                       | 44           | 44                                                                     | bladener                                                                                                |                                                                  | 44 4.1211                                    | .96492                                                                                                          |
| bladcncr                                                                                | Pearson Correlation                                                                                                                                          | .704**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                             | .659**                                   | .359         | .162                                                                   | lungcncr                                                                                                |                                                                  | 44 19.6532                                   | 4.22812                                                                                                         |
|                                                                                         | Sig. (2-tailed)                                                                                                                                              | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | .000                                     | .017         | .293                                                                   | kidener                                                                                                 |                                                                  | 44 2.7945                                    | .51908                                                                                                          |
|                                                                                         | Ν                                                                                                                                                            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                            | 44                                       | 44           | 44                                                                     | leukcncr                                                                                                |                                                                  | 44 6.8298                                    | .63826                                                                                                          |
| lungener                                                                                | Pearson Correlation                                                                                                                                          | .697**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .659**                                                                                                                        | 1                                        | .283         | 152                                                                    | Valid N (listwise                                                                                       | e)                                                               | 44                                           |                                                                                                                 |
|                                                                                         | Sig. (2-tailed)                                                                                                                                              | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000                                                                                                                          |                                          | .063         | .326                                                                   | L                                                                                                       | -7                                                               |                                              |                                                                                                                 |
|                                                                                         | N                                                                                                                                                            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                            | 44                                       | 44           | 44                                                                     | 1 CIG = Nun                                                                                             | nber of cig                                                      | arettes smoked                               | (hds per capita)                                                                                                |
| kidener                                                                                 | Pearson Correlation                                                                                                                                          | .487**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .359*                                                                                                                         | .283                                     | 1            | .189                                                                   |                                                                                                         |                                                                  |                                              | on from bladder                                                                                                 |
|                                                                                         | Sig. (2-tailed)                                                                                                                                              | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .017                                                                                                                          | .063                                     |              | .220                                                                   |                                                                                                         |                                                                  |                                              | ion from lung ca                                                                                                |
|                                                                                         | N<br>Baarra Carriedation                                                                                                                                     | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                            | 44                                       | 44           | 44                                                                     |                                                                                                         |                                                                  |                                              | from bladder ca                                                                                                 |
| leukcncr                                                                                | Pearson Correlation                                                                                                                                          | 068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .162                                                                                                                          | 152                                      | .189         | 1                                                                      | 5. LEUK = D                                                                                             | eaths per 1                                                      | 100 K populati                               | on from leukemi                                                                                                 |
|                                                                                         | Sig. (2-tailed)<br>N                                                                                                                                         | .659<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .293                                                                                                                          | .326                                     | .220         |                                                                        | The data are pe                                                                                         | er capita n                                                      | numbers of cid                               | arettes smoke                                                                                                   |
|                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               | 44                                       | 44           | 44                                                                     | (sold) by 43 sta                                                                                        |                                                                  |                                              |                                                                                                                 |
| *. Correl                                                                               | elation is significant at tl<br>lation is significant at th                                                                                                  | e 0.01 level<br>e 0.05 level (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2-tailed).<br>(2-tailed).                                                                                                    |                                          |              |                                                                        | rates per thous                                                                                         |                                                                  |                                              |                                                                                                                 |
|                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                          |              |                                                                        | cancer.                                                                                                 |                                                                  |                                              |                                                                                                                 |
|                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                          |              |                                                                        |                                                                                                         |                                                                  |                                              |                                                                                                                 |
|                                                                                         | Model Summary                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                          |              |                                                                        | Model Summary                                                                                           | v                                                                |                                              |                                                                                                                 |
| 1                                                                                       | Adjuste                                                                                                                                                      | IR Std F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rror of                                                                                                                       |                                          | г            |                                                                        |                                                                                                         | S                                                                | Std. Error of                                |                                                                                                                 |
| del R                                                                                   | R Square Squar                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | timate                                                                                                                        |                                          |              | Model R                                                                |                                                                                                         |                                                                  | the Estimate                                 |                                                                                                                 |
| - au                                                                                    |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Los los los estas en                                                                                                          |                                          | -            | model                                                                  |                                                                                                         | 11.45 x                                                          |                                              |                                                                                                                 |
|                                                                                         | 04 <sup>a</sup> .495                                                                                                                                         | .483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .69377                                                                                                                        |                                          | 3            | 1 .697 <sup>a</sup>                                                    | .486                                                                                                    | .474                                                             | 3.06607                                      |                                                                                                                 |
| .70                                                                                     | 04 <sup>a</sup> .495<br>:: (Constant), cig_smk                                                                                                               | .483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .69377                                                                                                                        |                                          |              | C DEPEN                                                                | 101 STOP                                                                                                | .474                                                             | 3.06607                                      |                                                                                                                 |
| .70                                                                                     |                                                                                                                                                              | .483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .69377                                                                                                                        |                                          |              | C DEPEN                                                                | * .486<br>Constant), cig_smk                                                                            | .474                                                             | 3.06607                                      |                                                                                                                 |
| .70                                                                                     | :: (Constant), cig_smk                                                                                                                                       | .483  <br>fficients <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .69377                                                                                                                        |                                          |              | C DEPEN                                                                | Constant), cig_smk                                                                                      |                                                                  | 3.06607                                      |                                                                                                                 |
| .70                                                                                     | : (Constant), cig_smk<br>Coel                                                                                                                                | fficients <sup>a</sup> Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndardized                                                                                                                     |                                          |              | C DEPEN                                                                | Constant), cig_smk                                                                                      | .474<br>Coefficients <sup>a</sup>                                |                                              |                                                                                                                 |
| a. Predictors:                                                                          | : (Constant), cig_smk<br>Coel<br>Unstandardized Coel                                                                                                         | fficients <sup>a</sup><br>Star<br>fficients Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ndardized<br>efficients                                                                                                       | t s                                      | in L         | C DEPEN                                                                | Constant), cig_smk                                                                                      | Coefficients <sup>a</sup>                                        | 3.06607<br>Standardized<br>Coefficients      |                                                                                                                 |
| a. Predictors:                                                                          | : (Constant), cig_smk Coel Unstandardized Coel B Std                                                                                                         | fficients <sup>a</sup> Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndardized                                                                                                                     | t S                                      | ig.<br>.030  | C DEPEN                                                                | Constant), cig_smk<br>C<br>Unstandardized C                                                             | Coefficients <sup>a</sup>                                        | Standardized                                 | t Sig.                                                                                                          |
| a. Predictors:                                                                          | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086                                                                                             | fficients <sup>a</sup><br>Star<br>fficients Co<br>. Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndardized<br>efficients                                                                                                       |                                          | .030         | a. Predictors: (C                                                      | Constant), cig_smk<br>C<br>Unstandardized C<br>B                                                        | Coefficients <sup>a</sup><br>Coefficients                        | Standardized<br>Coefficients                 | t Sig.<br>3.023 .0                                                                                              |
| a. Predictors:<br>bdel<br>(Constr<br>cig_sm                                             | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086                                                                                             | fficients <sup>a</sup><br>fficients Co<br>Error<br>.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ndardized<br>efficients<br>Beta                                                                                               | 2.242                                    | .030         | a. Predictors: (C<br>Model                                             | Constant), cig_smk<br>C<br>Unstandardized C<br>B                                                        | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error          | Standardized<br>Coefficients                 | in the second |
| a. Predictors:<br>del<br>(Constr<br>cig_sm                                              | : (Constant), cig_smk<br>Coel<br>Unstandardized Coel<br>B Std<br>tant) 1.086<br>nk .122                                                                      | fficients <sup>a</sup><br>fficients Co<br>Error<br>.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ndardized<br>efficients<br>Beta                                                                                               | 2.242                                    | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk<br>Constant), cig_smk<br>C<br>Unstandardized C<br>B<br>t) 6.472                      | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0                                                                                                        |
| a. Predictors:<br>odel<br>(Consta<br>cig_sm                                             | : (Constant), cig_smk<br>Coel<br>Unstandardized Coel<br>B Std<br>tant) 1.086<br>nk .122                                                                      | fficients <sup>a</sup><br>fficients Co<br>Error<br>.484<br>.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ndardized<br>efficients<br>Beta                                                                                               | 2.242                                    | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk<br>Constant), cig_smk<br>C<br>Unstandardized C<br>B<br>t) 6.472<br>529               | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0                                                                                                        |
| a. Predictors:<br>odel<br>(Consta<br>cig_sm                                             | : (Constant), cig_smk<br>Coel<br>Unstandardized Coel<br>B Std<br>tant) 1.096<br>nk .122<br>nt Variable: bladcncr                                             | fficients <sup>a</sup><br>Star<br>Co<br>Error<br>.484<br>.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ndardized<br>efficients<br>Beta<br>.704                                                                                       | 2.242<br>6.417                           | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk<br>Constant), cig_smk<br>C<br>Unstandardized C<br>B<br>t) 6.472<br>529               | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0                                                                                                        |
| a. Predictors:<br>odel<br>(Consta<br>cig_sm<br>a. Dependen                              | : (Constant), cig_smk<br>Coel<br>Unstandardized Coel<br>B Std<br>tant) 1.096<br>nk .122<br>nt Variable: bladcncr                                             | fficients <sup>a</sup><br>fficients Co<br>Error<br>.484<br>.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ndardized<br>efficients<br>Beta                                                                                               | 2.242<br>6.417<br>or of                  | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk<br>Unstandardized C<br>B<br>t) 6.472<br>.529<br>ariable: lungcncr<br>30.00-          | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0                                                                                                        |
| a. Predictors:<br>odel<br>(Consta<br>cig_sm<br>a. Dependen<br>Model                     | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk .122 nt Variable: bladcncr Model Sun                                                     | fficients <sup>a</sup><br>fficients Co<br>Error<br>.484<br>.019<br>mmary<br>Adjusted R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ndardized<br>efficients<br>Beta<br>.704<br>Std. Err<br>the Esti                                                               | 2.242<br>6.417<br>or of                  | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk<br>Unstandardized C<br>B<br>t) 6.472<br>.529<br>ariable: lungcncr                    | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0                                                                                                        |
| a. Predictors:<br>odel<br>(Consta<br>cig_sm<br>a. Dependen<br>Model<br>1                | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk .122 nt Variable: bladcncr Model Sun R R Square                                          | fficients <sup>a</sup><br>Star<br>Co.<br>Error<br>.484<br>.019<br>Mmary<br>Adjusted R<br>Square<br>019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ndardized<br>efficients<br>Beta<br>.704<br>Std. Err<br>the Esti                                                               | 2.242<br>6.417<br>or of<br>mate          | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk<br>Unstandardized C<br>B<br>t) 6.472<br>529<br>ariable: lungcncr<br>30.00-<br>25.00- | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0<br>6.306 .0                                                                                            |
| a. Predictors:<br>odel<br>(Consta<br>cig_sm<br>a. Dependen<br>Model<br>1                | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk 1.22 nt Variable: bladcncr Model Sun R R Square .068 <sup>a</sup> .005                   | fficients <sup>a</sup><br>Star<br>Co.<br>Error<br>.484<br>.019<br>Mmary<br>Adjusted R<br>Square<br>019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ndardized<br>efficients<br>Beta<br>.704<br>Std. Err<br>the Esti                                                               | 2.242<br>6.417<br>or of<br>mate          | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk<br>Unstandardized C<br>B<br>t) 6.472<br>529<br>ariable: lungcncr<br>30.00-<br>25.00- | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0<br>6.306 .0                                                                                            |
| a. Predictors:<br>del<br>(Consta<br>cig_sm<br>a. Dependen<br>Model<br>1                 | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk 1.22 nt Variable: bladcncr Model Sun R R Square .068 <sup>a</sup> .005                   | fficients <sup>a</sup><br>fficients Co<br>Error<br>.484<br>.019<br>mmary<br>Adjusted R<br>Square<br>019<br>http://www.additionality.com/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/second/seco | ndardized<br>efficients<br>Beta<br>.704<br>Std. Err<br>the Esti<br>9 .6                                                       | 2.242<br>6.417<br>or of<br>mate          | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk<br>Unstandardized C<br>B<br>t) 6.472<br>529<br>ariable: lungcncr<br>30.00-<br>25.00- | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0<br>6.306 .0                                                                                            |
| a. Predictors:<br>odel<br>(Consta<br>cig_sm<br>a. Dependen<br>Model<br>1                | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk 1.22 nt Variable: bladcncr Model Sun R R Square .068 <sup>a</sup> .005                   | fficients <sup>a</sup><br>Star<br>Co.<br>Error<br>.484<br>.019<br>Mmary<br>Adjusted R<br>Square<br>019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ndardized<br>efficients<br>Beta<br>.704<br>Std. Err<br>the Esti<br>9 .6                                                       | 2.242<br>6.417<br>or of<br>mate          | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk                                                                                      | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0<br>6.306 .0                                                                                            |
| del<br>(Consta<br>cig_sm<br>a. Dependen<br><u>Model</u>                                 | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk 1.22 nt Variable: bladcncr Model Sun R R Square .068 <sup>a</sup> .005                   | fficients <sup>a</sup><br>Star<br>Co<br>Error<br>.484<br>.019<br>Mmary<br>Adjusted R<br>Square<br>019<br>019<br>htk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndardized<br>efficients<br>Beta<br>.704<br>Std. Err<br>the Esti<br>a .6<br>ents <sup>a</sup>                                  | 2.242<br>6.417<br>or of<br>mate          | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk                                                                                      | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0<br>6.306 .0                                                                                            |
| .70<br>a. Predictors:<br>(Consta<br>cig_sm<br>a. Dependen<br>Model<br>1<br>a. Predic    | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk .122 nt Variable: bladcncr R R Square .068ª .005 ctors: (Constant), cig_sn               | fficients <sup>a</sup><br>Star<br>Co<br>Error<br>.484<br>.019<br>Mmary<br>Adjusted R<br>Square<br>019<br>019<br>htk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndardized<br>efficients<br>Beta<br>.704<br>.704<br>Std. Err<br>the Esti<br>a .6<br>ents <sup>a</sup>                          | 2.242<br>6.417<br>or of<br>mate<br>34430 | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk<br>a. Dependent V | Constant), cig_smk                                                                                      | Coefficients <sup>a</sup><br>Coefficients<br>Std. Error<br>2.141 | Standardized<br>Coefficients<br>Beta         | 3.023 .0<br>6.306 .0                                                                                            |
| .70<br>a. Predictors:<br>(Constr<br>cig_sm<br>a. Dependen<br>a. Dependen<br>1 a. Predic | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk .122 nt Variable: bladcncr R R Square .068ª .005 ctors: (Constant), cig_sn Unstandardi   | fficients <sup>a</sup><br>fficients Co<br>Error<br>.484<br>.019<br>nmary<br>Adjusted R<br>Square<br>015<br>nk<br>Coefficie<br>Std. Err                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ndardized<br>efficients<br>Beta<br>.704<br>.704<br>Std. Err<br>the Esti<br>a .6<br>ents <sup>a</sup>                          | 2.242<br>6.417<br>or of<br>mate<br>64430 | .030         | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk                   | Constant), cig_smk                                                                                      | Coefficients                                                     | Standardized<br>Coefficients<br>Beta<br>.697 | 3.023 .0<br>6.306 .0                                                                                            |
| Model<br>1 (Consta<br>cig_sm<br>a. Dependen                                             | : (Constant), cig_smk Coel Unstandardized Coel B Std tant) 1.086 nk .122 nt Variable: bladcncr R R Square .068ª .005 ctors: (Constant), cig_sn Unstandardi B | fficients <sup>a</sup><br>fficients Co<br>Error<br>.484<br>.019<br>nmary<br>Adjusted R<br>Square<br>015<br>nk<br>Coefficie<br>Std. Err                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ndardized<br>efficients<br>Beta<br>.704<br>.704<br>Std. Err<br>the Esti<br>a .6<br>ents <sup>a</sup><br>stand<br>coel<br>or E | 2.242<br>6.417<br>or of<br>mate<br>64430 | .030<br>.000 | a. Predictors: (C<br>Model<br>1 (Constant<br>cig_smk<br>a. Dependent V | Constant), cig_smk                                                                                      | Coefficients <sup>a</sup><br>Std. Error<br>2.141<br>.084         | Standardized<br>Coefficients<br>Beta<br>.697 | 3.023 .0<br>6.306 .0                                                                                            |

|                   |                     | Correlations           | s                                    |                       |                                 |                             |
|-------------------|---------------------|------------------------|--------------------------------------|-----------------------|---------------------------------|-----------------------------|
|                   |                     | Job<br>Performa<br>nce | Assess<br>ment<br>Center,<br>average | Cognitiv<br>e Ability | Structur<br>ed<br>Intervie<br>W | Handwri<br>ting<br>Analysis |
| Job Performance   | Pearson Correlation | 1                      | .470                                 | .520                  | .367                            | 183                         |
|                   | Sig. (2-tailed)     |                        | .057                                 | .032                  | .147                            | .482                        |
|                   | Ν                   | 17                     | 17                                   | 17                    | 17                              | 17                          |
| Assessment        | Pearson Correlation | .470                   | 1                                    | .231                  | .259                            | 049                         |
| Center, average   | Sig. (2-tailed)     | .057                   |                                      | .373                  | .316                            | .851                        |
|                   | N                   | 17                     | 17                                   | 17                    | 17                              | 17                          |
| Cognitive Ability | Pearson Correlation | .520*                  | .231                                 | 1                     | .588                            | 042                         |
|                   | Sig. (2-tailed)     | .032                   | .373                                 |                       | .013                            | .874                        |
|                   | Ν                   | 17                     | 17                                   | 17                    | 17                              | 17                          |
| Structured        | Pearson Correlation | .367                   | .259                                 | .588                  | 1                               | .022                        |
| Interview         | Sig. (2-tailed)     | .147                   | .316                                 | .013                  |                                 | .932                        |
|                   | Ν                   | 17                     | 17                                   | 17                    | 17                              | 17                          |
| Handwriting       | Pearson Correlation | 183                    | 049                                  | 042                   | .022                            | 1                           |
| Analysis          | Sig. (2-tailed)     | .482                   | .851                                 | .874                  | .932                            |                             |
|                   | Ν                   | 17                     | 17                                   | 17                    | 17                              | 17                          |

\*. Correlation is significant at the 0.05 level (2-tailed).

Model Summary

| Model | R     | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|-------|-------|----------|----------------------|-------------------------------|
| 1     | .520ª | .271     | .222                 | 1.303                         |

a. Predictors: (Constant), Cognitive Ability

#### Coefficients<sup>a</sup>

|       |                   | Unstandardize | d Coefficients | Standardized<br>Coefficients |       |      |
|-------|-------------------|---------------|----------------|------------------------------|-------|------|
| Model |                   | В             | Std. Error     | Beta                         | t     | Sig. |
| 1     | (Constant)        | -1.160        | 2.185          |                              | 531   | .603 |
|       | Cognitive Ability | .009          | .004           | .520                         | 2.359 | .032 |

a. Dependent Variable: Job Performance

#### Model Summary

| Model | R     | R Square | Adjusted R<br>Square | Std. Error of the Estimate |
|-------|-------|----------|----------------------|----------------------------|
| 1     | .520ª | .271     | .222                 | 74.749                     |

a. Predictors: (Constant), Job Performance

#### Coefficients~

|       |                 | Unstandardize | d Coefficients | Standardized<br>Coefficients |       |      |
|-------|-----------------|---------------|----------------|------------------------------|-------|------|
| Model |                 | В             | Std. Error     | Beta                         | t     | Sig. |
| 1     | (Constant)      | 444.781       | 53.033         |                              | 8.387 | .000 |
|       | Job Performance | 29.832        | 12.645         | .520                         | 2.359 | .032 |

a. Dependent Variable: Cognitive Ability

| Model | Summary |
|-------|---------|
|       |         |

| Model | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
|-------|-------------------|----------|----------------------|-------------------------------|
| 1     | .470 <sup>a</sup> | .221     | .169                 | 1.347                         |

a. Predictors: (Constant), Assessment Center, average

#### Coefficients<sup>a</sup>

|     |                               | Unstandardize | ed Coefficients | Standardized<br>Coefficients |       |      |
|-----|-------------------------------|---------------|-----------------|------------------------------|-------|------|
| Mod | el                            | В             | Std. Error      | Beta                         | t     | Sig. |
| 1   | (Constant)                    | .541          | 1.678           |                              | .322  | .752 |
|     | Assessment Center,<br>average | .058          | .028            | .470                         | 2.065 | .057 |
| a   | . Dependent Variable: Job Per | ormance       | •               |                              |       |      |

# Homework 3.2: Correlation & Regression Practice

From the website, get <u>Smoking & Four Lung Cancers</u> -- These are 1960s data relating Cigarettes smoked and deaths per 100k in 44 states.

| 1. Correlate Cigarettes Smoke<br>kinds of cancer. Report the                                                                                                                           | number of                                                                              | 2. For the relati<br>B-Cancer, sum                                                                                                                                      | ionship between Cig. and<br>marize the stat.                      | r (42) = .704, p ≤ .05<br>r (42) = .697, p ≤ .05                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| unique sig. correlations in the matrix.<br><mark>5</mark>                                                                                                                              |                                                                                        | 3. Summarize the statistics for the three other relationships (between Cig and other cancers)                                                                           |                                                                   | r (42) = .487, p ≤ .05<br>r (42) =068, n.s.                                                                                                       |  |
| 4. How likely is it that the correlation<br>between Lung-Cancer and K-Cancer is due<br>to chance? What hypothesis testing<br>conclusion do you reach?<br><u>6.3% chance, Retain Ho</u> |                                                                                        | 5. How likely is it that the correlation<br>between K-Cancer and B-Cancer is<br>simply a fluke? What hypothesis<br>testing conclusion do you reach?<br>1.7%, Reject Ho. |                                                                   | 6. What percent of variance in Lung-<br>Cancer is explained by Cigarettes?<br>r <sup>2</sup> = .4858, so 48.58%                                   |  |
| 7. What percent of variance in B-Cancer is explained by K-Cancer?<br>r <sup>2</sup> = .1289, so 12.89%                                                                                 |                                                                                        |                                                                                                                                                                         | e, state the regression<br>edicting B-Cancer based<br>22x + 1.086 | 9. How much more accurate are you using the regression formula in the previous problem?<br>r <sup>2</sup> = .495, so 49.5%                        |  |
| 10. If appropriate, state the reg. formula for predicting Lung-Cancer based on Cigarettes.<br>y' = bx + a = .529x + 6.472                                                              |                                                                                        | 11. What percent of variance in Lung-<br>Cancer is explained by Cigarettes? What's<br>the std err of the residual?<br>r <sup>2</sup> = .4858, so 48.58%, Sy' = 3.0661   |                                                                   | 12. Predict Lung-Cancer deaths based on<br>40 Cigarettes per capita.<br>y' = .529(40) + 6.472 = 27.632                                            |  |
| 13. If appropriate, state the repredicting Leuk-Cancer based of Cigarettes.<br>Not appropriate                                                                                         |                                                                                        | 14. Create a scatterplot with regression line predicting Lung-Cancer with Cigarettes. Sketch here                                                                       |                                                                   |                                                                                                                                                   |  |
| Open the <u>employee selection</u><br>Correlate (in this order) job per<br>center avg, cog abil, structured<br>& handwriting analysis.                                                 | f, ass.                                                                                | <ul> <li>15. How many unique sig. correlations? 2</li> <li>16. Summarize the four correlations with job performance here →</li> </ul>                                   |                                                                   | r (15) = .470, n.s.<br>r (15) = .520, p ≤ .05<br>r (15) = .367, n.s.<br>r (15) = .183, n.s.                                                       |  |
| 17. How likely is it that the cor is due to chance? What hypoth                                                                                                                        |                                                                                        |                                                                                                                                                                         |                                                                   | 5.7%, Retain Ho                                                                                                                                   |  |
| 18. How likely is it that the cor<br>due to chance? What hypothes                                                                                                                      |                                                                                        |                                                                                                                                                                         | , i                                                               | <mark>14.7%</mark>                                                                                                                                |  |
| variance in job perform structured i explained by cog abil? explained b                                                                                                                |                                                                                        | nt score predict job perf.                                                                                                                                              |                                                                   | he problem with using Ass Cntr avg to<br>that correlation is a fluke (i.e., not reliable)                                                         |  |
| 22. If appropriate, state<br>formula for predicting job perf<br>based on cog ability.<br>y' = bx + a = .009x -1.160                                                                    | 23. Predict job perf with cog ability of 700.<br>y' = bx + a = .009(700) -1.160 = 5.14 |                                                                                                                                                                         |                                                                   | 24. For prior problem, how much overall<br>error in predictions? How much var<br>accounted for in job perf?<br>Sy' = 1.303, r <sup>2</sup> = .271 |  |
| 25. If appropriate, state<br>formula for predicting cog ability<br>based on job perf.<br>y' = 29.832x + 444.781                                                                        |                                                                                        | cognitive ability<br><mark>7) + 444.781= 65</mark>                                                                                                                      | with job perf scr of 7.<br><mark>3.605</mark>                     | 27. If appropriate, state formula for predicting job perf based on assessment center average.<br>Not appropriate                                  |  |

# Homework 3.3: Conceptual Review (closed book)

Fold paper on middle line. Correct answers on right. Correct letter choice is second to last letter.

| Fold paper on middle line. Correct answers on right. Correct letter choice is second to las                                                                                                                                                                                                                                                                                                                                                                                  | l letter                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>1) Having people rate their religiosity (how religious they are) on a 1-7 scale will produce data at what level of measurement?</li> <li>a) Interval</li> <li>b) Nominal</li> <li>c) Ratio</li> <li>d) Ordinal</li> </ul>                                                                                                                                                                                                                                           | dcae. Any Likert type scale<br>(e.g., 1-7) produces interval<br>data (i.e., equal intervals<br>between rankings but no<br>true zero).                                                                               |
| 2) It will be easiest to detect a correlation if and<br>a) $\rho = 0$ ; n = 10<br>b) $\rho \neq 1$ ; n = 10<br>c) $\rho = .87$ ; n = 30<br>d) $\rho = 1.5$ ; n = 30<br>e) your teacher tells you the answer                                                                                                                                                                                                                                                                  | abce. A large p means a<br>strong correlation, so it's<br>easier to detect. A large n<br>gives you more power to<br>detect whatever is there.                                                                       |
| <ul> <li>3) As the correlation strength increases which 2 things occur?</li> <li>a) the coefficient of determination increases; Sy' decreases</li> <li>b) the coefficient of determination increases; n decreases</li> <li>c) p<sub>obt</sub> increases; Sy' decreases</li> <li>d) p<sub>obt</sub> decreases; Sy' increases</li> <li>e) p<sub>obt</sub> increases; r<sup>2</sup> increases</li> <li>f) the price of orange juice concentrate tops \$70 per barrel</li> </ul> | afaf. coeff of<br>determination (r <sup>2</sup> ) always<br>increases as r increases,<br>and the amount of<br>prediction error (Sy')<br>always goes down because<br>your prediction ability is<br>getting stronger. |
| <ul> <li>4) The coefficient of determination tells you</li> <li>a) Whether the correlation is statistically significant</li> <li>b) Whether regression is allowed</li> <li>c) The increases in prediction accuracy</li> <li>d) The amount of variance explained by y'</li> <li>e) The amount of variance explained by b</li> </ul>                                                                                                                                           | aace. $r^2$ (the coefficient of determination) tells you the increase in prediction accuracy, or the amount of variance in y accounted for by x.                                                                    |
| <ul> <li>5) You collect data on the number of hours of TV children watch each night. For some reason, almost all of the children report watching between 80 and 90 minutes of television, with very, very few watching more or less than that. The distribution would likely be described as: <ul> <li>a) symmetrical</li> <li>b) normally distributed</li> <li>c) leptokurtic</li> <li>d) skewed</li> <li>e) mesokurtic</li> <li>f) bimodal</li> </ul></li></ul>            | cece. Low variability will<br>produce a graph of the<br>distribution that is "pointy"<br>– Leptokurtic                                                                                                              |
| <ul> <li>6) We can define sum of squares as the</li> <li>a) Σx<sup>2</sup> + (Σx)<sup>2</sup></li> <li>b) Σx<sup>2</sup>/n + (Σx)<sup>2</sup></li> <li>c) average squared deviation score</li> <li>d) sum of the squared deviation scores</li> <li>e) sum of the deviation scores squared</li> </ul>                                                                                                                                                                         | abdb. Sum of squares is<br>short for "sum of the<br>squared deviation scores"                                                                                                                                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7) You want to predict test performance for a given student on a given U.S. History test.<br>You would likely be most accurate under which of the following conditions:<br>a) $\sigma$ =15 $\mu$ =60 Md=58<br>b) $\sigma$ =15 $\mu$ =50 Md=52<br>c) $\sigma$ =10 $\mu$ =70 Md=72<br>d) $\sigma$ =17 $\mu$ =65 Md=67                                                                                                                                                                                                                                              | acce. All that matters here<br>is picking the smallest<br>standard deviation – as<br>variability decreases<br>prediction accuracy<br>increases.                                         |
| <ul> <li>8) If a student scored much higher than average then her deviation score would be <ul> <li>a) negative and large</li> <li>b) positive and large</li> <li>c) large (but you don't know whether negative or positive)</li> <li>d) negative (but you don't know whether large or small)</li> <li>e) positive (but you don't know whether large or small)</li> </ul> </li> </ul>                                                                                                                                                                            | dbb. Deviation score is<br>equal to x- x <sub>bar</sub> , so higher<br>than average would make<br>it positive, and "much<br>higher than average"<br>would make it a large<br>deviation. |
| <ul> <li>9) Tonika always scored about the same on the depression index and it was usually a higher number. Ahmad's scores were less consistent, but there were always smaller values. Ahmad's scores indicate and</li> <li>a) higher variability; higher central tendency</li> <li>b) higher variability; lower central tendency</li> <li>c) lower variability; lower central tendency</li> <li>d) lower variability; lower central tendency</li> <li>e) depends upon the sample size</li> <li>f) depends upon whether the distributions are skewed.</li> </ul> | ddbd. Less consistent<br>means "higher variability"<br>and "always smaller"<br>means a "lower central<br>tendency".                                                                     |
| <ul> <li>10) Which of the following would provide parameters?</li> <li>a) SS, variance, Standard Deviation</li> <li>b) variance and Standard Deviation</li> <li>c) Sy', b, a</li> <li>d) r, Sy', Sy</li> <li>e) μ, ρ, σ</li> <li>f) M, Md, Mo</li> </ul>                                                                                                                                                                                                                                                                                                         | caee. These are all greek<br>symbols and represent<br>population parameters for<br>mean, correlation, and<br>standard deviation<br>(respectively).                                      |
| <ul> <li>11) Students are assigned to complete a fashion survey in one of four class rooms.</li> <li>Classroom number would provide data and favorite color of shirt would provide data.</li> <li>a) quantitative; qualitative</li> <li>b) quantitative; quantitative</li> <li>c) qualitative; quantitative</li> <li>d) qualitative; qualitative</li> </ul>                                                                                                                                                                                                      | adde. Classroom number<br>is not rankable in a<br>meaningful way and so is<br>qualitative; favorite color<br>would also produce<br>qualitative data.                                    |
| <ul> <li>12) Which of the following would best enable you to show the number of times Stove-top stuffing was listed as favorite food among a group of 200 people?</li> <li>a) Mean</li> <li>b) Median</li> <li>c) Mode</li> <li>d) Frequency Distribution</li> <li>e) Range</li> <li>f) Standard Deviation</li> </ul>                                                                                                                                                                                                                                            | eaca. Favorite type of food<br>is qualitative data – mode<br>is the only measure of<br>central tendency that<br>works with qualitative<br>data.                                         |
| <ul> <li>13) You ask students to rank 10 cafeteria meals from best to worst. This would provide which level of measurement:</li> <li>a) Nominal</li> <li>b) Ordinal</li> <li>c) Interval</li> <li>d) Ratio</li> </ul>                                                                                                                                                                                                                                                                                                                                            | ddbe. Rankings produce<br>ordinal level data.                                                                                                                                           |

| <ul> <li>14) Assume evil civil engineers change traffic light colors to orange, purple, &amp; fuchsia.<br/>Counting the number of accidents occurring in the first hour after the change would provide which level of measurement: <ul> <li>a) Nominal</li> <li>b) Ordinal</li> <li>c) Interval</li> <li>d) Ratio</li> </ul> </li> </ul>                                           | bdda. You would start<br>counting at zero, so the<br>data would be ratio.                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>15) Which of the following SPSS graphs most easily enable you to check for deviations from normality for a distribution of data?</li> <li>a) Bar graph</li> <li>b) Error bar</li> <li>c) Graphing of sample means</li> <li>d) Pie chart</li> <li>e) Line graph</li> <li>f) Histogram</li> </ul>                                                                           | alfg. The Histogram on<br>SPSS allows you to overlay<br>the curve of a normal<br>distribution.                                          |
| <ul> <li>16) A distribution with two distinct clusters of high frequency scores could be described as <ul> <li>a) normally distributed</li> <li>b) mesokurtic</li> <li>c) leptokurtic</li> <li>d) bimodal</li> <li>e) skewed</li> <li>f) bumpy</li> </ul> </li> </ul>                                                                                                              | bldk. Bimodal data has<br>two clumps of data<br>producing a camel-like<br>shape.                                                        |
| <ul> <li>17) Which measure gives the score at the 50<sup>th</sup> percentile?</li> <li>a) Skew</li> <li>b) Mean</li> <li>c) Median</li> <li>d) Mode</li> <li>e) Mendacity</li> <li>f) Standard Deviation</li> </ul>                                                                                                                                                                | eocq. By definition, the<br>Median gives the score at<br>the 50 <sup>th</sup> percentile.                                               |
| <ul> <li>18) A deviation score tells you if the</li> <li>a) Distribution is skewed</li> <li>b) Distribution is bimodal</li> <li>c) Distribution has kurtosis</li> <li>d) The score is smaller or bigger than the mean</li> <li>e) The score is smaller or bigger than the median</li> </ul>                                                                                        | gtdb. By definition, the<br>deviation score tells you<br>the number of units a raw<br>score is bigger than or<br>smaller than the mean. |
| <ul> <li>19) SS/n provides</li> <li>a) Standard Deviation</li> <li>b) Variance</li> <li>c) Sum of Squares</li> <li>d) Σx<sup>2</sup> + (Σx)<sup>2</sup>/n</li> <li>e) a Deviation Score</li> <li>f) Sum of the Deviation Scores</li> </ul>                                                                                                                                         | tbbd. By definition,<br>dividing SS by n gives you<br>Variance.                                                                         |
| <ul> <li>20) As the strength of the correlation increases, which of the following increase</li> <li>a) r<sup>2</sup>, slope of the regression line, prediction accuracy</li> <li>b) r<sup>2</sup>, a, prediction accuracy</li> <li>c) Sy', n, prediction accuracy</li> <li>d) Sy', Sy, r<sup>2</sup></li> <li>e) prediction accuracy, slope of the regression line, Sy'</li> </ul> | beag If r increases, all of<br>these three things must<br>also increase.                                                                |

|                                                                                                                                                                                                                                                                                                                                                                                                  | H                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>21) As a correlation gets stronger, the scatterplot pattern become more <ul> <li>a) elliptical (egg shaped)</li> <li>b) line-like</li> <li>c) flatter</li> <li>d) variable</li> <li>e) slanted to the right</li> <li>f) slanted to the left</li> </ul> </li> </ul>                                                                                                                      | agbd. A stronger<br>correlation has less error<br>so the points fall closer to<br>the regression line. In a<br>perfect correlation all the<br>points fall exactly on the<br>regression line.                                |
| <ul> <li>22) If the Ho for a correlation is false it means</li> <li>a) There really isn't a correlation</li> <li>b) ρ = 0</li> <li>c) There really is a correlation</li> <li>d) ρ ≠ 0</li> <li>e) r must be a large value</li> <li>f) a &amp; b</li> <li>g) c &amp; d</li> <li>h) c, d, &amp; e</li> </ul>                                                                                       | qggh. The Ho says there is<br>no correlation – if this is<br>false then there must be an<br>actual correlation. ( $\rho \neq 0$<br>means there is some sort<br>of correlation, either<br>positive or negative).             |
| <ul> <li>23) When conducting a correlation, you are more likely to get a small p value if</li> <li>a) ρ is small</li> <li>b) ρ is large</li> <li>c) the sample is small</li> <li>d) the sample is large</li> <li>e) a &amp; c</li> <li>f) b &amp; d</li> </ul>                                                                                                                                   | ogfp. You're more likely to<br>get a small p value (an<br>indication of a real<br>correlation) if the true<br>correlation ( $\rho$ ) is large <u>and</u><br>you have a larger (more<br>reliable) sample to reflect<br>this. |
| <ul> <li>24) Assume you correlate self-esteem and depression and then realize that for some reason your sample has very few people with average or below average self-esteem. You are likely to experience</li> <li>a) a large ρ</li> <li>b) a small ρ</li> <li>c) a curvilinear relationship</li> <li>d) truncation of range</li> <li>e) a smaller standard deviation for depression</li> </ul> | egdg. The truncation of the range off x (i.e., you have only people with average self-esteem) causes an underestimation of $\rho$ .                                                                                         |
| <ul> <li>25) The As r increases</li> <li>a) Prediction accuracy decreases</li> <li>b) The difference between Sy and Sy' gets smaller</li> <li>c) Sy' gets larger</li> <li>d) The coefficient of determination increases</li> <li>e) The slope of the regression line gets flatter</li> </ul>                                                                                                     | oudo. If r increases r <sup>2</sup> – the<br>correlation of<br>determination – must<br>increase as well.                                                                                                                    |
| <ul> <li>26) When conducting a correlation, we calculate to estimate</li> <li>a) x<sub>bar</sub>; μ</li> <li>b) μ; x<sub>bar</sub></li> <li>c) μ; x<sub>bar</sub></li> <li>d) ρ; ρ</li> <li>e) r; p</li> <li>f) b; y'</li> </ul>                                                                                                                                                                 | ppce. Using our sample we calculate r (a statistic) to estimate $\rho$ (a population parameter).                                                                                                                            |
| <ul> <li>27) When Sy' increases</li> <li>a) Sy increases and r increases</li> <li>b) Sy decreases and r decreases</li> <li>c) Prediction error increases and r<sup>2</sup> increases</li> <li>d) Prediction error decreases and r<sup>2</sup> decreases</li> <li>e) r decreases and prediction error increases</li> </ul>                                                                        | goeo. Strength of<br>correlation never affects<br>Sy, ruling out a & b. An<br>increasing Sy' means more<br>prediction error which<br>means r is getting smaller.                                                            |

# Homework 3.4: Computational Review #1 (open-book)

You can find the dataset at the website <u>http://faculty.winthrop.edu/sinnj/</u>. It's creatively called Computational Review #1. The researcher is attempting to identify factors that can predict anxiety levels.

| 1. Do an appropriate graph of the marital status distribution.                        | <ul> <li>2. Do an appropriate graph of the anxiety distribution, with a normal curve as a backdrop.</li> <li>a. Any deviations from normality?</li> <li>b. What would probably make the data fit the normal curve better?</li> </ul> |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Paste Graph of Marital Status Distribution Here.]                                    | [Paste Graph of Anxiety Distribution Here.]                                                                                                                                                                                          |
| 3. Do a graph that shows you the mean, plus or minus 1 standard deviation on anxiety. |                                                                                                                                                                                                                                      |
| [Paste Graph of Marital Status Distribution Here.]                                    |                                                                                                                                                                                                                                      |

| Homework |
|----------|
|----------|

| Homew<br>4. Do an analysis to provide the minimum values, maximum values, means, and standard deviations.<br>a. Which variable has the lowest standard deviation? (Be careful, you can only get standard deviation on quantitative data |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| a. Which variable has the lowest standard deviation? (Be careful, you can only get measured at the interval level or above).                                                                                                            | stanuaru ueviation on quantitative dala |
| [Paste Table of Descriptive Statistics Here.]                                                                                                                                                                                           |                                         |
| Do a correlation matrix correlating Anxiety, Hours worked per week, Social Support Quali                                                                                                                                                | ty, and Hours of Exercise.              |
| * What's the smallest correlation (significant or not)?                                                                                                                                                                                 |                                         |
| * What's the direction of the relationship between <u>Anxiety</u> & <u>Hours Exer</u> ? & <u>Ho</u>                                                                                                                                     | urs Worked?                             |
| * In which cases would you assume that <u>"rho" is not equal to zero</u> ?                                                                                                                                                              |                                         |
| [Paste Correlation Matrix Here.]                                                                                                                                                                                                        |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
|                                                                                                                                                                                                                                         |                                         |
| 7. Do 3 sets of scatterplots and regression analyses, pasting your work on the next                                                                                                                                                     |                                         |
| page. You'll do three sets of analyses trying to predict anxiety. Use these three                                                                                                                                                       |                                         |
| predictors: Hours worked, social support, and hours of exercise.                                                                                                                                                                        |                                         |
| Which predictor accounts for the most variance?                                                                                                                                                                                         |                                         |
| Which predictor accounts for the least variance?                                                                                                                                                                                        |                                         |
| Which predictor best predicts anxiety?<br>What level of anxiety would you predict for an individual who exercised only <u>4</u>                                                                                                         |                                         |
| hours per week?                                                                                                                                                                                                                         |                                         |

| Show output where you're trying to predict <u>Anxiety</u> based on <u>Hours worked per week</u> .                             |                                                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| [Paste "Model Summary" table here and "Coefficients" table in space below.]                                                   | [Paste Scatterplot with regression line Here.] |  |  |
|                                                                                                                               |                                                |  |  |
| Show output of regression analysis where you're trying to predict <u>Anxiety</u> based on <u>Social support Quality</u> .     |                                                |  |  |
| [Paste "Model Summary" table here and "Coefficients" table in space below.]                                                   | [Paste Scatterplot with regression line Here.] |  |  |
|                                                                                                                               |                                                |  |  |
| Show output of regression analysis where you're trying to predict <u>Anxiety</u> based on <u>Hours of exercise per week</u> . |                                                |  |  |
| [Paste "Model Summary" table here and "Coefficients" table in space below.]                                                   | [Paste Scatterplot with regression line Here.] |  |  |
|                                                                                                                               |                                                |  |  |

## Homework 3.4: Computational Review #1 (open-book) -key

You can find the dataset at the website <u>http://faculty.winthrop.edu/sinnj/</u>. It's creatively called Computational Review #1. The researcher is attempting to identify factors that can predict anxiety levels.



4. Do an analysis to provide the minimum values, maximum values, means, and standard deviations.

- b. Which variable has the lowest standard deviation? (Be careful, you can only get standard deviation on quantitative data measured at the interval level or above).
  - Social Support Quality has lowest standard deviation.
- How to do it: Go to Descriptives, Descriptives (again), move over every QUANTITATIVE variable (i.e., not Marital Status)

[Paste Table of Descriptive Statistics Here.]

#### **Descriptive Statistics**

|                        | Ν  | Minimum | Maximum | Mean  | Std. Deviation |
|------------------------|----|---------|---------|-------|----------------|
| anxiety                | 20 | 7       | 30      | 18.95 | 6.126          |
| Hours worked per week  | 20 | 20      | 60      | 41.50 | 14.244         |
| Social Support quality | 20 | 2       | 7       | 4.75  | 1.552          |
| hrsexer                | 20 | 2       | 12      | 6.90  | 3.144          |
| Valid N (listwise)     | 20 |         |         |       |                |

Do a correlation matrix correlating Anxiety, Hours worked per week, Social Support Quality, and Hours of Exercise.

\* What's the smallest correlation (significant or not)? Hrs Exercised & Hrs Worked. (r = -.173)

\* What's the direction of the relationship between Anxiety &... Hours Exer? Negative &.... Hours Worked? Positive

\* In which cases would you assume that <u>"rho" is not equal to zero?</u> Social Support and Anxiety, Hrs Exercise & Anxiety

#### [Paste Correlation Matrix Here.]

| Correlations           |                     |         |                 |                   |         |
|------------------------|---------------------|---------|-----------------|-------------------|---------|
|                        |                     |         | Hours<br>worked | Social<br>Support |         |
|                        |                     | anxiety | per week        | quality           | hrsexer |
| anxiety                | Pearson Correlation | 1       | .194            | .530*             | 774'    |
|                        | Sig. (2-tailed)     |         | .413            | .016              | .000    |
|                        | Ν                   | 20      | 20              | 20                | 20      |
| Hours worked per week  | Pearson Correlation | .194    | 1               | .375              | 173     |
|                        | Sig. (2-tailed)     | .413    |                 | .103              | .466    |
|                        | Ν                   | 20      | 20              | 20                | 20      |
| Social Support quality | Pearson Correlation | .530*   | .375            | 1                 | 318     |
|                        | Sig. (2-tailed)     | .016    | .103            |                   | .171    |
|                        | Ν                   | 20      | 20              | 20                | 20      |
| hrsexer                | Pearson Correlation | 774**   | 173             | 318               | 1       |
|                        | Sig. (2-tailed)     | .000    | .466            | .171              |         |
|                        | Ν                   | 20      | 20              | 20                | 20      |

\* Correlation is significant at the 0.05 level (2-tailed).

\*\* Correlation is significant at the 0.01 level (2-tailed).

7. Do 3 sets of scatterplots and regression analyses, pasting your work on the next page. You'll do three sets of analyses trying to predict <u>anxiety</u>. Use these three predictors: <u>Hours worked</u>, <u>social support</u>, <u>and hours of exercise</u>.

Which predictor accounts for the most variance? Hours Exercised

Which predictor accounts for the least variance? Hours Worked

Which predictor best predicts anxiety? Hours Exercised

What level of anxiety would you predict for an individual who exercised only <u>4</u> hours per week? 23.3231

y' = -1.507(x) + 29.351 y' = -1.507(4) + 29.351

y' = -6.028 + 29.351

y' = 23.3231

y' = bx + a



## Homework 3.5: Computational Review #2 (open book)

| 1. A researcher records the following scores in a pilot study: 10, 12, 14, 10, 12, 16. Calculate variance.                                                                                                                                                | 2. Assume SS = 2468 and n equals 20. Calculate standard deviation.                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
| Always report<br>correct symbol.                                                                                                                                                                                                                          |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
| 3. A traffic safety engineer measured the number of                                                                                                                                                                                                       | 4. Calculate $\sigma$ if $\sigma^2 = 16$ and n=35.                                                                                  |
| times motorists ran a read light at various 20 minute<br>intervals throughout the day. Calculate standard<br>deviation for these numbers: 2, 0, 4, 1, 0, 5, 9                                                                                             |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
| 5. Open the website dataset <u>Computational Review #1</u> .<br>Using SPSS, construct an appropriate graph to show the<br>average hours of work plus/minus one standard<br>deviation. Roughly sketch the graph below and label the<br>axes appropriately. | 6. Using SPSS, create a graph showing the frequency for hours of exercise. Do <u>NOT</u> produce a line chart. Label appropriately. |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           |                                                                                                                                     |
|                                                                                                                                                                                                                                                           | Note: Questions 7 & 8 missing                                                                                                       |

| 9. Produce a table comparing the Hours Exercised by single and married persons.                                                                                              | 10. Report the median Hours Worked and Hours Exercised.                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Avg. Hours Single=                                                                                                                                                           | Hours Worked Md =                                                                                                                                           |
| Avg. Hours Married=                                                                                                                                                          | Hours Exercised Md =                                                                                                                                        |
|                                                                                                                                                                              |                                                                                                                                                             |
| 11. Report the largest standard deviation among the four quantitative variables in the dataset.                                                                              | 12. Report the Pearson Correlation Coefficient of the variable that best predicts Hours Exercised.                                                          |
|                                                                                                                                                                              |                                                                                                                                                             |
| 13. If appropriate, indicate how much variance anxiety accounts for in hours worked. If not appropriate, explain why.                                                        | 14. Create a table showing the number of married and unmarried people in the dataset. Report only the two correct numbers. number of single:                |
| 15. Create a table to answer this question: What percent of people exercise 6 hours or less? Report only the correcxt percent                                                | number of married:                                                                                                                                          |
| 16. Correlate <u>anxiety, hours worked, social support, and</u><br><u>hours exercised</u> . What's the strongest observed<br>correlation? [Report symbol and correct value.] | 17. Correlate <u>anxiety, hours worked, social support, and hours exercised</u> . List all the significant correlations. [Report symbol and correct value.] |
| Variables: &                                                                                                                                                                 |                                                                                                                                                             |
| 18. If appropriate, write the regression equation for predicting anxiety based on hours of exercise. If not appropriate, explain why.                                        | 19. If appropriate, predict anxiety given 8 hours of exercise. If not appropriate, explain why.                                                             |

| 20. If appropriate, write the regression equation for predicting anxiety based on hours of work. If not appropriate, explain why. | 21. If appropriate, predict anxiety given 6 hours of work. If not appropriate, explain why. |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 22. Sketch the regression line for predicting anxiety based the y-intercept occurs.                                               | on hours of exercise. Label appropriately, especially where                                 |
|                                                                                                                                   |                                                                                             |
|                                                                                                                                   |                                                                                             |
|                                                                                                                                   |                                                                                             |
|                                                                                                                                   |                                                                                             |

### Homework 3.5: Computational Review – Key , Test #1 (open book)



| 9. Produce a table comp single and married perso                                        |                                                                   | sed by                    | 10. Report the Exercised.                          | median Hou                                    | urs Worked a             | and Hours                 |      |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------|---------------------------|------|
| Avg. Hours                                                                              | Single= 6.00                                                      |                           | Но                                                 | urs Worked                                    | Md = 40.00               | )                         |      |
| Avg. Hours N                                                                            | larried= 7.80                                                     |                           | Hour                                               | s Exercised I                                 | Md = 8.00                |                           |      |
| Use Analyze, compare mo                                                                 | eans, means                                                       |                           | <mark>Go to descriptiv</mark><br>median            | /es, frequenc                                 | cies, select st          | <mark>atistics, se</mark> | lect |
| 11. Report the largest state<br>four quantitative variable<br>$\hat{s}_x = 1$           | es in the dataset.                                                | ng the                    | 12. Report the variable that be                    |                                               | Hours Exerci             |                           | the  |
| anxiety                                                                                 | Pearson Correlation<br>Sig. (2-tailed)                            | anxiety<br>1              | Hours worked<br>per week<br>.194<br>.413           | Social<br>Support<br>quality<br>.530*<br>.016 | hrsexer<br>774**<br>.000 |                           |      |
| Hours worked per week                                                                   | N<br>Pearson Correlation<br>Sig. (2-tailed)                       | 20<br>.194<br>.413        | 20                                                 | 20<br>.375<br>.103                            | 20<br>173<br>.466        |                           |      |
| Social Support quality                                                                  | N<br>Pearson Correlation<br>Sig. (2-tailed)<br>N                  | 20<br>.530*<br>.016<br>20 | 20<br>.375<br>.103<br>20                           | 20<br>1<br>20                                 | 20<br>318<br>.171<br>20  |                           |      |
| hrsexer                                                                                 | Pearson Correlation<br>Sig. (2-tailed)<br>N                       | 774**<br>.000<br>20       | 173<br>.466<br>20                                  | 318<br>.171<br>20                             | 1<br>20                  |                           |      |
| -                                                                                       | ant at the 0.05 level (2-taile<br>cant at the 0.01 level (2-taile | •                         |                                                    |                                               |                          |                           |      |
| <ol> <li>If appropriate, indica<br/>accounts for in hours wo<br/>why.</li> </ol>        |                                                                   |                           | 14. Create a ta<br>unmarried peo<br>correct number | ple in the da                                 |                          |                           |      |
| =                                                                                       |                                                                   |                           | number of sing                                     | le: _10                                       | _                        |                           |      |
|                                                                                         |                                                                   |                           |                                                    | ried:10_                                      |                          |                           |      |
|                                                                                         |                                                                   |                           | Go to analyze,                                     | descriptives,                                 | frequencies.             |                           |      |
| (ou could calculate r², bu<br>ignificant (p is not below<br>calculate the coefficient c | 05), so it is in approp                                           |                           |                                                    |                                               |                          |                           |      |
|                                                                                         |                                                                   |                           |                                                    |                                               |                          |                           |      |





| 1. Open Dataset "Sleep," correlate all<br>the variables, and summarize all the<br>correlations in the standard format<br>[r(20) = 4.55, n.s.].                                                                           | <ul> <li>2. Identify the variable pairs with the weakest and strongest correlations in #1.</li> <li>3. Identify the amount of variance Weekend Sleep accounts for in amount Slept Last Night.</li> </ul>               | 4. If appropriate, provide the formula<br>for predicting Hours Slept Last Night<br>based on Hours Slept Last Weekend. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 5. If appropriate, predict Hours Slept<br>Last Night based on Hours Slept on<br>School Night.                                                                                                                            | 6. Using SPSS, create a scatterplot for<br>#4 with a regression line. Roughly<br>sketch axes and line below.                                                                                                           | 7. Using SPSS, create a scatterplot for<br>#5 with a regression line. Roughly<br>sketch axes and line below.          |
| 8. Predict Hours Slept Last Night if<br>Weekend Hours Slept is 5.                                                                                                                                                        | <ul> <li>9. State the correct symbols and values for #8:</li> <li>a. Coefficient of Determin:</li> <li>b. Std Err of the Residual:</li> <li>c. Chance that <i>ρ</i> = 0.</li> <li>d. Pearson's Corr. Coeff:</li> </ul> | 10. Open Dataset <u>Bogus Winthrop</u> .<br>Summarize all correlations among the<br>interval and ratio data.          |
| 11. Identify the two strongest and two<br>weakest correlations in previous<br>problem – state the two variable pairs.                                                                                                    | 12. If appropriate, state the formula<br>for predicting GPA based on<br>Satisfaction.                                                                                                                                  | 13. Do a scatterplot with a regression<br>line for previous problem. Roughly<br>sketch the axes and line here.        |
| <ul> <li>14. State the correct symbols and values for #12.</li> <li>a. Coefficient of Determin:</li> <li>b. Std Err of the Residual:</li> <li>c. Chance that <i>ρ</i> = 0.</li> <li>d. Pearson's Corr. Coeff:</li> </ul> | 15. Predict GPA if Satisfaction is 6.                                                                                                                                                                                  |                                                                                                                       |

## Open Dataset "Sleep," correlate all the variables, and summarize all the correlations in the standard format [r(20) = 4.55, n.s.].

| Correlations |                     |         |         |           |       |
|--------------|---------------------|---------|---------|-----------|-------|
|              |                     | SLPT_LN | SLPT_SN | SLPT_WKND | BOOKS |
| SLPT_LN      | Pearson Correlation | 1       | .320    | .719**    | 176   |
|              | Sig. (2-tailed)     |         | .090    | .000      | .361  |
|              | N                   | 29      | 29      | 29        | 29    |
| SLPT_SN      | Pearson Correlation | .320    | 1       | .316      | 340   |
|              | Sig. (2-tailed)     | .090    |         | .095      | .071  |
|              | N                   | 29      | 29      | 29        | 29    |
| SLPT_WKND    | Pearson Correlation | .719**  | .316    | 1         | .111  |
|              | Sig. (2-tailed)     | .000    | .095    |           | .567  |
|              | N                   | 29      | 29      | 29        | 29    |
| BOOKS        | Pearson Correlation | 176     | 340     | .111      | 2     |
|              | Sig. (2-tailed)     | .361    | .071    | .567      |       |
|              | N                   | 29      | 29      | 29        | 29    |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

# 2. Identify the variable pairs with the weakest and strongest correlations in #1.

| Correlations |                     |         |         |           |       |
|--------------|---------------------|---------|---------|-----------|-------|
|              |                     | SLPT_LN | SLPT_SN | SLPT_WKND | BOOKS |
| SLPT_LN      | Pearson Correlation | 1       | .320    | .719**    | 176   |
|              | Sig. (2-tailed)     |         | .090    | .000      | .361  |
|              | Ν                   | 29      | 29      | 29        | 29    |
| SLPT_SN      | Pearson Correlation | .320    | 1       | .316      | 340   |
|              | Sig. (2-tailed)     | .090    |         | .095      | .071  |
|              | N                   | 29      | 29      | 29        | 29    |
| SLPT_WKND    | Pearson Correlation | .719**  | .316    | 1         | .111  |
|              | Sig. (2-tailed)     | .000    | .095    |           | .567  |
|              | N                   | 29      | 29      | 29        | 29    |
| BOOKS        | Pearson Correlation | 176     | 340     | .111      | 1     |
|              | Sig. (2-tailed)     | .361    | .071    | .567      |       |
|              | N                   | 29      | 29      | 29        | 29    |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

- Strongest:
  - Slpt\_wknd & Slpt\_ln

• r(27)=.320, n.s.

• r(27)=.176, n.s.

• r(27)=.316, n.s.

• r(27)=.111, n.s.

r(27)=-.340, n.s.

• r(27)=.719, p<=.05

- Weakest:
  - Books and Slpt\_wknd

## 3. Identify the amount of variance Weekend Sleep accounts for in amount Slept Last Night.







N \*. Correlation is significant at the 0.05 level (2-tailed) 20

20

20

20

\*\*. Correlation is significant at the 0.01 level (2-tailed).





## Homework 4.2: Z-scores, Sampling Distributions, Hypothesis Testing

Answer the following questions after listening to the on-line lecture on Z-scores (Hyp Testing & Sampling Distributions)

⇒ <u>Watch first slides before answering these questions:</u>

Assume we test whether psychology majors are more or less anxious than normal. We find just one psychology major (Jayla) and calculate her z-score on an Anxiety test ( $\mu = 50$ ).

The Null Hypothesis is that psychology majors are, compared to normal people, \_\_\_\_\_ anxious. (more/less/just as)

The <u>Alternative Hypothesis</u> is that psychology majors are \_\_\_\_\_ normal people. (more/less/just as)

Using the provided  $\mu$ , state the Ho: \_\_\_\_\_

Using the provided  $\mu$ , state the Ha: \_\_\_\_\_

As Jayla's z-score gets farther from the center of the distribution, we become \_\_\_\_\_\_ (more/less) likely to reject Ho.

We compare the z-obtained score (the one that represents Jayla) to the z-\_\_\_\_\_ score.

We typically set z-critical equal to ± \_\_\_\_\_. (This represents 5% of the distribution.)

| If Jayla's z-<br>score is | we will<br>(retain/reject)<br>the Ho | and conclude that the anxiety of psychology majors is the same, less, or more than normal. |                                                   |
|---------------------------|--------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|
| 2.49                      |                                      |                                                                                            | $Z_{\text{crit}}$ =-1.96 $Z_{\text{crit}}$ =+1.96 |
| 1.90                      |                                      |                                                                                            |                                                   |
| -2.05                     |                                      |                                                                                            | -3 -2 -1 0 +1 +2 +3                               |
| 3.01                      |                                      |                                                                                            |                                                   |
| -1.45                     |                                      |                                                                                            |                                                   |

Answer the following after watching slides 4-7

Use this info for the figure and the first five problems: Reliable Ralphie asks 5 people the travel time to Charleston. Sloppy Suzie asks just 1 person the same question.



- 1. Ralphie is working with a \_\_\_\_\_\_ distribution. Suzie is working with a \_\_\_\_\_\_ distribution.
- 2. In both cases, the true average travel time to Charleston is represented by \_\_\_\_\_ ( $\rho$  or  $\mu$ ).
- 3. Ralphie's distribution will be \_\_\_\_\_ (more or less) accurate than Suzie's.
- 4. Raphie's distribution will have \_\_\_\_\_\_ (more or less) sampling error than Suzie's.
- 5. Raphie's distribution will have \_\_\_\_\_ (more or less) variability than Suzie's.
- 6. Sampling distributions are \_\_\_\_\_ (more or less) accurate than frequency distributions.
- 7. A z-score for a frequency distribution uses standard \_\_\_\_\_\_ to measure variability.
- 8. A z-score for a sampling distribution uses standard \_\_\_\_\_\_ to measure variability.
- 9. Assume that standard deviation for a frequency distribution is 12. If samples are taken from this same population with 16 people in each sample, the standard error will be \_\_\_\_\_\_ (hint: use formula for standard error of the mean).
- 10. A sampling distribution is comprised of \_\_\_\_\_\_(sample means or scores).
- 11. A frequency distribution is comprised of \_\_\_\_\_\_(sample means or scores).
- 12. Assume you estimate the average GPA of all freshmen by sampling 4 freshmen. If your sample size increases to 8, you accuracy will \_\_\_\_\_\_ (increase/decrease).
- 13. If your accuracy increases, this is the same as saying your standard error of the mean has \_\_\_\_\_\_ (increased/decreased)
- 14. With a frequency distribution you will calculate a z-score for a \_\_\_\_\_\_ (score/sample mean).
- 15. With a sampling distribution you will calculate a z-score for a \_\_\_\_\_\_(score/sample mean).
- 16. The standard error of the mean tells you how far a typical \_\_\_\_\_\_ (score/sample mean) falls from the population mean.

#### Answer the following after slides 8 & 9

You suspect older drivers take longer to drive to Charleston. You ask 9 older drivers how long they take and find they take 4.1 hours on average (M=4.1). Normal drivers take 3.5 hours ( $\mu$ = 3.5,  $\sigma$  = 0.9)

| <ol> <li>First, set up the problem by<br/>recording the key facts:</li> <li>μ =</li> </ol> | 2. Because you're given n (the sample size) you know it's a distribution and so you'll need to calculate standard | 3. Work the formula for standard error of the mean:                                      |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| $\sigma =$<br>M (or x <sub>bar</sub> )=<br>n =                                             | represented by the symbol                                                                                         | $\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}} = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}}$ |
| 4. Now work the formula for z-<br>obtained:                                                | 5. Does the z-obtained score exceed z-critical (± 1.96)?                                                          | 6. Do you retain or reject the Ho?                                                       |
| $z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} =$                                             |                                                                                                                   | 7. Do older drivers take longer to drive to Charleston?                                  |

## Homework 4.2 – Z-scores, Sampling Distributions, Hypothesis Testing

Answer the following questions after listening to the on-line lecture on Z-scores (Hyp Testing & Sampling Distributions)

⇒ Watch first three slides before answering these questions:

Assume we test whether psychology majors are more or less anxious than normal. We find just one psychology major (Jayla) and calculate her z-score on an Anxiety test ( $\mu = 50$ ).

The <u>Null Hypothesis</u> is that psychology majors are, compared to normal people, <u>just as</u> anxious. (more/less/just as)

The <u>Alternative Hypothesis</u> is that psyc majors are \_more or less anxious\_\_\_\_ normal people. (more/less/just as)

Using the provided  $\mu$ , state the Ho: \_\_  $\mu = 50$  \_\_\_\_\_

Using the provided  $\mu$ , state the Ha: \_\_\_\_  $\mu \neq 50$ \_\_\_\_\_

As Jayla's z-score gets farther from the center of the distribution, we become <u>more</u> (more/less) likely to reject Ho.

We compare the z-obtained score (the one that represents Jayla) to the z-critical score.

We typically set z-critical equal to  $\pm 1.96$  (This represents 5% of the distribution.)

| If Jayla's z-<br>score is | we will<br>(retain/reject)<br>the Ho | and conclude that the anxiety of<br>psychology majors is the same, less, or<br>more than normal. |                                     |
|---------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|
| 2.49                      | Reject                               | More                                                                                             | $Z_{crit}$ =-1.96 $Z_{crit}$ =+1.96 |
| 1.90                      | Retain                               | Same                                                                                             |                                     |
| -2.05                     | Reject                               | Less                                                                                             |                                     |
| 3.01                      | Reject                               | More                                                                                             |                                     |
| -1.45                     | Retain                               | Same                                                                                             |                                     |

Answer the following after watching slides 4-7

Use this info for the figure and the first five problems:

Reliable Ralphie asks 5 people the travel time to Charleston. Sloppy Suzie asks just 1 person the same question.



#### 17. Ralphie is working with a <u>sampling</u> distribution. Suzie is working with a <u>frequency</u> distribution.

18. In both cases, the true average travel time to Charleston is represented by \_\_\_\_\_  $\mu$  \_\_\_\_\_ ( $\rho$  or  $\mu$ ).

19. Ralphie's distribution will be <u>more</u> (more or less) accurate than Suzie's.

- 20. Raphie's distribution will have <u>less</u> (more or less) sampling error than Suzie's.
- 21. Raphie's distribution will have <u>less</u> (more or less) variability than Suzie's.
- 22. Sampling distributions are <u>more</u> (more or less) accurate than frequency distributions.
- 23. A z-score for a frequency distribution uses standard <u>deviation</u> to measure variability.
- 24. A z-score for a sampling distribution uses standard <u>error of the mean</u> to measure variability.
- 25. Assume that standard deviation for a frequency distribution is 12. If samples are taken from this same population with 16 people in each sample, the standard error will be <u>3</u> (hint: use formula for standard error of the mean).
- 26. A sampling distribution is comprised of \_\_\_\_\_\_(<u>sample means</u> or scores).
- 27. A frequency distribution is comprised of \_\_\_\_\_\_(sample means or scores).
- 28. Assume you estimate the average GPA of all freshmen by sampling 4 freshmen. If your sample size increases to 8, you accuracy will <u>increase</u> (increase/decrease).
- If your accuracy increases, this is the same as saying your standard error of the mean has <u>decreased</u> (increased/decreased)
- 30. With a frequency distribution you will calculate a z-score for a \_\_\_\_\_\_ (<u>score</u>/sample mean).
- 31. With a sampling distribution you will calculate a z-score for a \_\_\_\_\_\_(score/sample mean).
- 32. The standard error of the mean tells you how far a typical \_\_\_\_\_\_ (score/<u>sample mean</u>) falls from the population mean.

#### Answer the following after slides 8 & 9

You suspect older drivers take longer to drive to Charleston. You ask 9 older drivers how long they take and find they take 4.1 hours on average (M=4.1). Normal drivers take 3.5 hours ( $\mu$ = 3.5,  $\sigma$  = 0.9)

| 1. First, set up the problem by<br>recording the key facts:<br>$\mu = 3.5$<br>$\sigma = 0.9$<br>M (or x <sub>bar</sub> )= 4.1<br>n = 9 | <ol> <li>Because you're given n (the sample size) you know it's a <u>sampling</u> distribution and so you'll need to calculate standard <u>error of the mean</u>,</li> <li>represented by the symbol <u></u>.</li> </ol> | 3. Work the formula for standard error of the mean:<br>$\sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{n}} = \frac{0.9}{\sqrt{9}} = 0.3$             |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Now work the formula for z-<br>obtained:<br>$z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{4.1 - 3.5}{0.3} = 2$                | 5. Does the z-obtained score exceed z-critical (± 1.96)?<br>Yes!                                                                                                                                                         | <ul> <li>6. Do you retain or reject the Ho?</li> <li>Reject Ho</li> <li>7. Do older drivers take longer to<br/>drive to Charleston? Yes!</li> </ul> |

## Homework 4.1: Z-scores for scores

| note: M equals x <sub>bar</sub> (i.e, the mean of | a sample) |
|---------------------------------------------------|-----------|
|---------------------------------------------------|-----------|

| 1. Define standard deviation:                                                                                                                    |                                                               | 2. Define z-score for your mother and relate it to standard deviation: |                                                                                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                  |                                                               |                                                                        |                                                                                |  |  |  |  |
|                                                                                                                                                  |                                                               |                                                                        |                                                                                |  |  |  |  |
| 3. On the Whiznoodle Depression Inven                                                                                                            | tory the average sc                                           | ore is 50 (i.e., <b>µ</b> =50)                                         | with a standard deviation of 5 ( $\sigma$ =5).                                 |  |  |  |  |
| a. What's Bob's standard score (z-score) if Bob scored a 62?                                                                                     | b. What percent c<br>depressed than Bc                        |                                                                        | c. What percent of people are more depressed than Bob?                         |  |  |  |  |
|                                                                                                                                                  |                                                               |                                                                        |                                                                                |  |  |  |  |
| d. What's Rolanda's standard score if she had a raw score of 37?                                                                                 | e. What percent of depressed than Ro                          |                                                                        | f. What percent of people are more depressed than Rolanda?                     |  |  |  |  |
| 4. Most IQ tests are normed to have an                                                                                                           | average score of 10                                           | 00 with a standard c                                                   | leviation of 15.                                                               |  |  |  |  |
| a. What's Shanta's z-score if she scores<br>120 on the IQ test?                                                                                  | b. What percent c<br>lower?                                   |                                                                        | c. What percent of people score higher?                                        |  |  |  |  |
| <ul> <li>she had a raw score of 37?</li> <li>4. Most IQ tests are normed to have an</li> <li>a. What's Shanta's z-score if she scores</li> </ul> | depressed than Ro<br>average score of 10<br>b. What percent c | Danda?<br>Do with a standard c                                         | depressed than Rolanda?<br>leviation of 15.<br>c. What percent of people score |  |  |  |  |

| standard deviation of 4.                                                                                                                                   |                                                                     |                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Shanta scored a 50. What's her z-score?                                                                                                                 | b. What percent of people have a lower reading ability than Shanta? | c. What percent of people have a higher reading ability than Shanta?                                                                                  |
| d. Kelly scored a 35. What's her z-score?                                                                                                                  | e. What percent of students will score higher than Kelly?           | f. What percent of students will score<br>lower than Kelly?                                                                                           |
| 6. A researcher tests whether teachers that do better on the end of grade tests.<br>79 on these tests. Teachers in the district $n=\sigma_{\bar{\chi}}=M=$ | His sample of 16 teachers averaged                                  | Do these teachers seem more or less successful than normal? ( $z_{crit} = \pm 1.96$ ). Show sketch. Circle: Reject or Retain H <sub>0</sub>           |
| $\mu = \\ \sigma = \qquad z = \frac{\overline{x} - \mu}{\sigma_{\overline{x}}} =$ 7. Do students in the Sigma Digma Wigr                                   | na fraternity have GPAs (M=2.4,                                     | Do the fraternity have lower/higher GPAs                                                                                                              |
| n=16) different from those of normal stu                                                                                                                   |                                                                     | than normal? ( $z_{crit} = \pm 1.96$ ). Show sketch. Circle: Reject or Retain H <sub>0</sub>                                                          |
| 8. A school psychologist tests whether $\sigma$ management report fewer disciplinary p to district-wide norms ( $\mu$ =11, $\sigma$ = 6).                  |                                                                     | Do these teachers have fewer/more<br>disciplinary problems than normal? (z <sub>crit</sub><br>= ± 1.96). Show sketch. Reject or Retain H <sub>0</sub> |
|                                                                                                                                                            |                                                                     |                                                                                                                                                       |

| 9. A researcher tested whether rats on diet pills differed in weight from normal rats ( $\mu$ =410, $\sigma$ =25). The four "dieting" rats averaged 375 ounces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Do these rats seem lighter or heavier than normal? ( $z_{crit} = \pm 1.96$ ). Show sketch. Circle: Reject or Retain H <sub>0</sub>         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 10. A researcher examined whether 9 people with social phobias were more<br>likely to be depressed (M=51) than normal people (who average 50 with a<br>standard deviation of 6).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Do these people seem less or more depressed than normal? ( $z_{crit} = \pm 1.96$ ). Show sketch. Circle: Reject or Retain H <sub>0</sub>   |
| 11. Do people who've completed a memory enhancement course do better<br>on a test of working memory? The twenty-five memory course students<br>scored 8 on average. People in general average 7 with a standard deviation<br>of 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Do these people seem to do worse or better than normal? ( $z_{crit} = \pm 1.96$ ). Show sketch. Circle: Reject or Retain H <sub>0</sub>    |
| 12. You administer a measure of depression to a group of 25 students deprived of studying for an entire weekend. This sample of students scores 44 on average. Higher scores indicate more depression, and normal people score 50 with a standard deviation of 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Do these students seem less or more depressed than normal? ( $z_{crit} = \pm 1.96$ ). Show sketch. Circle: Reject or Retain H <sub>0</sub> |
| <ul> <li>13. For the following, indicate whether it's a <u>frequency distribution (FD)</u> or a second se</li></ul> | ere students typically average 40 points erage.                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ormal students score 20 with a standard                                                                                                    |

## Homework 4.1: Z-scores

note: M equals x<sub>bar</sub> (i.e, the mean of a sample)







## Homework 5.1: t-scores

These questions accompany Lecture Video 5.1, One Sample T-tests.

|                     | 1                                                                                                    | Whereas the z formula utilizes the symbol is the denominator, the t-test utilizes the symbol                                                                                                |  |  |  |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 9-                  | 1.                                                                                                   | Whereas the z-formula utilizes the symbol in the denominator, the t-test utilizes the symbol                                                                                                |  |  |  |  |  |  |  |  |  |
| slides 1-6          | 2.                                                                                                   | With a t-test, instead of <u>knowing</u> standard error as a population parameter, we must it.                                                                                              |  |  |  |  |  |  |  |  |  |
| slid                | 3.                                                                                                   |                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|                     | 4.                                                                                                   | To calculate standard error of the mean as an estimate, we divide [symbol] by[symbol].                                                                                                      |  |  |  |  |  |  |  |  |  |
|                     | 5.                                                                                                   | Compared to a z-distribution, a t-distribution is in the middle and at the tails.                                                                                                           |  |  |  |  |  |  |  |  |  |
| & 8<br>8            | 6.                                                                                                   | The (z or t) distribution shows more error.                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| slides 7            | 7. As the size of the sample increases, t-critical gets and approaches the shape of thedistribution. |                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| slic                | 8.                                                                                                   | Using the table in the back of the book, assume $\alpha = .05$ , and then determine the value of t-critical for the following sample sizes 4:, 7:, 20:, and 120:                            |  |  |  |  |  |  |  |  |  |
|                     | <u>Car</u>                                                                                           | Speed Problem by hand: Are cars traveling slower/faster than 55 mph?                                                                                                                        |  |  |  |  |  |  |  |  |  |
| 10                  | 9.                                                                                                   | What was the observed difference between the sample mean and the population mean?                                                                                                           |  |  |  |  |  |  |  |  |  |
| s 9 &               | 10.                                                                                                  | What was the <u>expected difference</u> based just on sampling error?                                                                                                                       |  |  |  |  |  |  |  |  |  |
| slides              | 11.                                                                                                  | Would the obtained t-value been large enough for rejection if you were doing a <u>z-test</u> ?                                                                                              |  |  |  |  |  |  |  |  |  |
| 0,                  | 12.                                                                                                  | When doing a z- or t-test, hypothesis testing step #1 states you are comparing and                                                                                                          |  |  |  |  |  |  |  |  |  |
|                     | Exar                                                                                                 | nple #3: Critical Thinking Test Problem: Do college graduates score lower/higher than 45 on the test?                                                                                       |  |  |  |  |  |  |  |  |  |
| -18                 | 13.                                                                                                  | 3. What was the <u>observed difference</u> between the sample mean and the population mean?                                                                                                 |  |  |  |  |  |  |  |  |  |
| s 13.               | 14.                                                                                                  | <ol> <li>What was the <u>expected difference</u> based just on standard error?</li> </ol>                                                                                                   |  |  |  |  |  |  |  |  |  |
| Slides 13           | 15.                                                                                                  | 5. Would the obtained t-value have been large enough for rejection if you were doing a z-test?                                                                                              |  |  |  |  |  |  |  |  |  |
|                     | 16.                                                                                                  | What key value do we determine in third step of hypothesis testing?                                                                                                                         |  |  |  |  |  |  |  |  |  |
|                     | <u>Car</u> :                                                                                         | Speed Problem on SPSS: Are cars traveling slower/faster than 55 mph?                                                                                                                        |  |  |  |  |  |  |  |  |  |
|                     | 17.                                                                                                  | 7. What would t-obtained equal if the cars in the sample had been going 54 mph and standard error had been equal to 3?<br>Could you have rejected the null then?                            |  |  |  |  |  |  |  |  |  |
| 22-23               | 18.                                                                                                  | 3. What would t-obtained equal if the cars in the sample had been going 49 mph and standard <u>deviation</u> had been equal to 3? Could you have rejected the null then?                    |  |  |  |  |  |  |  |  |  |
| Slides 2            | 19.                                                                                                  | <ol><li>Write out the t formula with the orginial values from the SPSS output and then<br/>calculate it, making sure you get the same answer.</li></ol>                                     |  |  |  |  |  |  |  |  |  |
| 0,                  | 20.                                                                                                  | 20. What's the chance you'd get a t-value of this size just by chance?                                                                                                                      |  |  |  |  |  |  |  |  |  |
|                     | 21.                                                                                                  | What was the sample mean with the first set of data? With the second?                                                                                                                       |  |  |  |  |  |  |  |  |  |
|                     | 22.                                                                                                  | An increase in the sample mean reflects an increase in (circle one) treatment effect or sampling error.                                                                                     |  |  |  |  |  |  |  |  |  |
| m                   |                                                                                                      | The tables to the right test whether people working at the factory 2 or more years average \$10/hour. Label each of the SPSS table values with the correct symbol → One-Sample Statistics// |  |  |  |  |  |  |  |  |  |
| oble                | 24.                                                                                                  | What the null hypothesis? N Mean Deviation Mean                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| ed Pr               | 25.                                                                                                  | What's the difference observed?         pay         9         8.67         1.581         .527                                                                                               |  |  |  |  |  |  |  |  |  |
| New Applied Problem | 26.                                                                                                  | What's the difference expected? One-Sample Test                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| lew /               | 27.                                                                                                  | Do your reject or retain the Ho?                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Z                   | 28.                                                                                                  | What percent of time would you see a difference between the means this large just by chance?     t     Sig. (2- tailed)     Mean Difference       pay     -2.53     8     0.35     -1.333   |  |  |  |  |  |  |  |  |  |
| L                   |                                                                                                      |                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |

## Homework 5.1: t-scores - Key

| slides 1-6.         | <ol> <li>Whereas the z-formula utilizes the symbol σ<sub>xbar</sub> in the denominator, the t-test utilizes the symbol _ s<sub>xbar</sub></li> <li>With a t-test, instead of <u>knowing</u> standard error as a population parameter, we mustestimate it.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| slides              | <ol> <li>In both the z and t formulas the top portion is unchanged: _ X<sub>bar</sub> – μ (write out the symbols)</li> <li>To calculate standard error of the mean as an estimate, we divide _s [symbol] by _sqrt n[symbol].</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| slides 7 & 8        | <ol> <li>Compared to a z-distribution, a t-distribution is <u>shorter</u> in the middle and <u>fatter</u> at the tails.</li> <li>The <u>t</u> (z or t) distribution shows more error.</li> <li>As the size of the sample increases, t-critical gets <u>smaller</u> and approaches the shape of the <u>z</u> distribution.</li> <li>Using the table in the back of the book, assume α = .05, and then determine the value of t-critical for the following sample sizes 4: <u>3.1824</u>, 7: <u>2.4469</u>, 20: <u>2.0930</u> and 120: <u>1.9801</u>.</li> </ol>                                                                                                                                                                                   |
| slides 9 & 10       | <ul> <li><u>Car Speed Problem by hand: Are cars traveling slower/faster than 55 mph?</u></li> <li>9. What was the <u>observed difference</u> between the sample mean and the population mean? <u>3.889</u></li> <li>10. What was the <u>expected difference</u> based just on standard error ? <u>2.606</u></li> <li>11. Would the obtained t-value been large enough for rejection if you were doing a <u>z-test</u>? <u>no</u></li> <li>12. When doing a z- or t-test, hypothesis testing step #1 states you are comparing <u>xbar</u> and <u>µ</u>.</li> </ul>                                                                                                                                                                                |
| Slides 13-18        | <ul> <li>Example #3: Critical Thinking Test Problem: Do college graduates score lower/higher than 45 on the test?</li> <li>13. What was the <u>observed difference</u> between the sample mean and the population mean? <u>1.6667</u>.</li> <li>14. What was the <u>expected difference</u> based just on standard error? <u>3.5355</u>.</li> <li>15. Would the obtained t-value have been large enough for rejection if you were doing a z-test? <u>no</u>.</li> <li>16. What key value do we determine in third step of hypothesis testing? <u>tcritical</u>.</li> </ul>                                                                                                                                                                       |
| Slides 22-23        | <ul> <li>Car Speed Problem on SPSS: Are cars traveling slower/faster than 55 mph?</li> <li>17. What would t-obtained equal if the cars in the sample had been going 54 mph and standard error had been equal to 3?</li> <li>Substantiation is a constrained equal if the cars in the sample had been going 49 mph and standard deviation had been equal to 3?</li> <li>18. What would t-obtained equal if the cars in the sample had been going 49 mph and standard deviation had been equal to 3?</li> <li>19. Write out the t formula with the original values from the SPSS output and then calculate it, making sure you get the same answer.</li> <li>20. What's the chance you'd get a t-value of this size just by chance?17.4%</li></ul> |
| New Applied Problem | <ul> <li>23. The tables to the right test whether people working at the factory 2 or more years average \$10/hour. Label each of the SPSS table values with the correct symbol. →</li> <li>24. What the null hypothesis? <u>Ho: μ = 10</u></li> <li>25. What's the difference observed? <u>-1.333</u></li> <li>26. What's the difference expected? <u>0.527</u></li> <li>27. Do your reject or retain the Ho? <u>Reject</u></li> <li>28. What percent of time would you see a difference between the means this large just by chance? <u>3.5%</u></li> </ul>                                                                                                                                                                                     |

## Homework 5.2: Hypothesis Testing with T-Scores

| comple                                                     | 1. Hypothesis Testing #1: A group of students take a new pilot version of a critical thinking course and then complete the Wizweekler test of critical thinking. If normal people score 40 on the test, does it appear that the course affected their critical thinking? (Don't forget effect size if appropriate.)                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Data<br>45<br>50<br>40<br>35<br>55<br>42<br>48<br>40<br>50 | ŝx = 6.3048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.     2.       3.     4.       5.                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| describ<br>increas<br>a<br>t<br>c<br>3. Hyp<br>last tes    | <ul> <li>bed would affect the treatment effect (T) or satisfies or decrease.</li> <li>a) You base the class mean on 25 people, not just (a) You standardize how people study the course material, so that there are fewer differences how much they learn about critical thinking.</li> <li>b) You provide more feedback on their critical thinking abilities during the course, so that the become more effective at critical thinking.</li> <li>b) b) the provide more feedback on their critical thinking abilities during the course, so that the become more effective at critical thinking.</li> </ul> | <ul> <li>students about critical thinking, and every person teaches the course differently.</li> <li>e) You cut back the course from a semester long course to just a weekend workshop, so the course becomes less effective.</li> <li>f) You discover that the class average was 48, not 45.</li> <li>tistics professor claimed that students who scored an A on the idied by average students. Does this small sample of students</li> </ul> |  |  |  |  |  |  |  |
| <u>Data</u><br>4<br>6<br>7<br>9                            | Calculations<br>(calculate \$x to start)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hypothesis Testing Steps           1.         2.           3.         4.           5.         .                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |

4. Hypothesis Testing #2: The wise and beloved statistics professor claimed that students who scored an A on the last test studied more than the 4 hours per week studied by average students. Does this now larger sample of students earning an A support this claim? (Don't forget effect size if appropriate)



## Homework 5.2: Hypothesis Testing with T-Scores - Key





|                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   | Homework |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 5. Questions pertaining to SPSS print-out above.<br>First, label information on the SPSS print-out with the                                                                                                                                                                                     | f) <mark>2.201</mark> If you had done this by hand,<br>what would t <sub>critical</sub> equal?                                                                                                    |          |
| appropriate symbols (e.g., $\sigma_{\overline{x}}$ ).<br>a) 6.5 What's the sample mean?                                                                                                                                                                                                         | g) <mark>Type I</mark> What type of decision error<br>might you be making? (I or II)                                                                                                              |          |
| b) <mark>4</mark> What's the population mean?<br>c) <mark>2.5</mark> What's the difference between<br>the two?                                                                                                                                                                                  | Indicate which of the following would make it more or less likely you'd reject the Ho and conclude that A students study more?                                                                    |          |
| d) <u>.544</u> What's the typical deviation of<br>average study times for samples around the<br>population mean of 4 hours that you'd expect<br>based on just sampling error?<br>e) <u>0.1%</u> What's the probability you'd<br>see this sort of t <sub>obtained</sub> value just by<br>chance? | <ul> <li>e.  1 tobt is larger</li> <li>f.  standard error is smaller</li> <li>g.  variability in raw scores is larger</li> <li>h.  average time spent studying by A students is larger</li> </ul> |          |

## Homework 5.3: One-sample t-test

For each of the following, complete hypotheses testing steps 1-5, giving special attention to the paragraph write-ups.

| Q1. Punishment: The researcher<br>2 minutes of loud noise to punish t                 |                                              |          |          |          |                     |               |                    | tion wo   | ould rec                 | ommer     | nd more than |
|---------------------------------------------------------------------------------------|----------------------------------------------|----------|----------|----------|---------------------|---------------|--------------------|-----------|--------------------------|-----------|--------------|
| Hypothesis testing steps:                                                             |                                              |          | One      | -Sample  | e Statist           | ics           |                    |           |                          |           |              |
| 1.                                                                                    |                                              | 1        |          | vlean    | Std. D              | eviation      | Std. En<br>Mean    |           |                          |           |              |
| 0                                                                                     | duratio                                      | n        | 11       | 3.27     |                     | 1.009         |                    | .304      |                          |           |              |
| 2.                                                                                    |                                              |          |          |          |                     | Test Va       | alue = 2           |           |                          |           |              |
|                                                                                       |                                              |          |          |          |                     |               |                    | 95% Co    | onfidence lı<br>Differen |           | the          |
| 3.                                                                                    |                                              |          |          | lf IS    | 2ia /2 tail         |               | Mean<br>iifference | Low       |                          | Upper     |              |
| 4.                                                                                    | duratio                                      | n 4.1    | 183      | 10       | 3iq. (2-tail        | 002           | 1.273              | LUW       | .59                      |           | 1.95         |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
| 5.                                                                                    |                                              |          |          |          |                     | <u> </u>      | f needed,          | calcula   | ate d her                | re:       |              |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
| a. What type of hypothesis testing                                                    | error is                                     | possible | e?       |          | k                   | o. Sampl      | le mean _          |           | (                        | C.μ=_     |              |
| c. What's the chance you would se                                                     | e this di                                    | fference | e betwee | en the s | sample              | & pop.        | means ju           | st by ch  | nance?_                  |           |              |
| d. State the symbol and value for s                                                   | td error                                     |          |          |          | d. "dit             | fference      | e observed         | l″        |                          |           |              |
| f. Summarize the statistic:                                                           |                                              |          |          | -        | g. ŝ <sub>x</sub> : | =             |                    | _ !       | g.p = _                  |           |              |
| <u>Q2. Giving</u> : The researcher predic<br>charity gift. (x=\$8, 10, 5, 7, 20, 7, 1 |                                              |          |          | crushir  | ng guilt            | " condit      | tion would         | d offer i | more th                  | an the    | typical \$10 |
| Hypothesis testing steps:                                                             |                                              |          |          |          | One-S               | ample S       | Statistics         |           |                          |           |              |
| <u></u>                                                                               |                                              |          | 1        | J        | Mea                 | an lo         | 3td. Deviat        | tion      | Std. E<br>Mea            | Error     | ]            |
|                                                                                       |                                              | dollars  |          | 12       |                     | ani c<br>9.75 |                    | 562       | MC                       | 1.606     | 1            |
| 2.                                                                                    | •                                            |          |          |          |                     |               |                    |           |                          |           |              |
|                                                                                       | r                                            |          |          |          |                     |               |                    |           |                          |           |              |
| 3.                                                                                    |                                              |          |          |          |                     |               | Test Value =       | 10        | 05% Conf                 | idonco In | towal of the |
| 4.                                                                                    | 95% Confidence Interval of the<br>Difference |          |          |          |                     |               |                    |           |                          |           |              |
| 4.                                                                                    |                                              |          | t        | df       | Sic                 | ą. (2-tailedi | ) Mea<br>) Differe | n<br>nce  | Lower                    |           | Upper        |
| 5.                                                                                    |                                              | dollars  | 156      |          | 11                  | .879          | 9                  | 250       | -3                       | 3.78      | 3.28         |
|                                                                                       |                                              |          |          |          |                     |               | If need            | ed calci  | ulate d h                | nere:     |              |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
|                                                                                       |                                              |          |          |          |                     |               |                    |           |                          |           |              |
|                                                                                       |                                              |          |          |          |                     |               | 1                  |           |                          |           |              |

|                                                                 |              |           |                   |                 |                    |           |                                  | Homewor |
|-----------------------------------------------------------------|--------------|-----------|-------------------|-----------------|--------------------|-----------|----------------------------------|---------|
| a. What type of hypothesis testing error is                     | possible?    |           |                   | b. Sample m     | iean               | C         | . μ =                            |         |
| c. What's the chance you would see this d                       | ifference be | etween t  | he sampl          | e & pop. me     | ans just by cł     | nance? _  |                                  |         |
| d. State the symbol and value for std error                     |              |           | d. "d             | ifference ob    | served"            |           |                                  |         |
| f. Summarize the statistic:                                     |              |           | g. ŝ <sub>x</sub> | =               |                    | g. p =    |                                  | -       |
| <u>Q3.</u> The researcher predicted the attractive rating of 5. | veness ratir | ngs of da | tes in the        | "rollercoast    | er" conditior      | n would e | exceed the n                     | ormal   |
| Hypothesis testing steps:                                       |              |           |                   |                 |                    |           |                                  |         |
| 1.                                                              |              |           |                   | One-Sample      | e Statistics       |           |                                  |         |
|                                                                 |              |           | N                 | Mean            | Std. Deviat        | ion       | Std. Error<br>Mean               | ך ך     |
| 2.                                                              | hotn         | ess       | 35                | 5.40            |                    | 063       | .180                             |         |
|                                                                 |              |           |                   | Т               | •<br>est Value = 5 |           |                                  | —       |
| 3.                                                              |              |           |                   |                 | 551 Value - 5      | 95% Con   | fidence Interval o<br>Difference | fthe    |
|                                                                 |              | +         | df                | Sia. (2-tailed) | Mean<br>Difference | Lower     |                                  |         |
| 4.                                                              | hotness      | 2.227     | 34                | .033            | .400               | LOWEI     | .03                              | .77     |
|                                                                 |              |           |                   |                 |                    |           |                                  |         |
| 5.                                                              |              |           |                   | <u>If ne</u>    | eded, calcula      | ate d her | <u>e:</u>                        |         |
|                                                                 |              |           |                   |                 |                    |           |                                  |         |
|                                                                 |              |           |                   |                 |                    |           |                                  |         |
|                                                                 |              |           |                   |                 |                    |           |                                  |         |
|                                                                 |              |           |                   |                 |                    |           |                                  |         |
|                                                                 |              |           |                   |                 |                    |           |                                  |         |
| a. What type of hypothesis testing error is                     | possible?    |           |                   | b. Sample m     | iean               | C         | :.μ=                             |         |
| c. What's the chance you would see this d                       | ifference be | etween t  | he sampl          | e & pop. me     | ans just by cl     | nance? _  |                                  |         |
| d. State the symbol and value for std error                     |              |           | d. "d             | ifference ob    | served"            |           |                                  |         |
| f. Summarize the statistic:                                     |              |           | g. ŝ <sub>x</sub> | =               |                    | g.p = _   |                                  |         |

Q4. Indicate the types of hypothesis testing error that might be made if you.... Type...

- a. \_\_\_\_\_ Decide the debate team is smarter than normal
- b. \_\_\_\_\_ Decide the sky is falling
- c. \_\_\_\_\_ Decide global warming is not occurring
- d. \_\_\_\_\_ Decide your wait time at the store is greater than the 3 minutes promised.
- e. \_\_\_\_\_ Decide the extraversion scores of the sales people are higher than normal.

## Homework 5.3: One-sample t-test\_\_\_Key

For each of the following, complete hypotheses testing steps 1-5, giving special attention to the paragraph write-ups.

| <u>Q1. Punishment</u> : The researcher predict<br>2 minutes of loud noise to punish the che                                                                                      |                                                |           |         |                |                            |                 | " condition v                  | vould recomn                   | nend more than  |                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------|---------|----------------|----------------------------|-----------------|--------------------------------|--------------------------------|-----------------|----------------------------------|
| Hypothesis testing steps:                                                                                                                                                        |                                                |           |         | One-           | Sample                     | e Stat          | tistics                        |                                |                 |                                  |
| 1. <mark>cf. M and μ</mark>                                                                                                                                                      |                                                | 1         | V       | N              | lean                       | Std             | I. Deviation                   | Std. Erro<br>Mean              | r               |                                  |
| 2. $H_0: \mu = 2, H_A: \mu \neq 2$                                                                                                                                               | duration                                       | 1         | 11      |                | 3.27                       |                 | 1.009                          | .3                             | 304             |                                  |
| $2.10. \mu - 2.114. \mu + 2$                                                                                                                                                     |                                                |           |         |                |                            | Ţ               | est Value = 2                  | E                              |                 |                                  |
| 3. $\frac{2 - \text{tailed}}{2 - \text{tailed}}, \alpha = .05, \text{ df} = 10, \text{ t}_{\text{crit}} = \pm 2.228$                                                             |                                                | -2        | 5       |                |                            |                 |                                |                                |                 | ence Interval of the<br>fference |
|                                                                                                                                                                                  |                                                | t         | di      | ŕ –            | Siq. (2-ta                 | ailed)          | Mean<br>Difference             | Lower                          | Upper           |                                  |
| 4. <mark>t<sub>obt</sub> = 4.183</mark>                                                                                                                                          | duration                                       | 4.183     |         | 10             |                            | .002            | 1.27                           | 3 .59                          | 9 1.95          |                                  |
| a. What type of hypothesis testing error is<br>c. What's the chance you would see this c<br>d. State the symbol and value for std erro<br>f. Summarize the statistic:t(10) =4.18 | ifference<br>r <mark>ŝ<sub>xbar</sub> =</mark> | betwee    | n the s | amp            | le & por<br>d. "di         | o. me<br>iffere | eans just by o<br>ence observe | chance <mark>?2</mark><br>ed″M | 2%              |                                  |
| <u>Q2. Giving</u> : The researcher predicted par<br>charity gift. (x=\$8, 10, 5, 7, 20, 7, 12, 9, 20                                                                             | rticipants                                     | in the "c | rushin  | g gui          | ilt" conc                  | dition          |                                |                                | ne typical \$10 |                                  |
| Hypothesis testing steps:                                                                                                                                                        |                                                |           | (       | One-           | Sample                     | Stat            | listics                        |                                |                 |                                  |
| 1. <mark>cf. M and μ</mark>                                                                                                                                                      |                                                | N         |         | М              | ean                        | Std             | Deviation                      | Std. Error<br>Mean             |                 |                                  |
| 2. <mark>H₀: μ = 10, H<sub>A</sub>: μ ≠ 10</mark>                                                                                                                                | dollars                                        |           | 12      |                | 9.75                       |                 | 5.562                          | 1.6                            | 06              |                                  |
| 3. <mark>2-tailed, α=.05, df =11, t<sub>crit</sub> = ± 2.201</mark>                                                                                                              |                                                |           |         |                |                            | Tes             | t Value = 10                   |                                |                 |                                  |
| 4. t <sub>obt</sub> = -0.156.                                                                                                                                                    |                                                |           |         |                |                            |                 |                                | 95% Confidenc<br>Differ        |                 |                                  |
|                                                                                                                                                                                  |                                                |           | -16     |                |                            | Mean            |                                |                                |                 |                                  |
|                                                                                                                                                                                  | dollars                                        | t<br>156  | df<br>1 | 11             | <u>Siq. (2-taile</u><br>.8 | ed)<br>}79      | Difference<br>250              | Lower<br>-3.78                 | Upper<br>3.28   |                                  |
| 5. The hypothesis was not supported. Participants in the guilt condition did not                                                                                                 |                                                |           |         |                |                            |                 |                                |                                |                 |                                  |
| groong, more of 1635 (w = 7.76) that hold                                                                                                                                        | (μ - Τ                                         |           | 0.10    | 2 <b>0</b> 711 |                            |                 |                                | (t was not sig                 | <u>, 11)</u>    |                                  |

|                                                                                                                                                |                                                                                                       | Hom                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|
| a. What type of hypothesis testing error is                                                                                                    | possible? Type II b. Sample mean 9.75                                                                 | c. <mark>μ = 10</mark>                     |
| c. What's the chance you would see this c                                                                                                      | ifference between the sample & pop. means just by chanc                                               | ce <mark>? 87.9%</mark>                    |
| d. State the symbol and value for std erro                                                                                                     | r. <mark>ŝ<sub>xbar</sub> = .1.606</mark> d. "difference observed <mark>"25</mark>                    | 0                                          |
| f. Summarize the statistic: t(11) =                                                                                                            | 156, n.s. g. <mark>ŝ<sub>x</sub> = 5.562</mark> g. <mark>p = .879</mark>                              |                                            |
| <u>Q3.</u> The researcher predicted the attractivene                                                                                           | ss ratings of dates in the "rollercoaster" condition would exceed                                     | the normal rating of 5.                    |
| Hypothesis testing steps:                                                                                                                      | One-Sample Statistics                                                                                 |                                            |
| <mark>1. cf. M and μ</mark>                                                                                                                    | N Mean Std. Deviation                                                                                 | Std. Error<br>Mean                         |
| <mark>2. H₀: μ = 5 H₄: μ ≠ 5</mark>                                                                                                            | hotness 35 5.40 1.063                                                                                 | .180                                       |
| 2.2 tailed a OF df 24 t                                                                                                                        | Test Value = 5                                                                                        |                                            |
| <mark>3. 2-tailed, α=.05, df = 34, t<sub>crit</sub> = ±</mark><br>2.0322                                                                       | 95                                                                                                    | % Confidence Interval of the<br>Difference |
|                                                                                                                                                | t df Sig. (2-tailed) Mean<br>Difference                                                               | Lower Upper                                |
| <mark>4. t<sub>obt</sub> = 2.227</mark>                                                                                                        | hotness 2.227 34 .033 .400                                                                            | .03 .77                                    |
| 5. The hypothesis was supported. Pa condition gave higher attractiveness r ( $\mu$ =5), t(34) = 2.227, p≤.05. The effect was small, d = .3763. | atings (M = 5.40) than normal d = .4/1.063 = .37                                                      |                                            |
| a. What type of hypothesis testing err                                                                                                         | or is possible? Type I b. Sample mean 5.40                                                            | С. µ <mark>= 5</mark>                      |
|                                                                                                                                                | is difference between the sample & pop. means just                                                    | <u> </u>                                   |
| d. State the symbol and value for std                                                                                                          |                                                                                                       |                                            |
| f. Summarize the statistic: t(34) = 2.22                                                                                                       |                                                                                                       | <mark>3</mark>                             |
| aI Decide                                                                                                                                      | ng error that might be made if you Type<br>he debate team is smarter than normal<br>he sky is falling |                                            |

b. \_\_I\_\_ Decide the sky is falling
c. \_\_II\_\_ Decide global warming is not occurring
d. \_\_I\_\_ Decide your wait time at the store is greater than the 3 minutes promised.
e. \_\_I\_\_ Decide the extraversion scores of the sales people are higher than normal.

# Homework 5.4: Power

| <ol> <li>What's happening to US temperatures over time in this figure?</li> <li>What's chapging, the variability or the contral tendency?</li> </ol>                                                  | 1950s 60s 70s 80s 90s 2000s                                                                                                                                                                                                                                 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2. What's changing, the variability or the central tendency?                                                                                                                                          | 1.09:1 0.77:1 0.78:1 1.14:1 1.36:1 2.04:1 miss                                                                                                                                                                                                              |  |  |  |  |
| 3. If we were to depict these yearly temperature ranges as distributions as time passes those distributions would be shifting to the                                                                  | Figure 3. The ratio of record daily temperature highs to<br>record daily lows observed at about 1,800 weather stations in<br>the 48 contiguous United States from Jan. 1950 – Sept. 2009:<br>Source: Meehl et al., 2009                                     |  |  |  |  |
| Now let's look at this in terms of a distribution                                                                                                                                                     |                                                                                                                                                                                                                                                             |  |  |  |  |
| Figure 4 represents the change in climate over a period of time d                                                                                                                                     | ue to Global Warming.                                                                                                                                                                                                                                       |  |  |  |  |
| <ul> <li>4. For these two distributions, the left represents the climate and the right represents the climate.</li> <li>5. In this figure, what is changing, the mean or variability? What</li> </ul> | Increase in mean                                                                                                                                                                                                                                            |  |  |  |  |
| does this mean regarding the type of climate we have?                                                                                                                                                 | New climate<br>Cold Average Hot                                                                                                                                                                                                                             |  |  |  |  |
| 6. Overall, in the distribution the climate is becoming<br>between the curves.                                                                                                                        | (hotter/colder). This is displayed by the increasing                                                                                                                                                                                                        |  |  |  |  |
| 7. Let's say that you have enough power to conclude that there is practical significance of this effect, you would calculate for this?                                                                |                                                                                                                                                                                                                                                             |  |  |  |  |
| Now we'll examine a different type of change in the climate                                                                                                                                           |                                                                                                                                                                                                                                                             |  |  |  |  |
| 8. In Figure 5, what changes between the two distributions depicted? (Hint: It's not central tendency!)                                                                                               | (b) Previous<br>climate<br>More<br>record weather<br>cold<br>weather<br>New<br>climate<br>New<br>climate<br>New<br>climate<br>New<br>climate<br>New<br>climate<br>New<br>climate<br>Nore<br>weather<br>New<br>climate<br>Nore<br>weather<br>Nore<br>weather |  |  |  |  |
| <ol> <li>More specifically, in the new climate, there will be<br/>days falling in the tails (very cold or very hot) and days<br/>near the average.</li> </ol>                                         | Cold Average Hot<br>Figure 5                                                                                                                                                                                                                                |  |  |  |  |

| 10. The mean of these two curves (in Figure 5) are the same. This r<br>(getting hotter/getting colder/ staying the same), but that the                          |                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 11. In general, we increase power by increasinga                                                                                                                | ind decreasing                                                                                                                             |
| 11. In general, we increase power by increasinga                                                                                                                | and decreasing                                                                                                                             |
| Now let's examine both types of changes occuring at once                                                                                                        |                                                                                                                                            |
| Now we have two distributions that combine the differences shown separately in Figures 4 and 5.                                                                 | Increase in mean and variance           8         (c)         Previous         Much more                                                   |
| 12. Overall then, there are going to be more hot days, which means the of the distribution will increase as well as the in temperatures (hint: greater spread). | (c) Previous<br>climate<br>change<br>change<br>change<br>cold<br>veather<br>Cold<br>Average<br>Hot<br>Figure 6                             |
| Lastly, we have a graph showing actual temperature distribution                                                                                                 | s for specific years                                                                                                                       |
| 13. What happened to the mean temperatures over time in Figure 7?                                                                                               | 0.6<br>NH Land, Jun–Jul–Aug<br>Normal Distribution                                                                                         |
| 14. What happened to the variability in temperatures over time?                                                                                                 | $\begin{array}{c} 0.5 \\ - 1961 - 1971 \\ - 1971 - 1981 \\ 0.4 \\ - 1981 - 1991 \\ - 1991 - 2001 \\ - 2001 - 2011 \\ 0.3 \\ - \end{array}$ |
| 15. So overall the climate is becoming (what two things)?                                                                                                       | $\begin{array}{c} 0.1 \\ 0.5 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$                                      |

## Short Answer & Wrap Up

Figure 7

16. For the distributions examined here, explain what d tells you and what type of change d represents (i.e., change in variability vs. change in central tendency)

17. Think about what gives you more power to detect a difference. In the case of global warming, explain what about the types of changes in the distributions from <u>one year to the next</u> that make it easier to think nothing is changing? What other aspect of the <u>type of changes</u> make it harder to see the shift to the right.

## Homework/Quiz 5.4: Power Key



11. In general, we increase power by increasing treatment effect and decreasing sampling error



### Short Answer & Wrap Up

Now let's examine both types of changes occuring at once...

17. For the distributions examined here, explain what "d" tells you and what type of change "d" represents (i.e., change in variability vs. change in central tendency)

Effect size (d) tells you the practical significance of the change in climates. It represents the overall amount that the mean (i.e., the center) of the distribution has shifted.

17. Think about what gives you more power to detect a difference. In the case of global warming, explain what about the types of changes in the distributions from <u>one year to the next</u> that make it easier to think nothing is changing? What other aspect of the <u>type of changes</u> make it harder to see the shift to the right.

First, from year to year, the distribution shifts just a small amount to the right – that is, the <u>treatment</u> <u>effect</u> is fairly small on a year-to-year basis. Second, within a given year, there is a lot of variability in temperature, so there is also a lot of <u>sampling error</u> which can mask the small treatment effect that is occurring.

## Homework 6.1: Questions about Independent t-test

Answer these questions after watching the video on Independent t-tests.

- 1. The null hypothesis for the independent t-test is...
  - a.  $\mu_1 \mu_2 = 0$
  - b.  $\mu_1 = \mu_2$
  - C.  $\mu$  Difference = 0

2. If the Levine's test for equality of variance (the one next to the F on the output) is significant, you should use which line from the SPSS independent t-test table?

- a. The first line
- b. The second line
- 3. The measure of variability in an independent t-test formula is the
  - a. Standard error of the mean difference
  - b. Standard error of the difference
- 4. What's the formula for an independent t-test?
- 5. You only calculate the d statistic if ...
  - a. The null hypothesis is rejected
  - b. The alternative hypothesis is retained.
  - c.  $t_{crit}$  exceeds  $t_{obtained}$
- 6. When calculating the d statistic from the SPSS independent t-test output, you must first calculate...
  - a. Standard deviation
  - b. Standard error
- 7. When entering data into SPSS for an independent samples t-test, the data is formatted so that you have....
  - a. Two columns, with two data points per person
  - b. Two columns, one indicating the person's group and the other the person's score.
- 8. If I conclude your mother loves you significantly more than your brother, I could be making a Type \_\_\_\_ error
  - a. I
  - b. II

9. Imagine a study comparing pain medication A to pain medication B. Which of the following would indicate a treatment effect?

- a. Very low variability in reported pain levels within the two groups.
- b. A large difference in the average amount of pain between the two groups.

10. In the same study, controlling for extraneous variables (e.g., amount of physical activity) would likely do which of the following?

- a. Decrease sampling error
- b. Increase the treatment effect.

# Homework 6.2 – Independent t-test practice

| <ul> <li>#1: The false consensus effect predicts people overestimate<br/>the prevalence of their own attitude. You ask smokers and<br/>non-smokers to guess what percent of people aged 18 to 22<br/>smoke.</li> <li>Smokers: 40,35,25,30,30,35,20,10,30,25<br/>Non-Smokers: 30,35,15,25,20,15,30,20,10,10</li> </ul> |                           |               |                                            |               |                         |               | Non-Smokers: 29                                                                            | e parti<br>noking<br>9,25,2 | cipant<br>g wome<br>20,25,2 | rates th<br>en.<br>9,25,20<br>3,25,27 | ne attracti<br>),15,21<br>,25,27 | veness of                 |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|--------------------------------------------|---------------|-------------------------|---------------|--------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|---------------------------------------|----------------------------------|---------------------------|-------------|
| a. Type of test?                                                                                                                                                                                                                                                                                                      |                           | b. <u>Нур</u> | otheses?                                   | <u>,</u>      |                         |               | a. Type of test?                                                                           |                             |                             | b                                     | . <u>Hypothe</u>                 | <u>ses?</u>               |             |
|                                                                                                                                                                                                                                                                                                                       | Group S                   | tatistics     |                                            |               |                         |               |                                                                                            | G                           | Group St                    | atistics                              |                                  |                           |             |
| Smoking                                                                                                                                                                                                                                                                                                               | N                         | Mean          | Std.<br>Deviatior                          | _             | an                      |               | GROUP                                                                                      |                             | N                           | Mean                                  | Std.<br>Deviation                | Std. Erro<br>Mean         |             |
| Estimate smokers<br>non-smoke                                                                                                                                                                                                                                                                                         | rs 10                     |               | 8.563<br>8.756                             |               | .708<br>.769            |               | ATTRACT 1 odor<br>2 no odor                                                                |                             | 9<br>9                      | 22.11<br>26.44                        | 4.23<br>1.74                     | 1.41                      |             |
|                                                                                                                                                                                                                                                                                                                       |                           | ident Samples | 421 2.9                                    | , 2.          | .105                    |               | ·                                                                                          | In                          | dependent<br>Levene         | Samples Te                            | est                              |                           |             |
|                                                                                                                                                                                                                                                                                                                       | Leven<br>Test fo<br>of Va | rEq           | t.test for                                 | Equality of N | Means                   |               |                                                                                            |                             | Test for E<br>Var           | q of                                  | t-test for Equ                   | uality of Means           | Std.        |
|                                                                                                                                                                                                                                                                                                                       | F                         | Sig. t        |                                            | Sig. (2- 1    | Mean St                 | l. Er<br>Diff |                                                                                            |                             | 2.5- 6                      | Big. t                                | 1.22                             | g. (2- Mean<br>iled) Diff | Err<br>Diff |
| Estimate Equal variances<br>assumed                                                                                                                                                                                                                                                                                   |                           | .716 1.807    | 18                                         | 54595         |                         | .873          | Attract Equal variances<br>assumed<br>Equal variances no                                   | ot                          | 6.998 .                     | 018 -2.8                              |                                  | .012 -4.33<br>.016 -4.33  | 1.52        |
| Equal variances<br>not assumed                                                                                                                                                                                                                                                                                        | 3                         | 1.807         | 17.99                                      | .087          | 7.000 3                 | .873          | assumed                                                                                    |                             |                             |                                       |                                  |                           |             |
| would be enetered<br>into SPSS. Name<br>variables and enter<br>values.                                                                                                                                                                                                                                                |                           |               | this dif<br>betwe<br>sheer o<br>or practio |               | e<br>ns by<br>f not sig | )             | c. Show how data<br>would be enetered<br>into SPSS. Name<br>variables and enter<br>values. | d. <u>E</u> i               | aragrap                     | <u>ze (</u> do fc                     |                                  |                           | t sig.)     |

## Homework 6.2 – Independent t-test practice- Key

#1: The false consensus effect predicts people overestimate the #2: You wonder if the smell of smoke affects attractiveness prevalence of their own attitude. You ask smokers and nonratings. Each male participant rates the attractiveness of a set of smokers to guess what percent of people aged 18 to 22 smoke. smoking or non-smoking women. a. Type of test? b. Hypotheses? a. Type of test? b. Hypotheses? Indep. t-test Ho: **µ**1 – **µ**2 = 0 Indep. t-test  $HO:\mu_1 - \mu_2 = 0$  $H_{A}: \mu_{1} - \mu_{2} \neq 0$ H<sub>A</sub>: **μ**<sub>1</sub> – **μ**<sub>2</sub> ≠ 0 Group Statistics **Group Statistics** Std. Deviation Std. Error Mean Std. Std. Error Ν Mean Mean Smoking GROUP N Deviation Mean ATTRACT 1 odor 9 22.11 4.23 1.41 Estimate smokers 10 28.00 8.563 2.708 2 no odor 26.44 1.74 9 58 10 21.00 8.756 non-smokers 2.769 ndependent Samples Test F-test significant, Independent Samples Test Levene's Test for Eq of Levene's Test for Eq of Var so use second line. t-test for Equality of Means Var t-test for Equality of Means Std. Err Diff F Sig. (2-tailed) Mean Diff Std. Err Diff Sig. (2-tailed) Mean Diff Sig. t df F Sig. t df Attract Equal variances assumed 6.998 .018 -2.84 16 .012 -4.33 1.52 1.807 .087 7.000 3.873 Estimate Equal variances 13 716 18 assumed Equal variances not -2.84 10.6 .016 -4.33 1.52 17.99 1.807 087 7 000 3.873 Equal variances assumed not assumed c. Show how data c. Show how data g.Diff observed? e. Diff expected (name, e. Measure of f. Chance you'd see would be enetered would be enetered symbol, and value) standard error: this difference into SPSS. Name into SPSS. Name between means by (-) 4.33 Std. Err of the Diff: Std. Err of the Diff: variables and enter variables and sheer chance? 8.7%  $\hat{s}_{\bar{x}_1 - \bar{x}_2} = 3.873$  $\hat{s}_{\bar{x}_1 - \bar{x}_2} = 1.52$ values. enter values. Grp Score Grp Score d. Effect size (do for practice even if not sig.) d. Effect size (do for practice even if not sig.) 1 40 1 19  $= \hat{s}_{\bar{x}_{-}-\bar{x}_{0}} * \sqrt{n} = .1.52 * \sqrt{9} = 4.56$  $\hat{s} = \hat{s}_{\bar{x}_1 - \bar{x}_2} * \sqrt{n} = 3.873 * \sqrt{10} = 12.2475$ <mark>35</mark> <mark>25</mark> 1 1 1 25 1 20  $\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\hat{c}} = \frac{\left|22.11-26.44\right|}{4.56} = .9496$  $d = \frac{\left|\bar{x}_{1} - \bar{x}_{2}\right|}{\hat{s}} = \frac{\left|28 - 21\right|}{12.2475} = .5715$ 30 1 25 1 1 <mark>30</mark> 1 29 1 35 1 25 1 1 20 20 i. Paragraph Writei. Paragraph Write-up 1 10 1 15 The hypothesis was not 1 30 1 21 The hypothesis was supported. supported. The smoker's 1 25 2 29 Participants rated smokers as sig. estimate (M=28%) does not 2 30 2 25 less attractive (M=22.11) 2 <mark>35</mark> differ significantly from that of 2 <mark>28</mark> compared to non-smokers 2 15 2 24 <mark>non-smokers (M=21%), t (18) =</mark> (M=26.44), t (16) = -2.84, p<=.05. 2 2 25 28 1.807, n.s. The effect of smoking on 2 20 2 25 attractiveness was large, 2 <mark>15</mark> 2 27 d=.9496. 2 <mark>30</mark> 2 25 2 2 27 20 2 10 2 10

# Homework 6.3 – Dependent t-tests

| #1: You believe National Public Radio (NPR) provides much better no "News." You have all participants tune-in to a month of one and a m administer a current events quiz after each month. You counterbala of viewing is balanced: Half get NPR first and then Fox; half get Fox far. Type of test?         Baired Samples Statistics         Paired Differences         Paired Differences         Mean       N         Paired Differences         Mean       Std.         Std.       Std.         Extended Differences         Mean       Deviation         Mean       Mean         Paired Differences         Mean       Mean         Paired Differences       000         Paired Deviation       Mean         Paired Differences       000 | nonth of the other, and noce the design so the order | C. Show data format here:         16       18         14       20         13       16         10       15         14       14         13       18         14       14         16       20         14       18         14       14         12       16 |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| e. Measure of standard error (precise name, symbol, & value)?g. Difference observed?f. Chance you'd see this difference between means by sheer chance?h. Formula for df?i. Paragraph Write-up (can use separate paper)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| #2: An international studies advisor suspects he can show that stud improves the self-esteem of students who undertake such a growth is compares the self-reported self-esteem levels of ten students before abroad for a semester.         Paired Samples Statistics         Paired Samples Test         Paired Samples Test         Paired Differences         Mean       to feast         Paired Differences         Mean       to                                                                                                                                                                                                              | inducing experience. She                             | $ \begin{array}{c} & & & \\ \hline \\$                                                                                                                                          |  |  |  |  |  |  |
| e. Appropriate measure of standard error (precise name, symbol, & value)?<br>f. Chance you'd see a difference between the means of this size by sheer chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g. Difference ob<br>nce? h. Standard devi            | served?<br>ation of self-esteem before?                                                                                                                                                                                                               |  |  |  |  |  |  |

i. Paragraph Write-up (can use separate paper)

# Homework 6.3 – Dependent t-tests- Key

| <u>#1</u> : You believe National Public Radio (NPR) provides much better n<br>"News." You have all participants tune-in to a month of one and a r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c. Show data<br>format here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| administer a current events quiz after each month. You counterbala<br>of viewing is balanced: Half get NPR first and then Fox; half get Fox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ince the design so the order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $D = 0 H_{A}; \mu_{D} \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Paired Samples Statistics           Mean         N         Deviation         Mean           Pair         FOX         13.54         13         1.98         .55           1         NPR         16.69         13         2.43         .67           Paired Samples Test           Paired Differences           Mean         Deviation         Mean         t         df         Sig. (2-tailed)           Pair 1         FOX - NPF -3.15         2.03         .56         -5.588         12         .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c. Effect size (do for<br>practice even if not sig.)<br>$d = \frac{ \overline{D} }{\hat{s}_{D}}$ $= \frac{ -3.15 }{2.03}$ $= 1.5517$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13       16 $2$ 14       20         10       15 $3$ $16$ $3$ $16$ 10       15 $4$ $10$ $15$ 14       14 $6$ $13$ $16$ 13       18 $7$ $14$ $14$ 13       18 $7$ $14$ $14$ 13       18 $7$ $14$ $14$ 14       14 $8$ $16$ $20$ 16 $20$ $10$ $14$ $18$ 16 $20$ $10$ $14$ $18$ 16 $20$ $10$ $14$ $14$ 14 $18$ $12$ $16$ $13$ $10$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $12$ $16$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$ $14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| e. Measure of standard error?: Std. Error of the Mean Difference <mark>s</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D = 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| f. Chance you'd see this difference between means by sheer chance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| i. Paragraph Write-up (can use separate paper) The hypothesis was supported. Participants scored higher on current events quiz after listening to NPR (M=16.69) than after watching FOX (M=13.54), t(12) = -5.588, p≤.05. The effect of program type on quiz score was large, d=1.5517.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| p≤.05. The effect of program type on quiz score was larg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <mark>e, d=1.5517.</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| <u>#2</u> : An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y abroad drastically<br>inducing experience. She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. Show data<br>format here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| <u>#2</u> : An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y abroad drastically<br>inducing experience. She<br>e and after they study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c c} & & & & \\ \hline \\ \hline$ |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| #2: An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before abroad for a semester         a. Type of test?       Dependent t-test       b. Hypotheses?         Paired Samples Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y abroad drastically<br>inducing experience. She<br>e and after they study<br>H <sub>0</sub> : μ <sub>D</sub> = 0 H <sub>A</sub> : μ <sub>D</sub> ≠ 0<br>d. <u>Effect size (</u> do for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c} & & & \\ \hline \\ \hline$                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| #2: An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before abroad for a semester         a. Type of test?       Dependent t-test       b. Hypotheses?         Paired Samples Statistics         Mean       N       Deviation         Mean       N       0         Paired Samples Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y abroad drastically<br>inducing experience. She<br>and after they study<br>$H_0: \mu_D = 0 H_A: \mu_D \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Before     After     format here:       4     5     Image: After format here:       6     5     Image: After format here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| #2: An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before abroad for a semester         a. Type of test?       Dependent t-test       b. Hypotheses?         Paired Samples Statistics         Paired Self-esteem before         1       AFTER Self-esteem after       3.90       10       1.20       .38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y abroad drastically<br>inducing experience. She<br>e and after they study<br>$H_0: \mu_D = 0 H_A: \mu_D ≠ 0$<br>d. <u>Effect size</u> (do for<br>practice even if not sig.)<br>$d = \frac{ \overline{D} }{ D }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| #2: An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before abroad for a semester         a. Type of test?       Dependent t-test       b. Hypotheses?         Paired Samples Statistics         Paired Samples Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y abroad drastically<br>inducing experience. She<br>and after they study<br>$H_0: \mu_D = 0  H_A: \mu_D \neq 0$<br>d. <u>Effect size</u> (do for<br>practice even if not sig.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Before       Format here:         4       5         6       5         3       5         3       3         5       4         4       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| #2: An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before abroad for a semester         a. Type of test?       Dependent t-test       b. Hypotheses?         Paired Samples Statistics         Mean       N       Deviation         Pair       BEFORE Self-esteem before       3.90       10       1.20       .38         1       AFTER Self-esteem after       4.40       10       1.17       .37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y abroad drastically<br>inducing experience. She<br>e and after they study<br>$H_0: \mu_D = 0  H_A: \mu_D \neq 0$<br>d. <u>Effect size</u> (do for<br>practice even if not sig.)<br>$d = \frac{ \overline{D} }{s_D}$ $= \frac{ 50 }{1.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| #2: An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before abroad for a semester         a. Type of test?       Dependent t-test       b. Hypotheses?         Paired Samples Statistics         Paired Samples Test         Paired Samples Test         Paired Samples Test         Paired Self-esteer         Mean         Deviation         Mean         Deviation         Mean         Deviation         Mean         Mean         Deviation         Mean         Deviation         Mean         Mean         Deviation      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y abroad drastically<br>inducing experience. She<br>e and after they study<br>$H_0: \mu_D = 0 H_A: \mu_D \neq 0$<br>d. <u>Effect size (do for</u><br>practice even if not sig.)<br>$d = \frac{ \overline{D} }{s_D}$ $= \frac{ 50 }{s_D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bet ore       A       format here:         4       5       format here:         4       5       format here:         4       5       format here:         3       5       format here:         3       3       format here:         3       3       format here:         3       4       format here:         4       5       format here:         3       4       format here:         4       5       format here:         5       4       format here:         4       4       format here:         3       4       format here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| #2: An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before abroad for a semester         a. Type of test?       Dependent t-test       b. Hypotheses?         Paired Samples Statistics         Paired Samples Test         Paired Samples Test         Paired Samples Test         Paired Differences         Mean         Mean         Mean         Mean         Deviation         Mean         Mean         Mean         Mean         Mean         Mean         Mean         Mean         Mean <td <="" colspan="2" td=""><td>y abroad drastically<br/>inducing experience. She<br/>e and after they study<br/><math display="block">H_0: \mu_D = 0  H_A: \mu_D \neq 0</math>d. Effect size (do for<br/>practice even if not sig.)<br/><math display="block">d = \frac{ \overline{D} }{s_D}</math><math display="block">= \frac{ 50 }{1.08}</math><math display="block">= .4630</math></td><td>Before       Format here:         4       5         6       5         3       5         3       5         3       3         5       4         4       4         3       3         5       4         4       4         3       4         4       4         5       7         Data View (N + 1)</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <td>y abroad drastically<br/>inducing experience. She<br/>e and after they study<br/><math display="block">H_0: \mu_D = 0  H_A: \mu_D \neq 0</math>d. Effect size (do for<br/>practice even if not sig.)<br/><math display="block">d = \frac{ \overline{D} }{s_D}</math><math display="block">= \frac{ 50 }{1.08}</math><math display="block">= .4630</math></td> <td>Before       Format here:         4       5         6       5         3       5         3       5         3       3         5       4         4       4         3       3         5       4         4       4         3       4         4       4         5       7         Data View (N + 1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y abroad drastically<br>inducing experience. She<br>e and after they study<br>$H_0: \mu_D = 0  H_A: \mu_D \neq 0$ d. Effect size (do for<br>practice even if not sig.)<br>$d = \frac{ \overline{D} }{s_D}$ $= \frac{ 50 }{1.08}$ $= .4630$                | Before       Format here:         4       5         6       5         3       5         3       5         3       3         5       4         4       4         3       3         5       4         4       4         3       4         4       4         5       7         Data View (N + 1)                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| #2: An international studies advisor suspects he can show that studies improves the self-esteem of students who undertake such a growth compares the self-reported self-esteem levels of ten students before abroad for a semester         a. Type of test?       Dependent t-test       b. Hypotheses?         Paired Samples Statistics         Paired Samples Test         Paired Samples Test         Paired Samples Test         Paired Differences         Mean         Mean         Mean         Mean         Deviation         Mean         Mean         Mean         Mean         Mean         Mean         Mean         Mean         Mean <td <="" colspan="2" td=""><td>y abroad drastically<br/>inducing experience. She<br/>and after they study<br/><math display="block">H_0: \mu_D = 0 H_A: \mu_D \neq 0</math>d. Effect size (do for<br/>practice even if not sig.)<br/><math display="block">d = \frac{ \overline{D} }{s_D}</math><math display="block">= \frac{ 50 }{1.08}</math><math display="block">= .4630</math>g. Difference obs</td><td>Ber form       A       5         4       5       <math>\overline{5}</math>         6       5       <math>\overline{5}</math>         3       5       <math>\overline{4}</math>         2       3       <math>\overline{5}</math>         3       3       <math>\overline{5}</math>         3       3       <math>\overline{5}</math>         4       4       <math>\overline{6}</math>         3       4       <math>\overline{2}</math> <math>\overline{5}</math> <math>\overline{4}</math> <math>\overline{6}</math> <math>\overline{5}</math> <math>\overline{4}</math> <math>\overline{6}</math> <math>\overline{4}</math> <math>\overline{4}</math> <math>\overline{6}</math> <math>\overline{3}</math> <math>\overline{4}</math> <math>\overline{7}</math> <math>\overline{4}</math> <math>\overline{4}</math> <math>\overline{7}</math> <math>\overline{4}</math> <math>\overline{4}</math> <math>\overline{7}</math> <math>\overline{5}</math> <math>\overline{7}</math> <math>\overline{1}</math> <math>\overline{5}</math> <math>\overline{7}</math> <math>\overline{1}</math> <math>\overline{5}</math> <math>\overline{7}</math> <math>\overline{1}</math> <math>\overline{5}</math> <math>\overline{7}</math> <math>\overline{5}</math></td></td> | <td>y abroad drastically<br/>inducing experience. She<br/>and after they study<br/><math display="block">H_0: \mu_D = 0 H_A: \mu_D \neq 0</math>d. Effect size (do for<br/>practice even if not sig.)<br/><math display="block">d = \frac{ \overline{D} }{s_D}</math><math display="block">= \frac{ 50 }{1.08}</math><math display="block">= .4630</math>g. Difference obs</td> <td>Ber form       A       5         4       5       <math>\overline{5}</math>         6       5       <math>\overline{5}</math>         3       5       <math>\overline{4}</math>         2       3       <math>\overline{5}</math>         3       3       <math>\overline{5}</math>         3       3       <math>\overline{5}</math>         4       4       <math>\overline{6}</math>         3       4       <math>\overline{2}</math> <math>\overline{5}</math> <math>\overline{4}</math> <math>\overline{6}</math> <math>\overline{5}</math> <math>\overline{4}</math> <math>\overline{6}</math> <math>\overline{4}</math> <math>\overline{4}</math> <math>\overline{6}</math> <math>\overline{3}</math> <math>\overline{4}</math> <math>\overline{7}</math> <math>\overline{4}</math> <math>\overline{4}</math> <math>\overline{7}</math> <math>\overline{4}</math> <math>\overline{4}</math> <math>\overline{7}</math> <math>\overline{5}</math> <math>\overline{7}</math> <math>\overline{1}</math> <math>\overline{5}</math> <math>\overline{7}</math> <math>\overline{1}</math> <math>\overline{5}</math> <math>\overline{7}</math> <math>\overline{1}</math> <math>\overline{5}</math> <math>\overline{7}</math> <math>\overline{5}</math></td> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y abroad drastically<br>inducing experience. She<br>and after they study<br>$H_0: \mu_D = 0 H_A: \mu_D \neq 0$ d. Effect size (do for<br>practice even if not sig.)<br>$d = \frac{ \overline{D} }{s_D}$ $= \frac{ 50 }{1.08}$ $= .4630$ g. Difference obs | Ber form       A       5         4       5 $\overline{5}$ 6       5 $\overline{5}$ 3       5 $\overline{4}$ 2       3 $\overline{5}$ 3       3 $\overline{5}$ 3       3 $\overline{5}$ 4       4 $\overline{6}$ 3       4 $\overline{2}$ $\overline{5}$ $\overline{4}$ $\overline{6}$ $\overline{5}$ $\overline{4}$ $\overline{6}$ $\overline{4}$ $\overline{4}$ $\overline{6}$ $\overline{3}$ $\overline{4}$ $\overline{7}$ $\overline{4}$ $\overline{4}$ $\overline{7}$ $\overline{4}$ $\overline{4}$ $\overline{7}$ $\overline{5}$ $\overline{7}$ $\overline{1}$ $\overline{5}$ $\overline{7}$ $\overline{1}$ $\overline{5}$ $\overline{7}$ $\overline{1}$ $\overline{5}$ $\overline{7}$ $\overline{5}$ |  |  |  |

i. Paragraph Write-up (can use separate paper) The hypothesis was not supported. Students who studied abroad showed no significant increase in self-esteem after the trip (M=4.40) compared to before (M=3.90), t(9)=-1.464, n.s.



### Homework 6.3A – Annotating Output



## Homework 6.4: Independent & Dependent T-tests

1. Reviewing z and t-scores: Matilda Matador scores a 30 on the extraversion scale whereas normal people score 40 ( $\sigma_x = 5$ ). What percent of people are more extraverted than Matilda?

| a. Are you<br>dealing with a<br>score or a<br>sample mean?<br>Frequency or<br>sample<br>distribution? | b. Find the z or t-score. | c. Roughly sketch the distribution and value. | d. Find the correct<br>percent (for z-<br>scores only). |
|-------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|---------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|---------------------------------------------------------|

2. Reviewing z and t-scores: A group of 25 teenagers forced to watch 20 hours of Barney average 41 on the depression inventory ( $\mu$ =40,  $\sigma_x$ =10). What percent of all teenagers are less depressed than this group?

| a. Are you<br>dealing with a<br>score or a<br>sample mean?<br>Frequency or<br>sample<br>distribution? | b. Find the z or t-score. | c. Roughly sketch the distribution and value. | d. Find the correct<br>percent (for z-<br>scores only). |
|-------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|---------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|---------------------------------------------------------|

3. Reviewing z and t-scores: The "Safe and Speedy" moving company told Opal that the average shipping time was 7 days. Former customers indicated delivery times of 4, 9, 10, 5, 12, and 10 days. Does the 7 days avg. seem plausible based on these data?

| a. Are you<br>dealing with<br>a score or a<br>sample<br>mean?<br>Frequency<br>or sample<br>distribution? | b. Find the z or t-score. | c. Roughly sketch the distribution and value. |
|----------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|
|----------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|

4. Interpreting Independent t-tests: An educational psychologist speculated that students who spent more time reading would have lower hostility scores because they would be better able to reason through to problem solving and express their feelings to others. She designed a reading intensive summer experience that students took each year of junior high school. She randomly 20 students both a control and experimental condition, and evaluated their hostility scores after 3 years.

| Dat     | a:  |        |                    | Gr               | oup Statis | tics                               |           |         | Г              |                |                          |                    |          |
|---------|-----|--------|--------------------|------------------|------------|------------------------------------|-----------|---------|----------------|----------------|--------------------------|--------------------|----------|
| Control | Exp |        | G                  |                  |            | Std.                               | Std. E    | rror    |                | 1= cor         | ntrol                    |                    |          |
| 20      | 15  |        | R                  | N                | Mean       | Deviation                          | Mea       | n       |                | 2 010          | orimontal                |                    |          |
| 30      | 10  | HOSTIL | 1                  | 10               | 29.00      | 7.746                              | 2.        | 449     |                | z=exp          | erimental                |                    |          |
|         |     |        | 2                  | 10               | 18.50      | 6.258                              | 1.        | 979     | -              |                |                          |                    |          |
| 40      | 15  |        |                    |                  |            |                                    |           |         |                |                |                          |                    |          |
| 30      | 20  |        |                    |                  |            |                                    |           |         |                |                |                          |                    |          |
| 20      | 10  |        |                    |                  |            |                                    |           |         |                |                |                          |                    |          |
| 25      | 25  |        |                    |                  |            | Indepe                             | endent Sa | mples T | est            |                |                          |                    |          |
| 20      | 30  |        |                    |                  |            | ene's Test for<br>ity of Variances |           |         | t-             | test for Eq    | uality of Means          |                    |          |
| 30      | 20  |        |                    |                  |            |                                    |           |         |                |                |                          | 95% Cor            | nfidence |
| 35      | 20  |        |                    |                  |            |                                    |           |         | Sig.           | Mean           | Otal Error               | Interval<br>Differ |          |
| 40      | 20  |        |                    |                  | F          | Sig.                               | t         | df      | (2-ta<br>iled) | Differe<br>nce | Std. Error<br>Difference | Lower              | Upper    |
|         |     | HOSTIL | Equal v<br>assume  | ariances<br>ed   | .6         | 35 .436                            | 3.33      | 18      | .004           | 10.50          | 3.149                    | 3.884              | 17.116   |
|         |     |        | Equal v<br>not ass | ariances<br>umed |            |                                    | 3.33      | 17.2    | .004           | 10.50          | 3.149                    | 3.863              | 17.137   |

\* Label as much of the output as possible with the correct symbols. Be sure to distinguish between standard error of the mean and standard error of the difference. \* Show how you'd set up the data to enter it into SPSS

| a) What's the average level of hostility in the                                              | Hypothesis Testing Steps: |    |
|----------------------------------------------------------------------------------------------|---------------------------|----|
| experimental group?                                                                          | 1.                        | 2. |
| b) What's the avg. level of<br>hostility in the control<br>group?                            | 3.                        | 4. |
| c) What's the observed variability?                                                          | 5.                        |    |
| d) What's the expected variability?                                                          |                           |    |
| e) What's t <sub>obt</sub> ?                                                                 |                           |    |
| f) What's the probability<br>you'd see this difference<br>between sample means<br>by chance? |                           |    |

5. Interpreting Dependent T-tests: An I/O psychologist conducts a study to examine the impact of a diversity training workshop for managers. He asks subordinates to rate managers both before and after the weekend workshop to see if managers have become more sensitive (e.g., less likely to use racial stereotypes, more sensitive to the needs of working mothers, respectful of non-Christian holiday requests, etc.). The subordinates rate their supervisors using a measure of tolerance developed by the psychologist. Scores range from 10 (very insensitive) to 50 (extremely sensitive).

| Dat          | а           | Paired Samples Statistics |        |          |     |                   |               |                   |                              |          |        |    |            |
|--------------|-------------|---------------------------|--------|----------|-----|-------------------|---------------|-------------------|------------------------------|----------|--------|----|------------|
| Before<br>25 | After<br>35 |                           |        | Mean     | N   | Std.<br>Deviation |               | l. Error<br>⁄lean |                              |          |        |    |            |
|              |             | Pair                      | BEFORE | 26.25    | 8   | 6.409             | 9             | 2.266             |                              |          |        |    |            |
| 20           | 20          | 1                         | AFTER  | 31.88    | 8   | 9.613             | 3             | 3.399             |                              |          |        |    |            |
| 25           | 30          |                           |        |          |     |                   |               |                   |                              |          |        |    |            |
| 30           | 25          |                           |        |          |     |                   |               |                   |                              |          |        |    |            |
| 25           | 30          |                           |        |          |     |                   |               |                   |                              |          |        |    |            |
| 20           | 40          |                           |        |          |     |                   | Ра            | ired Sam          | ples Test                    |          |        |    |            |
| 25           | 25          |                           |        |          |     |                   |               |                   |                              |          |        |    |            |
| 40           | 50          |                           |        |          |     |                   | P             | aired Diff        | erences                      |          |        |    |            |
|              |             |                           |        |          |     |                   | Std.<br>eviat | Std.<br>Error     | 95% Cor<br>Interva<br>Differ | l of the |        |    | Sig.       |
|              |             |                           |        |          | М   | ean               | ion           | Mean              | Lower                        | Upper    | t      | df | (2-tailed) |
|              |             | Pair 1                    | BEFORE | E - AFTE | R - | 5.63 7            | 7.763         | 2.745             | -12.12                       | .87      | -2.049 | 7  | .080       |

\* Label as much of the output as possible with the correct symbols. Be sure to distinguish between standard error of the mean and standard error of the difference.

\* Show how you'd set up the data to enter it into SPSS

| a) What's the average level of tolerance before?                                          | Hypothesis Testing Steps: |    |
|-------------------------------------------------------------------------------------------|---------------------------|----|
| b)What's the avg. level of tolerance<br>after the training?                               | 1.                        | 2. |
| c) What's the observed difference?                                                        | 3.                        | 4. |
| d) What's the expected difference?                                                        | 5.                        |    |
| e) What's t <sub>obt</sub> ?                                                              |                           |    |
| f) What's the probability you'd see this<br>difference between sample means<br>by chance? |                           |    |

Homework

6. Changing Power: Referring to the study above, indicate for each of the following how the change would affect either sampling error or the treatment effect. Also indicate what would happen to the size of  $t_{obt}$ .

- \_\_\_\_\_a) Increasing the length of the training so it would have more impact on participants.
- \_\_\_\_\_b) Decreasing the number of participants.
- \_\_\_\_\_c) Selecting only participants that started with moderate levels of tolerance.
- \_\_\_\_\_d) Picking managers from several different departments and from very different working conditions.
- \_\_\_\_\_e) Making bonuses for managers contingent on improving the tolerance ratings by subordinates.
- 7. Picking the correct statistic: Indicate which is the appropriate statistic for the following situations:
- a) \_\_\_\_\_\_Determine whether the average number of community service hours of a particular fraternity chapter differs from the 5 hour, nation-wide average.
- b) \_\_\_\_\_Estimate the variability in service hours for individuals across the entire fraternity based on the variability of service hours for the local chapter.
- c) \_\_\_\_\_Compare fraternity and sororities on community service hours. You have 10 members of each.
- d) \_\_\_\_\_Calculate the typical number of Twinkies eaten by the 10 fraternity brothers.
- e) \_\_\_\_\_ Determine the percent of Americans who eat more than the average number of Twinkies eaten by these fraternity brothers ( $\sigma$  =2).
- f) \_\_\_\_\_\_Determine the percent of Americans who eat more than the 92 Twinkies eaten per day by Big John.
- g) \_\_\_\_\_\_Determine whether fraternity brothers watch more television than the 3 hour per day, nation-wide average. Use your sample of 10 fraternity brothers.
- h) \_\_\_\_\_Compare the weight of 10 football players before and after an all Fried Chicken diet.
- i) \_\_\_\_\_Compare 10 football players on the diet for 10 weeks to 10 football players who ate normally (as normally as football players can eat).

## Homework 6.4: Independent & Dependent T-tests- Key

1. Reviewing z and t-scores: Matilda Matador scores a 30 on the extraversion scale whereas normal people score 40 ( $\sigma$ =5). What percent of people are more extraverted Matilda?



2. Reviewing z and t-scores: A group of 25 teenagers forced to watch 20 hours of Barney average 41 on the depression inventory ( $\mu$ =40,  $\sigma$ =10). What percent of all teenagers are less depressed than this group?



3. Reviewing z and t-scores: The "Safe and Speedy" moving company told Opal that the average shipping time was 7 days. Former customers indicated delivery times of 4, 9, 10, 5, 12, and 10 days. Does the 7 days avg. seem plausible based on these data?



4. Interpreting Independent t-tests: An educational psychologist speculated that students who spent more time reading would have lower hostility scores because they would be better able to reason through to problem solving and express their feelings to others. She designed a reading intensive summer experience that students took each year of junior high school. She randomly 20 students both a control and experimental condition, and evaluated their hostility scores after 3 years.

| Da    | ita: |        |                    | Gro              | oup Statist | ics          |         |         |                |                |                          |                              |          |
|-------|------|--------|--------------------|------------------|-------------|--------------|---------|---------|----------------|----------------|--------------------------|------------------------------|----------|
| Cntrl | Exp  |        | G                  |                  |             | Std.         | Std. E  | rror    |                |                |                          |                              |          |
| 20    | 15   |        | R                  | Ν                | Mean        | Deviation    | Mea     | in      |                |                |                          |                              |          |
| 30    | 10   | HOSTIL | 1                  | 10               | 29.00       | 7.746        |         | .449    |                |                |                          |                              |          |
| 40    | 15   |        | 2                  | 10               | 18.50       | 6.258        | 1       | .979    |                |                |                          |                              |          |
| 30    | 20   |        |                    |                  |             |              |         |         |                |                |                          |                              |          |
| 20    | 10   |        |                    |                  |             |              |         |         |                |                |                          |                              |          |
| 25    | 25   |        |                    |                  |             | Indepen      | dent Sa | mples 1 | <b>Fest</b>    |                |                          |                              |          |
| 20    | 30   |        |                    |                  | Leven       | e's Test for |         | -       |                |                |                          |                              |          |
| 30    | 20   |        |                    |                  | Equality    | of Variances |         |         | t-1            | est for Eq     | uality of Means          |                              |          |
| 35    | 20   |        |                    |                  |             |              |         |         | Sig.           | Mean           | Old Farm                 | 95% Cor<br>Interva<br>Differ | l of the |
| 40    | 20   |        |                    |                  | F           | Sig.         | t       | df      | (2-ta<br>iled) | Differe<br>nce | Std. Error<br>Difference | Lower                        | Upper    |
|       |      | HOSTIL | Equal v<br>assume  | ariances<br>ed   | .63         |              | 3.33    | 18      | .004           | 10.50          | 3.149                    | 3.884                        | 17.116   |
|       |      |        | Equal v<br>not ass | ariances<br>umed |             |              | 3.33    | 17.2    | .004           | 10.50          | 3.149                    | 3.863                        | 17.137   |

\* Label as much of the output as possible with the correct symbols. Be sure to distinguish between standard error of the mean and standard error of the difference. \* Show how you'd set up the data to enter it into SPSS

| <u>Group</u> | <u>Hostility</u> |
|--------------|------------------|
| 1            | 20               |
| 1            | 30               |
|              |                  |
| 2            | 15               |
| 2            | 10               |

- \_\_\_\_\_a) <mark>18.50</mark> What's the average level of hostility in the experimental group?
- \_\_\_\_\_b) <mark>29.00</mark> What's the avg. level of hostility in the control group?
- \_\_\_\_\_c) <mark>10.50 What's the observed variability?</mark>
- \_\_\_\_\_d) 3.149 What's the expected variability?
  - \_e) 3.33 What's t<sub>obt</sub>?

\_\_\_\_\_f) <u>.4%</u>What's the probability you'd see this difference between sample means by chance?

#### Hypothesis Testing Steps:

- 1. Compare M<sub>1</sub> & M<sub>2</sub>
- 2. Ho:  $\mu_1 \mu_2 = 0$  Ha:  $\mu_1 \mu_2 = 0$
- 3.  $\alpha$  = .05, df = 18 t<sub>crit</sub> = 2.101
- 4.  $t_{obt} = 3.33$

$$\hat{s} = \hat{s}_{\bar{x}} * \sqrt{n} = 3.149 * \sqrt{10} = 9.9580$$
$$d = \frac{|\bar{x}_1 - \bar{x}_2|}{\hat{s}} = \frac{29 - 18.5}{9.9580} = 1.0544$$

### 5. Reject Ho.

The hypothesis was supported. The average hostility score for the experimental group (M=18.50), was significant lower than that of the control group (M=29.00), t(18) = 3.33,  $p \le .05$ . Reading has a large effect on hostility scores, d=1.0544.

5. Interpreting Dependent T-tests: An I/O psychologist conducts a study to examine the impact of a diversity training workshop for managers. He asks subordinates to rate managers both before and after the weekend workshop to see if managers have become more sensitive (e.g., less likely to use racial stereotypes, more sensitive to the needs of working mothers, respectful of non-Christian holiday requests, etc.). The subordinates rate their supervisors using a measure of tolerance developed by the psychologist. Scores range from 10 (very insensitive) to 50 (extremely sensitive).



\* Label as much of the output as possible with the correct symbols. Be sure to distinguish between standard error of the mean and standard error of the difference. \* Show how you'd set up the data to enter it into SPSS

| After |
|-------|
| 35    |
| 20    |
| 30    |
|       |
|       |

\_a) 26.25 What's the average level of tolerance before?

- \_b) 31.88 What's the avg. level of tolerance after the training?
- \_c) <mark>-5.63</mark> What's the observed difference?
- \_d) 2.745 What's the expected difference?
- \_e) -2.049 What's t<sub>obt</sub>?
- \_f) 8% What's the probability you'd see this difference between sample means by chance?

#### Hypothesis Testing Steps:

1. Compare Dbar & μ<sub>D</sub>

- 2. Ho:  $\mu_D = 0$ ; Ha:  $\mu_D \neq 0$
- 3.  $\alpha = .05$ , df = n-1= 7; t<sub>crit</sub>= 2.365
- 4.  $t_{obt} = -2.049$
- 5. Retain Ho.

The hypothesis was not supported. The average tolerance level of managers after training (M=31.88) is not statistically different from the level before training (M=26.25), t(7) = -2.049, n.s..

6. Changing Power: Referring to the study above, indicate for each of the following how the change would affect either sampling err or the treatment effect. Also indicate what would happen to the size of t<sub>obt</sub>.

Note: Increasing treatment effect always increases tobt; Increasing sampling error always decreases tobt.

- a)  $\uparrow$  treatment effect,  $\uparrow$  tobt Increasing the length of the training so it would have more impact on participants.
- b)  $\bigstar$  sampling error,  $\checkmark$  tobt Decreasing the number of participants.
- c)  $\checkmark$  sampling error ,  $\uparrow$  tobt Selecting only participants that started with moderate levels of tolerance.
- d) 🛧 sampling error,  $\checkmark$  tobt Picking managers from several different departments and from very different working conditions.
- e)  $\uparrow$  treatment effect,  $\uparrow$  tobt Making bonuses for managers contingent on improving the tolerance ratings by subordinates.
- 7. Picking the correct statistic: Indicate which is the appropriate statistic for the following situations:
- a) 1-sample t-test Determine whether the average number of community service hours of a particular fraternity chapter differs from the 5 hour, nation-wide average.
- b) Standard deviation as an estimate, ŝ<sub>x</sub> Estimate the variability in service hours across the entire fraternity based on the variability service hours for the local chapter.
- c) Ind. t-test Compare fraternity and sororities on community service hours. You have 10 members of each.
- d) Mean x<sub>bar</sub> Calculate the typical number of twinkies eaten by the 10 fraternity brothers.
- e) z-score (sampling distribution) Determine the percent of Americans who eat more than the average number of Twinkies eater by these fraternity brothers (σ = 2).
- f) z-score (frequency distribution) Determine the percent of Americans who eat more than the 92 Twinkies eaten per day by Big Jo
- g) 1-sample t-test Determine whether fraternities brothers watch more television than the 3 hour per day, nation-wide average. U your sample of 10 fraternity brothers.
- h) Dependent t-test Compare 10 football players before and after an all Fried Chicken diet.
- i) Independent t-test Compare 10 football players on the diet for 10 weeks to 10 football players who ate normally (as normally as football players can eat).

- A researcher tests whether caffeine increases academic performance and concludes it does not. Which of the following must be true
  - a)  $t_{crit} < t_{obt}$
  - b) p < .05
  - c) she could be making a Type II error
  - d) there was no sampling error
  - e) increasing n would help detect a treatment effect
- 2) A researcher tested whether those primed to have an avoidance orientation took longer to order dinner at a restaurant. To prime the avoidance orientation she had participants in the experimental group try to list five movies no one should see. Which of the following might she do to reduce sampling error?
  - a) Decrease n
  - b) Decrease power
  - c) Standardize the number of items on a menu
  - d) Increase the number of don't-see-movies she requires the person to list in the experimental group.
  - e) Increase the variability in hunger level
- A researcher concludes the new anti-psychotic drug Avernon produces significantly fewer side effects than the market leader and determines the effect size is large. Which of the following must be true?
  - a) There is no chance of a Type I error.
  - b) There were no extraneous variables affecting the DV
  - c) There is no evidence of sampling error
  - d) The observed difference was double (or more) the expected difference
- 4) A researcher suspects that participants will rate spooky stories as scarier if read in low light conditions. She has participants read stories in both low and high light conditions and then rate the stories on scariness. The number of scary elements written into a given story would be ....
  - a) the IV
  - b) the levels of the IV
  - c) the DV

- d) an extraneous variable.
- 5) A researcher wants to test the effectiveness of debating versus lecturing for teaching the use of evidence in writing. He teaches debate in one class, lectures in another, and then tests for differences in essay quality. Which of the following would <u>decrease sampling error</u> in this design:
  - a) run the program for two rather than only one semester
  - b) increasing the intensity of the debate training
  - c) decrease the quality of the lecturing
  - d) a&b
- 6) A researcher wants to test the effectiveness of debating versus lecturing for teaching the use of evidence in writing. He teaches debate in one class, lectures in another, and then tests for differences in essay quality. Making the debate training more focused on the use of evidence would likely make
  - a) Type I error less likely
  - b) Type II error less likely
  - c) it less likely you can exceed t-critical
  - d) it more likely sampling error will increase
- 7) When doing a two sample t-test, an increase in the difference between means would suggest a(n)
  - a) increased treatment effect
  - b) decreased treatment effect
  - c) increased sampling error
  - d) decreases sampling error
- 8) In a t formula, increasing power will yield
  - a) Less Type I error
  - b) More Type II error
  - c) a smaller  $\alpha$  area
  - d) a smaller  $\beta$  area
- 9) As n increases
  - a) Treatment effect increases
  - b) Sampling error increases
  - c)  $\alpha$  increases
  - d) β increases
  - e) Power increases

#### <u>Fill-in</u>

1. If participants are matched by the experimenter then one should conduct a \_\_\_\_\_\_ samples t-test.

2. If the standard deviation in the population is not known we must \_\_\_\_\_\_ it based on the sample.

3. As t<sub>critical</sub> increases t<sub>obtained</sub> \_\_\_\_\_\_. (increases, decreases, or stays the same)

- As n increases standard \_\_\_\_\_\_ will stay the same but standard \_\_\_\_\_\_ will decrease (hint: both are measures of variability).
- 5. In any hypothesis testing formula (z, t, etc.) some measure of variability is on the bottom and it specifies the difference \_\_\_\_\_\_ based solely on sampling error.
- 6. The typical measure of practical significance with the t-test is the \_\_\_\_\_\_ statistic (hint: a specific statistic).
- 7. In an independent t-test, if the treatment effect increases then this may increase the difference between the two \_\_\_\_\_\_ in the formula.
- 8. Unlike the t-distribution, the z-distribution conforms to the \_\_\_\_\_\_ (hint: three word).
- 9. If you wanted to calculate the variability of the points scored per player you'd typically calculate \_\_\_\_\_
- 10. The area under the alternative distribution not designated "power" would be represented by the symbol \_\_\_\_\_\_.
- 11. Determining the size of a treatment effect (after concluding one exists) requires a calculation of \_\_\_\_\_\_ significance.
- 12. For any given t-test, an increase in treatment effect or a decrease in sampling error gives the experimenter more

#### Name that Stat

Use the following choices for the items below

- a. standard deviation
- b. mean
- c. correlation
- d. regression
- e. one-sample z-test
- f. one-sample t-test
- g. two-sample t-test, independent
- h. two-sample t-test, dependent
- i. effect size (d)
- j. the three-sample Zamboni half-twist with triple flip
- 1) \_\_\_\_\_ A researcher examines the effect of music training on math ability. He compares a group of kids with three years of music lessons to a group with no lessons on a math ability test.
- 2) \_\_\_\_\_A researcher tests whether victim sensitivity relates to narcissism. Some of the participants are named Ned.
- 3) \_\_\_\_\_A researcher tests whether auto mechanics score higher than normal (40 pts) on a test of spatial ability.
- 4) \_\_\_\_\_A researcher examines whether former professional football players score differently on a test of verbal recall ( $\mu$ =100,  $\sigma$ =10).
- 5) \_\_\_\_\_ A research attempts to predict someone's narcissism score based on how long they gaze into a mirror mounted in the hallway.
- 6) \_\_\_\_\_ A research measures how long the typical person spends showering after finishing a statistics course.
- 7) \_\_\_\_\_ A researcher tests whether researchers smell worse than normal people. He matches people on smelling ability and then assigns half to smell researchers and have to smell normal people.
- 8) \_\_\_\_\_ A researcher determines that doing research does make people smell funny and now wants to determine how much worse they smell than normal people.
- 9) A stats teacher wants to test whether people have lower social skills than normal after taking a statistics class. He measures the social skills of his most recent class of victims students and compares it to people in general ( $\mu = 100, \sigma = 20$ ).

- A researcher tests whether caffeine increases academic performance and concludes it does not. Which of the following must be true
  - a)  $t_{crit} < t_{obt}$
  - b) p < .05
  - c) she could be making a Type II error
  - d) there was no sampling error
  - e) increasing n would help detect a treatment effect
- 2) A researcher tested whether those primed to have an avoidance orientation took longer to order dinner at a restaurant. To prime the avoidance orientation she had participants in the experimental group try to list five movies no one should see. Which of the following might she do to reduce sampling error?
  - a) Decrease n
  - b) Decrease power
  - c) Standardize the number of items on a menu
  - d) Increase the number of don't-see-movies she requires the person to list in the experimental group.
  - e) Increase the variability in hunger level
- 3) A researcher concludes the new anti-psychotic drug Avernon produces significantly fewer side effects than the market leader and determines the effect size is large. Which of the following must be true?
  - a) There is no chance of a Type I error.
  - b) There were no extraneous variables affecting the DV
  - c) There is no evidence of sampling error
  - The observed difference was double (or more) the expected difference
- 4) A researcher suspects that participants will rate spooky stories as scarier if read in low light conditions. She has participants read stories in both low and high light conditions and then rate the stories on scariness. The number of scary elements written into a given story would be ....
  - a) the IV
  - b) the levels of the IV
  - c) the DV

#### d) an extraneous variable.

- 5) A researcher wants to test the effectiveness of debating versus lecturing for teaching the use of evidence in writing. He teaches debate in one class, lectures in another, and then tests for differences in essay quality. Which of the following would <u>decrease sampling error</u> in this design:
  - a) run the program for two rather than only one semester
  - b) increasing the intensity of the debate training
  - c) using only participants who can read at grade level
  - d) a&b
- 6) A researcher wants to test the effectiveness of debating versus lecturing for teaching the use of evidence in writing. He teaches debate in one class, lectures in another, and then tests for differences in essay quality. Making the debate training more focused on the use of evidence would likely make
  - a) Type I error less likely
  - b) Type II error less likely
  - c) it less likely you can exceed t-critical
  - d) it more likely sampling error will increase
- 7) When doing a two sample t-test, an increase in the difference between means would suggest a(n)
  - a) increased treatment effect
  - b) decreased treatment effect
  - c) increased sampling error
  - d) decreases sampling error
- 8) In a t or F formula, increasing power will yield
  - a) Less Type I error
  - b) More Type II error
  - c) a smaller  $\alpha$  area
  - <mark>d) a smaller β area</mark>
- 9) As n increases
  - a) Treatment effect increases
  - b) Sampling error increases
  - c)  $\alpha$  increases
  - d) β increases
  - e) Power increases

#### <u>Fill-in</u>

- 1. If participants are matched by the experimenter then one should conduct a <u>\_DEPENDENT\_</u> samples t-test.
- 2. If the standard deviation in the population is not known we must <u>\_ESTIMATE\_</u> it based on the sample.
- 3. As t<sub>critical</sub> increases t<sub>obtained</sub> \_\_\_\_\_\_. (increases, decreases, or stays the same)

- 5. In any hypothesis testing formula (z, t, etc.) some measure of variability is on the bottom and it specifies the difference <u>EXPECTED</u> based solely on sampling error.
- 6. The typical measure of practical significance with the t-test is the <u>\_\_\_\_d\_\_\_</u> statistic (hint: a specific statistic).
- 7. In an independent t-test, if the treatment effect increases then this may increase the difference between the two \_\_\_\_\_MEANS\_\_\_ in the formula.
- 8. Unlike the t-distribution, the z-distribution conforms to the <u>\_STANDARD NORMAL CURVE</u> (hint: three word).
- If you wanted to calculate the variability of the points scored per player you'd typically calculate <u>\_\_\_\_\_STANDARD</u> DEVIATION\_\_\_.
- 10. The area under the alternative distribution not designated "power" would be represented by the symbol  $_{\beta}$ .
- 11. Determining the size of a treatment effect (after concluding one exists) requires a calculation of <u>\_\_\_PRACTICAL\_\_\_\_</u> significance.
- 12. For any given t-test, an increase in treatment effect or a decrease in sampling error gives the experimenter more \_\_\_\_\_POWER\_\_\_.

#### Name that Stat

Use the following choices for the items below

- a. standard deviation
- b. mean
- c. correlation
- d. regression
- e. one-sample z-test
- f. one-sample t-test
- g. two-sample t-test, independent
- h. two-sample t-test, dependent
- i. effect size (d)
- j. the three-sample Zamboni half-twist with triple flip
- 1) <u>\_\_\_\_G\_\_\_\_</u> A researcher examines the effect of music training on math ability. He compares a group of kids with three years of music lessons to a group with no lessons on a math ability test.
- 2) <u>C</u>A researcher tests whether victim sensitivity relates to narcissism. Some of the participants are named Ned.
- 3) \_\_\_\_F\_\_\_\_A researcher tests whether auto mechanics score higher than normal (40 pts) on a test of spatial ability.
- 4) <u>E</u>\_\_\_\_A researcher examines whether former professional football players score differently on a test of verbal recall ( $\mu$ =100,  $\sigma$ =10).
- 5) \_\_\_\_\_ A research attempts to predict someone's narcissism score based on how long they gaze into a mirror mounted in the hallway.
- 6) <u>B</u> A research measures how long the typical person spends showering after finishing a statistics course.
- 7) <u>H</u> A researcher tests whether researchers smell worse than normal people. He matches people on smelling ability and then assigns half to smell researchers and have to smell normal people.
- 8) <u>I</u> A researcher determines that doing research does make people smell funny and now wants to determine how much worse they smell than normal people.
- 9) <u>E</u> A stats teacher wants to test whether people have lower social skills than normal after taking a statistics class. He measures the social skills of his most recent class of <del>victims</del> students and compares it to people in general (μ = 100, σ = 20).

# Homework 6.7 Computational Review (Test 2)

All questions worth 6 pt unless otherwise marked.

| For the following set of questions, assume normal people                                                            | e score 50 on the Ceespotrun verbal ability test ( $\sigma$ = 8).                                       |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| 1. Bob scores 66. Calculate his standard score by hand.                                                             | 2. If z = 1.5, what percent score <u>higher</u> ?                                                       |  |  |  |
| 3. If Biff scores 39, what percent score <u>higher</u> ?                                                            | 4. A class of 16 students average 53. Calculate their standard score by hand.                           |  |  |  |
| For questions 5-7, assume normal people score 7 on the Answer the following questions relating to testing for a s   | Wigginout Stress Test. Individuals meditating score 7, 3, 4, & 6. significance difference.              |  |  |  |
| 5. State the correct t critical.6. Calculate standard                                                               | error by hand. [Hint: $\Sigma x^2 = 110$ , $(\Sigma x)^2 = 400$ ]                                       |  |  |  |
| 7. Calculate t <sub>obtained</sub> by hand<br>assuming a standard error of<br>1.0 (don't use what you found in #6). |                                                                                                         |  |  |  |
| 8. Calculate the effect size or state why not needed.                                                               |                                                                                                         |  |  |  |
| For problems 9-11, assume you ask people to rate the se working in a homeless shelter (6,7,6,3,7).                  | verity of their daily problems both before (7,8,5,4,8) and after                                        |  |  |  |
| 9. Use SPSS to calculate the t obtained.                                                                            | 10. Provide the symbol and value of the standard error used by SPSS to produce t $_{\mbox{obtained}}$ . |  |  |  |

|                                                                         |                            |            |                    |                    |               | H                   | Hom |
|-------------------------------------------------------------------------|----------------------------|------------|--------------------|--------------------|---------------|---------------------|-----|
| 11. Explain the results in a paragraph. Assume tobtained = 1.7 (do      | o not use the t            | obtained   | you c              | alculated)         | ). [12 p      | oints]              |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
| For the following set of problems (12-15), compare the number of        | walls rats bum             | p into i   | f the              | y are takir        | ig the d      | rug Dizzore         | ex  |
| (4,3,7,7) vs. a placebo (2,4,2,0).                                      | 1                          |            |                    |                    |               |                     |     |
| 12. Calculate t <sub>obtained</sub> using SPSS.                         | 13. State the              | e H₀ an    | d H <sub>A</sub> I | nypothese          | es.           |                     |     |
| t <sub>obtained</sub> =                                                 |                            |            |                    |                    |               |                     |     |
| 14. Using the two tables below (not your results above), calculate      | the effect size            | or stat    | te wh              | iy not nee         | ded.          |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
| Std. Std. Error                                                         |                            |            |                    | et for Equality    |               |                     | 1   |
| GroupNMeanDeviationMeanBumpsDizzorex45.501.732.866Placebo42.501.000.500 |                            |            | 1-16               | est for Equality   | Mean          | Std. Error          |     |
| Bumps                                                                   | Equal variances<br>assumed | t<br>3.000 | df<br>6            | (2-tailed)<br>.024 | Diff<br>3.000 | Difference<br>1.000 |     |
| 15. Explain the results in paragraph form [12 points]. (Use the tw      |                            | , not yo   | ur re              | esults.)           |               |                     | 1   |
|                                                                         |                            | , <b>,</b> |                    | ,                  |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |
|                                                                         |                            |            |                    |                    |               |                     |     |

### Homework 6.7 Computational Review (Test 2) - Key

All questions worth 6 pt unless otherwise marked.





# Homework 6.8: Conceptual Review T2 (closed book)

Fold paper on middle line. Correct answers on right. Correct letter choice is second to last letter..

| <ol> <li>You study the effect of social loafing (i.e., people slacking off when no one is watching) on team performance. Which of the following might increase the treatment effect?</li> <li>a) Using people from the same department in the corporation</li> <li>b) Using people from different departments within the corporation.</li> <li>c) Using only people named Bob, Brian, or Bartholomew</li> <li>d) Making it harder for team members to track amount of work done by each person</li> <li>e) Making it easier for team members to track amount of work done by each team member</li> </ol>                                                                                                              | abcededf Making monitoring<br>of work done more difficult will<br>likely increase the amount of<br>social loafing (the potential<br>treatment effect).                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>2) If p<sub>obt</sub> increases you become more likely to <ul> <li>a) Retain the Ha</li> <li>b) Reject the Ho</li> <li>c) Reject the Ha</li> <li>d) Retain the Ho</li> <li>e) See t<sub>obt</sub> surpass t<sub>critical</sub></li> <li>f) See t<sub>obt</sub> increase</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | bedegadb Because p <sub>obt</sub><br>indicates the chance the<br>difference is just a fluke, a<br>larger p value makes you more<br>likely to retain Ho – the idea<br>that any difference is just<br>random. (We never<br>retain/reject the Ha.)                                                                                      |
| <ul> <li>3) The existence of a treatment effect becomes more likely when you</li> <li>a) Increase alpha</li> <li>b) Decrease alpha</li> <li>c) See p<sub>obt</sub> getting large</li> <li>d) See t<sub>obt</sub> getting smaller</li> <li>e) Sampling error increases</li> <li>f) Sampling error decreases</li> <li>g) None of the above</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | gabefsgf The answers a,b,e, & f<br>only determine your ability to<br>detect a treatment effect – not<br>whether one exists or not. A<br>larger t or smaller p would<br>suggest the existences is more<br>likely (but the choices are the<br>reverse).                                                                                |
| <ul> <li>4) The effect size statistic "d" is most similar to in purpose to</li> <li>a) t<sub>obt</sub></li> <li>b) t<sub>crit</sub></li> <li>c) z<sub>obt</sub></li> <li>d) regression</li> <li>e) r<sup>2</sup></li> <li>f) p<sub>obt</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bcdedfcea Like d, r <sup>2</sup> indicates<br>something related to practical<br>significance – the amount of<br>variance accounted for.                                                                                                                                                                                              |
| <ul> <li>5) You study whether people who attend church regularly are more or less likely to support the use of military force compared with a group who does not attend regularly. Which of the following would make it more likely you could reject the null hypothesis?</li> <li>a) t<sub>obt</sub> increases; t<sub>critical</sub> increases; alpha increases</li> <li>b) t<sub>obt</sub> decreases; t<sub>critical</sub> decreases; alpha decreases</li> <li>c) t<sub>obt</sub> increases; t<sub>critical</sub> increases; alpha increases</li> <li>d) t<sub>obt</sub> increases; t<sub>critical</sub> increases; alpha decreases</li> <li>e) you threaten to "shoot 'em all and let God sort it out."</li> </ul> | agbhdetcs We always want t <sub>obt</sub><br>large and t <sub>critical</sub> small to<br>optimize chance for rejection.<br>Increasing alpha would increase<br>our willingness to gamble on<br>rejecting (e.g., increasing alpha<br>from .05 to .10 would mean<br>we'd reject 10% of the time<br>rather than just 5% of the<br>time). |

| <ul> <li>6) You study whether people who smoke are more likely to weigh more.<br/>You compare the weight of 10 smokers to 10 non-smokers. Detecting a treatment effect becomes more likely if you <ul> <li>a) Use people of about the same age</li> <li>b) Use only smokers who smoke heavily</li> <li>c) Decrease alpha</li> <li>d) Use only smokers who smoke infrequently</li> <li>e) a &amp; b</li> <li>f) a, b, &amp; c</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                           | adefabec (a) Using only people<br>the same age decreases<br>variability in weight. (b)<br>Smoking is the potential<br>treatment effect, so using<br>heavy smokers would increase<br>the effect if there is one.<br>[Decreasing alpha makes us<br>more conservative about<br>rejecting.] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>7) You ask people to compare a lower-fat and full-fat version of Chocolate Munky-Skunky to determine if people think one tastes better than the other. You use two different groups of people. What factors would decrease sampling error?</li> <li>a) Making the ice cream extra cold instead of just regularly cold.</li> <li>b) Making the low-fat version taste better by adding extra sugar.</li> <li>c) Testing only people who had not eaten within the last 3 hours.</li> <li>d) Testing only people who admit to watching day-time television e) Putting only thin people in the full-fat condition.</li> <li>f) Eating three pounds of each just to make sure it is safe for your participants.</li> </ul> | abdabcecd This is the only<br>option that standardizes across<br>conditions. Option "a" doesn't<br>standardize any more – it's just<br>shifting from one standardized<br>value to another.                                                                                              |
| <ul> <li>8) Using a standardized test of social anxiety (μ = 40, σ = 5), a researcher determines whether social anxiety varies systematically with loneliness. Which statistical procedure is most appropriate?</li> <li>a) Standard deviation</li> <li>b) Sample mean</li> <li>c) Z-test</li> <li>d) One-sample t-test</li> <li>e) Independent t-test</li> <li>f) Dependent t-test</li> <li>g) Correlation</li> <li>h) Regression</li> </ul>                                                                                                                                                                                                                                                                                 | aefcgh Testing whether two<br>variables vary together is a<br>testing for a relationship. It's<br>not regression because you're<br>not making any predictions.                                                                                                                          |
| <ul> <li>9) You ask 10 women to rate how attractive they perceive a particular male to be, and determine the amount of variability in their ratings.</li> <li>a) Standard deviation</li> <li>b) Sample mean</li> <li>c) Z-test</li> <li>d) One-sample t-test</li> <li>e) Independent t-test</li> <li>f) Dependent t-test</li> <li>g) Correlation</li> <li>h) Regression</li> </ul>                                                                                                                                                                                                                                                                                                                                            | bfaefah Simply assessing<br>variability is a descriptive<br>statistic. Standard deviation is<br>our preferred measure of<br>variability.                                                                                                                                                |

Homework

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>10) You compare highly educated (Masters degree or higher) and modestly educated (High School degree) women according to their rankings of attractiveness for men they observe.</li> <li>a) Standard deviation</li> <li>b) Sample mean</li> <li>c) Z-test</li> <li>d) One-sample t-test</li> <li>e) Independent t-test</li> <li>f) Dependent t-test</li> <li>g) Correlation</li> <li>h) Regression</li> </ul>                                                                                                                               | eabbdcec This implies you're<br>looking for a difference<br>between independent groups.                                                                                                                                                                                                        |
| <ul> <li>11) Using a standardized test of social anxiety (μ = 40, σ = 5), a researcher determines whether a sample of construction workers is more anxious than normal. Which statistical procedure is most appropriate?</li> <li>a) Standard deviation</li> <li>b) Sample mean</li> <li>c) Z-test</li> <li>d) One-sample t-test</li> <li>e) Independent t-test</li> <li>f) Dependent t-test</li> <li>g) Correlation</li> <li>h) Regression</li> <li>i) a, e, and g – just to cover all her bases</li> </ul>                                         | aghbiecf One group,<br>hypothesis of difference,<br>standard deviation in the<br>population is known.                                                                                                                                                                                          |
| <ul> <li>12) A researcher examines whether eliminating sugary drinks (soft drinks, sweetened tea, Gatorade, etc.) causes weight loss. She measures the weight of 20 college students before and one month after the change. She might commit a type II error if she <ul> <li>a) Rejects the Ho</li> <li>b) Retains the Ho</li> <li>c) Concludes the diet causes weight loss</li> <li>d) Concludes the diet does not cause weight loss</li> <li>e) Finds that t-obt exceeds t-crit</li> <li>f) b &amp; d</li> <li>g) a &amp; c</li> </ul> </li> </ul> | bcadefa You can only commit<br>type II errors when not<br>rejecting the hypothesis (the<br>same as concluding there is no<br>effect of the independent<br>variable).                                                                                                                           |
| <ul> <li>13) When conducting a correlation, which of the following makes it more likely to reject the Ho?</li> <li>a) a small p; a small r; a large ρ</li> <li>b) a small p; a large r; a large ρ</li> <li>c) a small p; a small r; a small ρ</li> <li>d) a large p; a large r; a small ρ</li> <li>e) a large p; a small r; a small ρ</li> <li>f) a large p; a large r; a large ρ</li> </ul>                                                                                                                                                         | Bdaabdbc A small p means<br>you're more confident there is<br>a correlation. A large r means<br>you're observing a stronger<br>correlation, and a large $\rho$<br>means there actually exists a<br>large correlation in the<br>population for you to observe if<br>you were to sample from it. |

## Homework 6.9 Practice Test for Test #2 -- (Excluding Essay)-Key

Conceptual: Multiple Choice (5 points each)

- 1) As n increases, the shape of the t-distribution becomes \_\_\_\_\_ and t-critical \_\_\_\_\_
  - a) less like a z-distribution; increases
  - b) less like a z-distribution; decreases
  - c) more like a z-distribution; increases
  - d) more like a z-distribution; decreases
- 2) When doing a t-test, a larger difference between the sample and population mean makes which thing more likely?
  - a) the presence of sampling error
  - b) the presence of a treatment effect
  - c) that you can retain the Ho
  - d) that you can reject the Ha
- 3) If the probability level associated with a t-test is .007, we would do which of the following?
  - a) reject the Ho
  - b) recognize the chance of a treatment effect is 0.7
  - c) conclude there is too much error to say there is a treatment effect
  - d) a & b
- 4) When doing a t-test, a decrease in the variability of the raw scores gives the experimenter
  - a) more sampling error
  - b) more power
  - c) a higher standard error
  - d) a larger treatment effect
- 5) Which of the following indicates the degree of impact of the independent variable on the dependent variable?
  - a) power
  - b) inferential statistics
  - c) the d statistic
  - d) the t statistic
- 6) If Beta (β) increases, which of the following must be true?
  - a) treatment effect increases
  - b) alpha (α) decreases
  - c) sampling error decreases
  - d) power decreases
- 7) If an author reports "t(59) = 3.19, p<=.05" she is telling you...
  - a) the probability of Type I error is equal or less than 5%
  - b) the probability of Type II error is equal or less than 5%
  - c) there is too much sampling error to conclude that a treatment effect is present
  - d) there is a 3.19% chance the observed difference is due to chance
- 8) If z-obtained equals 1.99, one could conclude that....
  - a) the chance of obtaining this result by chance is less than or equal to 99%
  - b) there is no treatment effect
  - c) the sample comes from a different population than the Ho distribution
  - d) the chance of a type I error is zero
- 9) A sampling distribution
  - a) shows the distribution of scores based on sampling error
  - b) shows the size of the treatment effect
  - c) shows the amount of power from the treatment effect
  - d) is based on the assumption the null hypothesis is true
- 10) When doing an independent t-test, the \_\_\_\_\_ hypothesis states the means are \_\_\_\_\_
  - a) null; equal
  - b) null; not equal
  - c) research; equal
  - d) research; not equal

11) Cohen's d statistic expresses the effect size in terms of \_\_\_\_\_

- a) standard deviation units
- b) variance units
- c) variance accounted for
- d) mean units
- 12) You want to know if the advertized average class size for a university (20 students) differs significantly from the average class size in your sample of 9 different classes. Which statistic would be the most appropriate?
  - a) correlation
  - b) effect size
  - c) one-sample t-test
  - d) two-sample t-test, independent
- 13) You want to know if job satisfaction is related to job performance. You have data from 60 people. Which statistical procedure is most appropriate?
  - a) Regression
  - b) Correlation
  - c) Independent t-test
  - d) Dependent t-test
- 14) You want to know if the attractiveness of job applicants affects the assessment of their credentials. You have people rate two applicants each by looking at resumes with pictures. The supposed applicants are matched on their job-relevant qualifications. Which statistical procedure is most appropriate?
  - a) Independent t-test
  - b) Correlation
  - c) Regression
  - d) Dependent t-test
- 15) Which of the following statements is TRUE?
  - a) True differences are more likely to be detected if the sample size is large.
  - b) A very low significance level (p-value) increases the chances of a Type I error.
  - c) If the d statistic is a small number, a Type II error is unlikely.
- 16) Rejecting the null hypothesis means the population means are not equal. What does it mean to say a result is statistically significant?
  - a) The observed difference exceeded the expected difference due to sampling error
  - b) The observed difference is too large to be reasonably attributed to sampling error
  - c) Sampling error was so small as to be insignificant
  - d) Sampling error was less than the observed difference
- 17) In regression, we call the variable on the "x" axis the \_\_\_\_\_\_.
- 18) Decreasing sampling error in an experiment gives the experimenter more \_\_\_\_\_.
- 19) When doing a t-test, the standard error of the difference tells you the difference \_\_\_\_\_ between means due to sampling error.
- 20) A \_\_\_\_\_ [two-words] pictures the variability of means expected from sampling error alone.
- 21) The chance that an experimenter will fail to reject the Ho when it should be rejected is represented by \_\_\_\_\_ [symbol].
- 22) The abbreviation used by statisticians for the Sum of the Squared Deviation Scores is \_\_\_\_\_\_.
- 23) The measure of variability used in a two-sample dependent t-test is called standard error of the \_\_\_\_\_ [one or two words].
- 24) Both r<sup>2</sup> and d are examples of \_\_\_\_\_-size statistics.
- 25) Both z and t are examples of tests for \_\_\_\_\_\_ significance.
- 26) If the IV affects the DV we call this impact a \_\_\_\_\_\_. [two-words].

| (for 1-2) You measure people's life satisfaction both before (6,4,5,6,7) and after (5,4,3,4,4) they watch TV show depicting fabulously wealthy families. Using SPSS, test whether there is a statistically significant difference.                                             |                                   |                                                            |                                                                                                                                           |                                                                   |       | <ol> <li>Report the t<sub>obt</sub> value.</li> <li>Report the <i>difference observed</i> and the <i>difference expected</i> for this output.</li> </ol>                                                              |                                                                                                                                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| (for 3-4) You test wea<br>people that join<br>fraternities or<br>sororities report havir<br>lesser or greater numl<br>of close friends<br>(6,4,5,7,7,5) than colle<br>students in general (5)<br>Using SPSS, test wheth<br>there is a statistically<br>significant difference. | 4.<br>ng a ou<br>ber<br>ege<br>). | ummarize the<br>he <u>effect size s</u><br>not appropriate | normal? You find 25 fully-caffeinated<br>on an IQ test ( $\mu = 100$ , $\sigma_x = 15$ ). State<br>value and indicate whether your retain |                                                                   |       | caffeinated people smarter or dumber than<br>1 find 25 fully-caffeinated people average 10<br>( $\mu = 100$ , $\sigma_x = 15$ ). State the correct <b>test</b><br>dicate whether your <b>retain or reject</b> the Ho. |                                                                                                                                 |  |  |
| 6. What <u>percent</u> of stu<br><u>higher</u> than 3.7 (μ=2.7                                                                                                                                                                                                                 |                                   |                                                            | on a depres                                                                                                                               | y group of 9 indivi<br>sion index. What j<br>pressed than this (μ | perce | ent of groups                                                                                                                                                                                                         | 8. In a sampling distribution for the previous problem, what raw score would b one standard unit below the distribution center? |  |  |
|                                                                                                                                                                                                                                                                                | Mean                              | N                                                          | Std. Deviation                                                                                                                            | Std. Error<br>Mean                                                |       |                                                                                                                                                                                                                       | her tested whether people prefer<br>or wombats as pets. Each person had                                                         |  |  |
| Pair 1 warthogs                                                                                                                                                                                                                                                                | 4.71                              | 7                                                          | 1.380                                                                                                                                     | .522                                                              |       | both type                                                                                                                                                                                                             | s for one month; participants then<br>ir satisfaction with each of the two.                                                     |  |  |

#### Paired Samples Test

|        |                    | Paired Differences                           |                |                    |        |       |        |    |                 |
|--------|--------------------|----------------------------------------------|----------------|--------------------|--------|-------|--------|----|-----------------|
|        |                    | 95% Confidence Interval of the<br>Difference |                |                    |        |       |        |    |                 |
|        |                    | Mean                                         | Std. Deviation | Std. Error<br>Mean | Lower  | Upper | t      | df | Sig. (2-tailed) |
| Pair 1 | warthogs - wombats | -2.143                                       | 2.035          | .769               | -4.025 | 260   | -2.785 | 6  | .032            |

9. What percent of time 10. Using the output above, calculate the effect size, or if not appropriate, state "NA."

would you see this difference between the

means solely by chance?

**<u>Paragraph #1.</u>** (10 pts) Write a paragraph explanation of the this outcome on the answer sheet.

11. By hand, test whether biker-gang members (M=8.67, n=9,  $s_x = 1.658$ ) eat more or less than the recommended serving of 10 fruits and vegetables per day. Formally <u>summarize</u> the statistic (you do not need to show hypothesis testing steps).

t-test for Equality of Means

Sig. (2tailed)

.023

.025

df

14.211

16

Std.

Error

Differe

nce

.928

.928

Mean

Differ

ence

-2.33

-2.33

| Group Statistics |              |   |       |                |                    |  |  |  |
|------------------|--------------|---|-------|----------------|--------------------|--|--|--|
|                  | group        | N | Mean  | Std. Deviation | Std. Error<br>Mean |  |  |  |
| helping          | unattractive | 9 | 8.00  | 1.581          | .527               |  |  |  |
|                  | attractive   | 9 | 10.33 | 2.291          | .764               |  |  |  |

Levene's Test for Equal of Var

F

1.426

Independent Samples Test

Sig.

.250

t

-2.514

-2.514

manipulated the attractiveness of a person who dropped pencils in an elevator and then measured the number of pencils people helped pick up.

(for 12-14) An experimenter

12. Indicate the difference **observed** and **expected**.

**Paragraph #2**. Write a paragraph explanation of this outcome in the space provided.

13. Calculate the effect size statistic or state "NA" if not appropriate.

helping

Equal variances

Equal variances not

assumed

assumed

14. Recalculate t-obt by hand assuming the mean for the unattractive condition was 7.00.

| Correlations |                     |        |        |        |        |       |  |  |  |
|--------------|---------------------|--------|--------|--------|--------|-------|--|--|--|
|              |                     | А      | В      | С      | D      | E     |  |  |  |
| A            | Pearson Correlation | 1      | .654   | .766** | .487   | 599   |  |  |  |
|              | Sig. (2-tailed)     |        | .040   | .010   | .154   | .067  |  |  |  |
|              | N                   | 10     | 10     | 10     | 10     | 10    |  |  |  |
| В            | Pearson Correlation | .654*  | 1      | .827** | .867** | 819** |  |  |  |
|              | Sig. (2-tailed)     | .040   |        | .003   | .001   | .004  |  |  |  |
|              | N                   | 10     | 10     | 10     | 10     | 10    |  |  |  |
| С            | Pearson Correlation | .766** | .827** | 1      | .856** | 850** |  |  |  |
|              | Sig. (2-tailed)     | .010   | .003   |        | .002   | .002  |  |  |  |
|              | N                   | 10     | 10     | 10     | 10     | 10    |  |  |  |
| D            | Pearson Correlation | .487   | .867** | .856** | 1      | 861** |  |  |  |
|              | Sig. (2-tailed)     | .154   | .001   | .002   |        | .001  |  |  |  |
|              | N                   | 10     | 10     | 10     | 10     | 10    |  |  |  |
| E            | Pearson Correlation | 599    | 819**  | 850**  | 861**  | 1     |  |  |  |
|              | Sig. (2-tailed)     | .067   | .004   | .002   | .001   |       |  |  |  |
|              | Ν                   | 10     | 10     | 10     | 10     | 10    |  |  |  |

15. The correlation between which two variables is most likely due to chance?

16. How many significant correlations are represented in this matrix?

17. A researcher wanted to estimate the variability of scores in a population based on her sample. Calculate the standard deviation where SS=64 and n=5

# Homework 6.9 Practice Test for Test #2 -- (Excluding Essay)-Key

Conceptual: Multiple Choice (5 points each)

- 1) As n increases, the shape of the t-distribution becomes \_\_\_\_\_ and t-critical \_\_\_\_\_
  - a) less like a z-distribution; increases
  - b) less like a z-distribution; decreases
  - c) more like a z-distribution; increases
  - d) more like a z-distribution; decreases
- 2) When doing a t-test, a larger difference between the sample and population mean makes which thing more likely?
  - a) the presence of sampling error
  - b) the presence of a treatment effect
  - c) that you can retain the Ho
  - d) that you can reject the Ha
- 3) If the probability level associated with a t-test is .007, we would do which of the following?

#### a) reject the Ho

- b) recognize the chance of a treatment effect is 0.7
- c) conclude there is too much error to say there is a treatment effect
- d) a & b
- 4) When doing a t-test, a decrease in the variability of the raw scores gives the experimenter
  - a) more sampling error

#### b) more power

- c) a higher standard error
- d) a larger treatment effect
- 5) Which of the following indicates the degree of impact of the independent variable on the dependent variable?
  - a) power
  - b) inferential statistics
  - c) the d statistic
  - d) the t statistic
- 6) If Beta (β) increases, which of the following must be true?
  - a) treatment effect increases
  - b) alpha ( $\alpha$ ) decreases
  - c) sampling error decreases
  - d) power decreases
- 7) If an author reports "t(59) = 3.19, p<=.05" she is telling you...
  - a) the probability of Type I error is equal or less than 5%
  - b) the probability of Type II error is equal or less than 5%
  - c) there is too much sampling error to conclude that a treatment effect is present
  - d) there is a 3.19% chance the observed difference is due to chance
- 8) If z-obtained equals 1.99, one could conclude that....
  - a) the chance of obtaining this result by chance is less than or equal to 99%
  - b) there is no treatment effect
  - c) the sample comes from a different population than the Ho distribution
  - d) the chance of a type I error is zero
- 9) A sampling distribution
  - a) shows the distribution of scores based on sampling error
  - b) shows the size of the treatment effect
  - c) shows the amount of power from the treatment effect
  - d) is based on the assumption the null hypothesis is true
- 10) When doing an independent t-test, the \_\_\_\_\_ hypothesis states the means are \_\_\_\_\_
  - a) null; equal
  - b) null; not equal
  - c) research; equal
  - d) research; not equal
- 11) Cohen's d statistic expresses the effect size in terms of \_\_\_\_\_

a) standard deviation units

b) variance units

c) variance accounted for

- d) mean units
- 12) You want to know if the advertized average class size for a university (20 students) differs significantly from the average class size in your sample of 9 different classes. Which statistic would be the most appropriate?
  - a) correlation
  - b) effect size

c) one-sample t-test

d) two-sample t-test, independent

13) You want to know if job satisfaction is related to job performance. You have data from 60 people. Which statistical procedure is most appropriate?

a) Regression

b) Correlation

- c) Independent t-test
- d) Dependent t-test
- 14) You want to know if the attractiveness of job applicants affects the assessment of their credentials. You have people rate two applicants each by looking at resumes with pictures. The supposed applicants are matched on their job-relevant qualifications. Which statistical procedure is most appropriate?
  - a) Independent t-test
  - b) Correlation
  - c) Regression
  - d) Dependent t-test

15) Which of the following statements is TRUE?

- a) True differences are more likely to be detected if the sample size is large.
- b) A very low significance level (p-value) increases the chances of a Type I error.
- c) If the d statistic is a small number, a Type II error is unlikely.
- 16) Rejecting the null hypothesis means the population means are equal. What does it mean to say a result is statistically significant?
  - a) The observed difference exceeded the expected difference due to sampling error
  - b) The observed difference is too large to be reasonably attributed to sampling error
  - c) Sampling error was so small as to be insignificant
  - d) Sampling error was less than the observed difference
- 17) In regression, we call the variable on the "x" axis the \_\_\_\_\_\_. Predictor
- 18) Decreasing sampling error in an experiment gives the experimenter more \_\_\_\_\_\_.
- 19) When doing a t-test, the standard error of the difference tells you the difference \_\_\_\_\_ between means due to sampling error. expected
- A \_\_\_\_\_ [two-words] pictures the variability of means expected from sampling error alone. Sampling distribution.
- 22) The abbreviation used by statisticians for the Sum of the Squared Deviation Scores is \_\_\_\_\_\_.
- 23) The measure of variability used in a two-sample dependent t-test is called standard error of the \_\_\_\_\_ [one or two words]. Mean difference.
- 24) Both r<sup>2</sup> and d are examples of \_\_\_\_\_-size statistics. Effect
- 25) Both z and t are examples of tests for \_\_\_\_\_\_ significance. statistical
- 26) If the IV affects the DV we call this impact a \_\_\_\_\_\_ [two-words] treatment effect



#### Paired Samples Test

|    |                         |        |                |                    | 95% Confidenc<br>Differ |       |        |    |                 |
|----|-------------------------|--------|----------------|--------------------|-------------------------|-------|--------|----|-----------------|
|    |                         | Mean   | Std. Deviation | Std. Error<br>Mean | Lower                   | Upper | t      | df | Sig. (2-tailed) |
| Ра | ir 1 warthogs - wombats | -2.143 | 2.035          | .769               | -4.025                  | 260   | -2.785 | 6  | .032            |

26. What percent of time 27. Using the output above, calculate the effect size, or if not appropriate, state "NA."

would you see this difference between the means solely by chance?  $d = \frac{\left|\overline{x} - \overline{x}\right|}{\hat{s}_{D}} = \frac{\left|4.71 - 6.86\right|}{2.035} = 1.0531$ 

<mark>3.2%</mark>

**Paragraph** #1. (10 pts) Write a paragraph explanation of the this outcome on the answer sheet.

The hypothesis was supported. Participants rated wombats significantly higher (M=6.86) than warthogs (M=4.71), t(6)=-2.785,  $p\leq 0.05$ . The effect of animal type on satisfaction was large, d=2.7867.



.001

10

10

.067

\*. Correlation is significant at the 0.05 level (2-tailed). \*\*. Correlation is significant at the 0.01 level (2-tailed)

10

.004

10

.002

10

Sig. (2-tailed)

N

## Homework 6.9A: Overview of z-tests and t-tests

The following questions presents different questions one could answer with different types of statistics. Each assumes a measure of job satisfaction where an individual or group of individuals rates how satisfied they are with their job on a 1 to 7 scale.

Remember, each stat always asks how \_\_\_\_\_\_ is \_\_\_\_\_.

| Problem                                                                                | Info                                    | Type of<br>Distribution &<br>What's Known | Measure of<br>Variability | Formula | Distribution |
|----------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------|---------|--------------|
| Is John more/less<br>satisfied with his<br>job compared to<br>normal people?           | μ = 6<br>x = 8<br>σ = 2                 |                                           |                           |         |              |
| Is the salesgroup<br>more/less<br>satisfied<br>compared to<br>normal people?           | $\mu = 6$ $M = 4$ $\sigma = 2$ $n = 16$ |                                           |                           |         |              |
| Is the salesgroup<br>more/less<br>satisfied than<br>normal people?                     | μ = 6<br>x = 2, 4, 3, & 2<br>n = 4      |                                           |                           |         |              |
| Are day-shift<br>workers more/less<br>satisfied than<br>night-shift<br>workers?        | N:2,1,2,3,2,1,4<br>D:5,3,4,6,2,4,4      |                                           |                           |         | X            |
| Are night-shift<br>workers more/less<br>satisfied after<br>moving to the day<br>shift? | N:2,1,2,3,2,1,4<br>D:5,3,4,6,2,4,4      |                                           |                           |         | X            |

1. <u>Fear & Persuasion</u>: A researcher examines the effect of fear on persuasion. She randomly assigns participants to read an ad for anti-virus software, designed to create (1) Low, (2) Medium, or (3) High fear about computer viruses. Participants then report the amount of money they would be willing to spend on anti-virus software. For each different outcome below (1) Indicate if you reject or retain the outcome, and (2) Write a paragraph explanation of each outcome. Calculate  $\eta^2$  as necessary.

| Outcome #1: Ho: Reject or Retain? |
|-----------------------------------|
|                                   |
| Outcome #2: Ho: Reject or Retain? |
|                                   |
| Outcome #3: Ho: Reject or Retain? |
|                                   |

## Homework 7.1b: 1-way ANOVA

2. Caffeine, Power: In the caffeine study described in class, the difference between 0 mg and 10 mg was not significant. It's possible that there really is a difference between these levels, but that there just wasn't enough power in the experiment's design to pick it up. For the following, explain whether power increases and why.

| a. Changing from 0, 10, & 20 mg to 0, 5, and 10 mg? |  |
|-----------------------------------------------------|--|
| b. Using only rats that have a moderate metabolism? |  |
| c. Using only rats that are hungry?                 |  |
| d. Using only rats that are named Oscar?            |  |

3. Packing Freshmen, Power: An unethical sociologist manipulates levels of crowding for 6 freshmen, randomly assigning them to different conditions of crowding for the semester (2, 3, or 4 roommates in a 10'x10' dorm-room) and observing acts of hostility (number of unflattering comments about a roommate's mother). For each of the following, indicate (a) what could be done with that item (if anything) to increase power, and (b) why the change would increase power.

| a. Size of the dorm-room                         |  |
|--------------------------------------------------|--|
| b. Number of subjects in the study               |  |
| c. The level of agreeableness among participants |  |
| d. The type of tennis shoes worn by participants |  |
| e. The number of roommates (2, 4, or 8)          |  |
| f. The duration of the study                     |  |

## Homework 7.1a: 1-way ANOVA

1. <u>Fear & Persuasion</u>: A researcher examines the effect of fear on persuasion. She randomly assigns participants to read an ad for anti-virus software, designed to create (1) Low, (2) Medium, or (3) High fear about computer viruses. Participants then report the amount of money they would be willing to spend on anti-virus software. For each different outcome below (1) Indicate if you reject or retain the outcome, and (2) Write a paragraph explanation of each outcome. Calculate  $\eta^2$  as necessary.

| Sum of<br>Squares         Mean<br>Square         F         Sig.           Between Groups         1361.667         2         680.833         15         .000           Within Groups         1365.000         27         44.620         .000         .000                                                                                                                                                                                                              | Outcome #1: Ho: ✓Reject or Retain?                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Within Groups         1205.000         27         44.630           Total         2566.667         29                                                                                                                                                                                                                                                                                                                                                                  | $\eta^2 = SS_{BG}/SS_T = 1361.667 \div 2566.667 = .5305$                                                                                                                                                                                                                                                                                                                                               |
| Student-Newman-Keuls <sup>a</sup> Group         N         1         2         3           1         10         13.50         2         10         30.00           2         10         21.50         3         30.00         1.000         1.000           Sig.         10         1.000         1.000         1.000         1.000           Means for groups in homogeneous subsets are displayed.         a. Uses Harmonic Mean Sample Size = 10.000.         30.00 | The hypothesis was supported. Participants in the High fear condition were willing to spend significantly more on the anti-virus software (M = \$30) than those in the Medium condition (M = \$21.5), who in turn would spend more than those in the Low condition (M = \$13.5), F(2,27) = 15, p $\leq$ .05. Fear accounts for approximately 53% of the variance in amount to spend, $\eta^2$ = .5305. |
| Sum of<br>Squares         Mean<br>of<br>Square         F         Sig.           Between Groups         581.667         2         290.833         5.158         .013           Within Groups         1522.500         27         56.389         .013           Total         2104.167         29                                                                                                                                                                       | <u>Outcome #2</u> : Ho: ✓Reject or Retain?<br>$η^2 = SS_{BG}/SS_T = 581.667 \div 2104.167 = .2764$                                                                                                                                                                                                                                                                                                     |
| Student-Newman-KeulðGroupN1211012.0021013.5031022.00Sig6591.000                                                                                                                                                                                                                                                                                                                                                                                                       | The hypothesis was supported. Participants in the High fear condition were willing to spend significantly more on the anti-virus software (M = \$22) than those in the Medium (M = \$13.5) or Low condition (M = \$12), F(2,27) = 5.158, p $\leq$ .05. Fear accounts for approximately 27.64% of the variance in amount to spend, $\eta^2$ = .2764.                                                    |
| Sum of<br>Squares         Mean<br>df         Square         F         Sig.           Between Groups         61.667         2         30.833         .601         .555           Within Groups         1385.000         27         51.296                                                                                                                                                                                                                              | Outcome #3: Ho: Reject or ✓Retain?                                                                                                                                                                                                                                                                                                                                                                     |
| Total 1446.667 29                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\eta^2$ = not required because Ho Retained                                                                                                                                                                                                                                                                                                                                                            |
| Student-Newman-Keuls     a       Group     N       1     10       2     10       3     10       5:g.       Sig.       Means for groups in homogeneous subsets are displayed.       a.     Uses Harmonic Mean Sample Size = 10.000.                                                                                                                                                                                                                                    | The hypothesis was not supported. Participants in the High (M = $$15.50$ ), Medium (M = $$13.5$ ), and Low (M = $$12$ ) fear conditions did not differ in willingness to spend on anti-virus software, F(2,27) = .601, n.s.                                                                                                                                                                            |

## Homework 7.1b: 1-way ANOVA

2. Caffeine, Power: In the caffeine study described in class, the difference between 0 mg and 10 mg was not significant. It's possible that there really is a difference between these levels, but that there just wasn't enough power in the experiment's design to pick it up. For the following, explain whether power increases and why.

| e. Changing from 0, 10, & 20 mg to 0, 5, and 10 mg? | Power decreases: Less treatment effect to cause a difference between groups.                                                      |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| f. Using only rats that have a moderate metabolism? | Power increases: Standardizing metabolism should decrease within group variability in amount of food found (less sampling error). |
| g. Using only rats that are hungry?                 | Power increases: Standardizing hunger should decrease within group variability in amount of food found (less sampling error).     |
| h. Using only rats that are named Oscar?            | No change: No conceivable way rat name could affect DV of food found.                                                             |

3. Packing Freshmen, Power: An unethical sociologist manipulates levels of crowding for 6 freshmen, randomly assigning them to different conditions of crowding for the semester (2, 3, or 4 roommates in a 10'x10' dorm-room) and observing acts of hostility (number of unflattering comments about a roommate's mother). For each of the following, indicate (a) what could be done with that item (if anything) to increase power, and (b) why the change would increase power.

| g. Size of the dorm-room                            | Reducing would increase treatment effect (crowding)                                                                                                                                             |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| h. Number of subjects in the study                  | Increasing would decrease sampling error (larger n).                                                                                                                                            |
| i. The level of agreeableness among<br>participants | Standardizing would decrease sampling error                                                                                                                                                     |
| j. The type of tennis shoes worn by<br>participants | Not relevant                                                                                                                                                                                    |
| k. The number of roommates (2, 4, or 8)             | Increasing would increase treatment effect (crowding)                                                                                                                                           |
| I. The duration of the study                        | Lengthening would increase treatment effect (cumulative<br>impact of crowding) and decrease sampling error (better<br>measurement, similar to increase the number of subjects in<br>the study). |

## Homework 7.2 - 1-Way ANOVA

Study Background: Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772. <u>Summary</u>: Educators tend to favor elaborative learning activities (such as concept mapping) over the retrieval and reconstruction of knowledge (such as taking practice tests). This research examined which learning techniques people thought would be most effective (their metacognitive predictions) AND actual effectiveness. Participants divided into four conditions: Study, Repeated Study, Concept Mapping, & Retrieval Practice. After experiencing the study technique, participants predicted the percent of information they would recall in one week ("metacognitive predictions"). Note: Data are bogus, but designed to mimic the actual results.



The same participants also came back to the lab after one week and took a recall test. The data below show how they actual did on the test. (Note - their actual performance was very different than they predicted it would be in the "metacognitive predictions" portion described on the previous page!)



Sum of Squares

.638

.436

1.074

test\_scr

repeated concept retrieval study mapping practice

group

Ν

8

8

8 8

9. Is there a significant difference? 10. Summarize the F statistic.

Student-Newman-Keuls<sup>a</sup>

concept mapping

repeated study

retrieval practice

.70

.60\* .50-.40-.30 .20

study

Mean of test\_scr

group

study

Sig.

test\_scr

Total

Between Groups

Within Groups

|                                |                                                      |      |      | Study                                                                                          | Rpt<br>Study  | Cncpt<br>Map | Retrv          | To the right is a 1.               |  |  |  |
|--------------------------------|------------------------------------------------------|------|------|------------------------------------------------------------------------------------------------|---------------|--------------|----------------|------------------------------------|--|--|--|
| m Questions                    |                                                      |      |      | 0.28                                                                                           | Study<br>0.46 | Map<br>0.43  | Practc<br>0.68 | graph taken from the actual study. |  |  |  |
|                                |                                                      |      |      |                                                                                                |               |              |                | Let's pretend we                   |  |  |  |
|                                |                                                      |      |      | 0.35                                                                                           | 0.58          | 0.38         | 0.79           | collected the following data.      |  |  |  |
|                                |                                                      |      |      | 0.38                                                                                           | 0.30          | 0.50         | 0.39           | First, show how                    |  |  |  |
|                                |                                                      |      |      | 0.15                                                                                           | 0.54          | 0.50         | 0.59           | you'd enter it into                |  |  |  |
| 100                            |                                                      |      |      | 0.43                                                                                           | 0.36          | 0.30         | 0.81           | SPSS for doing a 1-                |  |  |  |
|                                |                                                      |      |      | 0.39                                                                                           | 0.50          | 0.61         | 0.74           | way ANOVA. In the first row enter  |  |  |  |
|                                |                                                      |      |      | 0.13                                                                                           | 0.30          | 0.39         | 0.59           | appropriate                        |  |  |  |
|                                |                                                      |      |      | 0.16                                                                                           | 0.60          | 0.34         | 0.84           | variable names.                    |  |  |  |
|                                |                                                      |      |      | 2. What's t                                                                                    | he IV:        |              |                |                                    |  |  |  |
| ted Concept Re<br>y Mapping Pr |                                                      |      |      | 3. What are                                                                                    | e the levels  | of the IV:   |                |                                    |  |  |  |
|                                |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
|                                |                                                      |      |      | 1 M/bich or                                                                                    | andition ha   | d the black  | st moon?       | What was it?                       |  |  |  |
| I I I                          |                                                      |      | ,    | 4. VVIILIIC                                                                                    | JULIUII Na    | iu tre night | st medile \    |                                    |  |  |  |
| Mean<br>df Square              | F                                                    | Sig. |      |                                                                                                |               |              |                |                                    |  |  |  |
| 3 .213                         | 5. Which condition had the lowest mean? What was it? |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| 28 .016                        |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| 31                             |                                                      |      |      | 6. What's t                                                                                    | he formula    | for df-BG?   | Show that      | SPSS is correct.                   |  |  |  |
| difforonac2                    |                                                      | !    |      |                                                                                                |               |              |                |                                    |  |  |  |
| difference?                    |                                                      |      |      | 7. What's the formula for df - WG? Show SPPS is correct.                                       |               |              |                |                                    |  |  |  |
| atistic.                       |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
|                                |                                                      |      |      |                                                                                                | a formula     | for FO Murit | alt aut th     |                                    |  |  |  |
|                                |                                                      |      |      | 8. What's the formula for F? Write it out, then plug-in, and show that you get the same value. |               |              |                |                                    |  |  |  |
|                                |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
|                                |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| scr                            |                                                      |      |      | On the post-<br>ficantly from                                                                  |               |              |                |                                    |  |  |  |
|                                |                                                      |      |      | n. Show the s                                                                                  |               |              |                |                                    |  |  |  |
| Subset for alpha               | i = 0.05                                             | _    |      | What percen                                                                                    |               |              |                | -                                  |  |  |  |
| .2838                          | 5                                                    |      |      | /een study ar<br>ce? (HINT: th                                                                 |               | a study be c | bserved jus    | st by                              |  |  |  |
| .4313                          |                                                      |      |      | Summarize th                                                                                   | •             | e here (l've | given you s    | ome hints):                        |  |  |  |
| .4550                          |                                                      |      |      | nypothesis wa                                                                                  |               | -            |                |                                    |  |  |  |
|                                | .6788                                                |      |      |                                                                                                |               | practico roc | allod more     | correct answers                    |  |  |  |
| 1.000 .706                     | 1.000                                                |      | alti |                                                                                                | eretrievar    |              |                |                                    |  |  |  |
|                                |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| P                              |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| /                              |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| /                              |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
|                                |                                                      |      |      | acc                                                                                            | counted for   | a            | amount o       | of variance in,,                   |  |  |  |
|                                |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
|                                |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| ted concept retrieva           | al                                                   |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| ly mapping practic             | e                                                    |      |      |                                                                                                |               |              |                |                                    |  |  |  |
| group                          |                                                      |      |      |                                                                                                |               |              |                |                                    |  |  |  |
|                                |                                                      | I    |      |                                                                                                |               |              |                |                                    |  |  |  |

Homework

## Homework 7.2 – 1-Way ANOVA \*\*\*\*\*KEY\*\*\*\*

Study Background: Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772. Summary: Educators tend to favor elaborative learning activities (such as concept mapping) over the retrieval and reconstruction of knowledge (such as taking practice tests). This research examined which learning techniques people thought would be most effective (their metacognitive predictions) AND actual effectiveness. Participants divided into four conditions: Study, Repeated Study, Concept Mapping, & Retrieval Practice. After experiencing the study technique, participants predicted the percent of information they would recall in one week ("metacognitive predictions"). Note: Data are bogus, but designed to mimic the actual results.



|                    | N  | Mean  | Std.<br>Deviation | Std.<br>Error |
|--------------------|----|-------|-------------------|---------------|
| study              | 8  | .6750 | .14871            | .0525         |
| repeated study     | 8  | .7975 | .09208            | .0325         |
| concept mapping    | 8  | .6838 | .11975            | .0423         |
| retrieval practice | 8  | .5825 | .12092            | .0427         |
| Total              | 32 | .6847 | .13947            | .0246         |

#### tact orr

|                | Sum of<br>Squares | df | Mean<br>Square | F     | Sig. |
|----------------|-------------------|----|----------------|-------|------|
| Between Groups | .186              | 3  | .062           | 4.167 | .015 |
| Within Groups  | .417              | 28 | .015           |       |      |
| Total          | .603              | 31 |                |       |      |

9. Is there a significant difference? <u>yes</u> 10. Summarize the F statistic.

### $F(3, 28) = 4.167, p \le .05.$



study repeated concept retrieval study mapping practice aroup

Rpt Cncpt Retrv To the left is a Study Study Practc graph taken from Map the actual study. 0.50 0.52 0.80 0.60 0.87 0.70 0.62 0.72 0.79 0.90 0.56 0.72 0.59 0.63 0.82 0.45 0.53 0.78 0.70 0.79 0.77 0.90 0.50 0.54 0.78 0.52 0.79 0.57 0.81 0.86

Let's pretend we collected the following data. First, show how you'd enter it into SPSS for doing a 1way ANOVA. In the first row enter appropriate variable names. 0.81 0.47 2. What's the IV: Study Technique 3. What are the levels of the IV: Study, Repeated Study, Concept Mapping, Retrieval Pract. 4. Which condition had the highest mean? What was it?

Repeated Study, M=.7975 5. Which condition had the lowest mean? What was it?

### Retrieval Practice, M=..5825

6. What's the formula for df-BG? Show that SPSS is correct.

### df-BG= K – 1 = 4 – 1 = 3

7. What's the formula for df - WG? Show SPPS is correct.

### df<mark>-WB = NT = K = 32 - 4 = 28</mark>

8. What's the formula for F? Write it out, then plug-in, and show that you get the same value.

### F = MSbg/MSwg = .062/.015 = 4.133

11. On the post-hoc table, circle the means that differ 13. Calculate n<sup>2</sup> here: significantly from one another and draw a line between them. Show the same on the "Means Plot" graph below. 12. What percent of the time would the difference between n<sup>2</sup>= SSbg/SST = .186/.603 study and repeated study be observed just by chance? (HINT: = .3085think "sig") p = .129, 12.9%

14. Summarize the outcome here (I've given you some hints):

The hypothesis was.....supported

Participants in the retrieval practice predicted ....sig. lower scores (M=.5825) than those in the repeated study condition (M=.7975). Predicted scores in the study (M=.6750) and concept mapping conditions (M=.6838) showed no sig diference, F (3, 28) = 4.167, p≤.05.

Study technique accounted for a large amount of variance in recall perf. <mark>n<sup>2</sup>=.3085</mark> .

1.

Grp

Scr

<mark>0.52</mark>

<mark>0.87</mark>

0.79

<mark>0.59</mark>

0.53

0.77

<mark>0.52</mark>

0.81

<mark>0.80</mark>

0.72

0.90

<mark>0.63</mark>

<mark>0.78</mark> <mark>0.90</mark>

0.79

<mark>0.86</mark> <mark>0.60</mark>

<mark>0.70</mark>

<mark>0.56</mark> 0.82

0.70

<mark>0.50</mark>

<mark>0.78</mark>

0.81

<mark>0.50</mark> 0.62

<mark>0.72</mark>

<mark>0.45</mark>

<u>0.79</u>

<mark>0.54</mark>

0.57

0.47

4

4

The same participants also came back to the lab after one week and took a recall test. The data below show how they actual did on the test. (Note - their actual performance was very different than they predicted it would be in the "metacognitive predictions" portion described on the previous page!)



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                   |            |      |                                                                                                                               | r                |                           |                           |                                            |                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|------------|------|-------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|---------------------------|--------------------------------------------|-------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | <b>A</b>                          |            |      | Study                                                                                                                         | Rpt<br>Study     | Cncpt<br>Map              | Retrv<br>Practc           | To the right is a graph taken from         | 1.<br>Grp Scr           |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | verbatim                | Questions                         |            |      | 0.28                                                                                                                          | 0.46             | 0.43                      | 0.68                      | the actual study.                          | 1 0.28                  |  |
| 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                   |            |      | 0.35                                                                                                                          | 0.58             | 0.38                      | 0.79                      | Let's pretend we<br>collected the          | <mark>1 0.35</mark>     |  |
| t 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                   | th .       |      | 0.38                                                                                                                          | 0.30             | 0.50                      | 0.39                      | following data.                            | 1 0.38<br>1 0.15        |  |
| 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                   |            |      | 0.15                                                                                                                          | 0.54             | 0.50                      | 0.59                      | First, show how                            | 1 0.13                  |  |
| 0.5 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ф                       | L                                 |            |      | 0.43                                                                                                                          | 0.36             | 0.30                      | 0.81                      | you'd enter it into<br>SPSS for doing a 1- | <mark>1</mark> 0.39     |  |
| Pt 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | and been                          |            |      | 0.39                                                                                                                          | 0.50             | 0.61                      | 0.74                      | way ANOVA. In the                          | 1 0.13<br>1 0.16        |  |
| 0.6 - 0.5 - 0.0 - 0.4 - 0.3 - 0.4 - 0.3 - 0.4 - 0.3 - 0.4 - 0.3 - 0.4 - 0.3 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - |                         |                                   |            |      | 0.13                                                                                                                          | 0.30             | 0.39                      | 0.59                      | first row enter                            | 2 0.46                  |  |
| 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                   |            |      | 0.16                                                                                                                          | 0.60             | 0.34                      | 0.84                      | appropriate<br>variable names.             | <mark>2 0.58</mark>     |  |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                   |            |      | 0.10                                                                                                                          | 0.00             | 0.01                      | 0.01                      |                                            | 2 0.30<br>2 0.54        |  |
| 0.0 Stud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tu Bonosto              | d Concept R                       | Potrioural |      | 2. What's                                                                                                                     | the IV: Stu      | <mark>dy Techniq</mark>   | <mark>ue</mark>           |                                            | 2 0.34                  |  |
| 3101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Study                   |                                   | ractice    |      | 3. What ar                                                                                                                    | e the levels     | of the IV:                |                           |                                            | 2 <u>0.50</u>           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                   |            |      | Stu                                                                                                                           | dy, Repeate      | d Study, Co               | oncept Map                | ping, Retrieval Pract.                     | 2 0.30<br>2 0.60        |  |
| test say                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                   |            |      |                                                                                                                               |                  |                           |                           | What was it?                               | 3 0.43                  |  |
| test_scr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sum of                  | Mean                              |            |      |                                                                                                                               | etrieval Pra     | 0                         |                           |                                            | 3 0.38                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Squares                 | df Square                         | F          | Sig. | _                                                                                                                             |                  |                           |                           | /hat was it?                               | 3 0.50<br>3 0.50        |  |
| Between Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .638                    | 3 .213                            | 13.65      | .000 |                                                                                                                               |                  |                           |                           | mat was it?                                | 3 0.30                  |  |
| Within Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .436                    | 28 .016                           |            |      |                                                                                                                               | tudy, M=.2       |                           |                           |                                            | 3 0.61                  |  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.074                   | 31                                |            |      | 6. What's the formula for df-BG? Show that SPSS is correct.                                                                   |                  |                           |                           |                                            |                         |  |
| 9. Is there a sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gnificant dif           | fference? <mark>y</mark> e        | es         |      | $\frac{df-BG=K-1=4-1=3}{4}$                                                                                                   |                  |                           |                           |                                            |                         |  |
| 10. Summarize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                       | -                                 |            |      | 7. What's the formula for df - WG? Show SPPS is correct. 4 0.39                                                               |                  |                           |                           |                                            |                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                   |            |      | df-WB = NT = K = $32 - 4 = 28$                                                                                                |                  |                           |                           |                                            |                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                   |            |      | 8. What's the formula for F? Write it out, then plug-in, and show 4 0.81                                                      |                  |                           |                           |                                            |                         |  |
| F (3, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <mark>28) = 13.6</mark> | <mark>5, p≤.05.</mark>            |            |      | that you ge                                                                                                                   | 4 0.74<br>4 0.59 |                           |                           |                                            |                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                   |            |      | F                                                                                                                             | = MSbg/M         | <mark>Swg = .213</mark> . | <mark>/.016 = 13.3</mark> | 3 <mark>125</mark>                         | 4 0.37<br>4 0.84        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | test_so                 | Cr                                |            |      | . On the post-                                                                                                                |                  |                           |                           |                                            | η <sup>2</sup> here:    |  |
| Student-Newma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                   |            |      | nificantly from<br>m. Show the                                                                                                |                  |                           |                           | alow                                       |                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Subset for alph                   |            | 12.  | What percen                                                                                                                   | t of the tim     | e would th                | e difference              | <sup>β</sup> η2= 550g/551                  | = .638/1.074<br>= .5940 |  |
| group<br>study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N 8                     | 1 2<br>2838                       | 3          |      | ween study a<br>ince? (HINT: t                                                                                                |                  |                           |                           | st by                                      | = .3940                 |  |
| concept mappir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | .4313                             |            |      | Summarize t                                                                                                                   |                  |                           |                           | ome hints):                                |                         |  |
| repeated study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       | .4550                             |            |      | hypothesis w                                                                                                                  |                  | •                         | <u>g </u> j               |                                            |                         |  |
| retrieval practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                   | .6788      | 4    |                                                                                                                               |                  |                           |                           |                                            |                         |  |
| Sig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                       | .000 .706                         | 1.000      |      |                                                                                                                               |                  |                           |                           | correct answers(M=.                        |                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                   |            |      | hose in the CM (M=43.13) or RS(M=.4550) conditions, who in turn<br>ecalled more correct answers than those in the S (M=.2838) |                  |                           |                           |                                            |                         |  |
| .70-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | P                                 |            |      |                                                                                                                               |                  |                           |                           | ose in the S (IVI=.28                      | 838)                    |  |
| - <sub>00</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | /                                 |            |      | <mark>ndition, F (</mark>                                                                                                     | 3, 20) =         | 13.00, p                  | <u>s.05.</u>              |                                            |                         |  |
| .50-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a                       | $\rightarrow$                     |            |      |                                                                                                                               |                  |                           |                           |                                            |                         |  |
| уо<br>чо-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                   |            |      |                                                                                                                               |                  |                           |                           |                                            |                         |  |
| -00.<br>-02.<br>-05.<br>-06.<br>-08.<br>-08.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                   |            |      |                                                                                                                               |                  |                           |                           |                                            |                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                   |            |      |                                                                                                                               |                  |                           |                           |                                            |                         |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | study repeated<br>study | d concept retrie<br>mapping pract | tice       | Stu  | udy techniai                                                                                                                  | ue accour        | nted for a                | large                     | amount of variance                         | in _recall              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gr                      | oup                               |            |      | rformance_                                                                                                                    |                  |                           | <u> </u>                  |                                            |                         |  |

|                  | Homework 7.3: S<br>Breakfast |              |           |  |
|------------------|------------------------------|--------------|-----------|--|
| Name that Stat!! |                              | Key Features | Statistic |  |

| Name that Stat!!                                                                                                                                                              | Key Features | Statistic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 1. Which type of saturated fat do people prefer? You ask<br>(the same) 10 people to rate their satisfaction with both<br>bacon and sausage as a breakfast choice.             |              |           |
| 2. What goes best with bacon, orange or pineapple juice?<br>You have 10 people rate their satisfaction with orange-<br>juice, and another 10 people rate pineapple juice.     |              |           |
| 3. You think that smarter people tend to eat more bacon.<br>You measure how pieces 10 customers eat, and how long it<br>takes each to tip (ie, as a measure of intelligence). |              |           |
| 4. Does age moderate artery clogging? You form groups of people aged 10, 20, 30, and 40 years, and measure artery clogging after 5 years of an all bacon diet.                |              |           |
| 5. Do people really tip 15%? You surreptitiously measure the percent given by 15 diners, and compare this to 15%.                                                             |              |           |

6. <u>Output Interpretation</u>: Assume you're comparing 4 different marketing slogans for the restaurant. You run each program for 5 days, and recording how many customers order the advertised special.

|                                                           | N  | Mean  | Std. Deviation | Std. Error |
|-----------------------------------------------------------|----|-------|----------------|------------|
| 1 All you can eat for \$5.99                              | 5  | 8.20  | 2.59           | 1.16       |
| 2 All you can eat for \$5.99, drink included              | 5  | 7.40  | 1.34           | .60        |
| 3 All you can eat for \$5.99, clean restroom              | 5  | 11.40 | 2.41           | 1.08       |
| 4 All you can eat for \$5.99, stats instruction included! | 5  | 13.20 | 2.86           | 1.28       |
| Total                                                     | 20 | 10.05 | 3.25           | .73        |

| CUSTOMRS       |                   |                                                 |                                                      |                                                                            |                                                                                  |
|----------------|-------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                | Sum of<br>Squares | df                                              | Mean Square                                          | F                                                                          | Sig.                                                                             |
| Between Groups | 110.950           | 3                                               | 36.983                                               | 6.575                                                                      | .004                                                                             |
| Within Groups  | 90.000            | 16                                              | 5.625                                                |                                                                            |                                                                                  |
| Total          | 200.950           | 19                                              |                                                      |                                                                            |                                                                                  |
|                | Within Groups     | SquaresBetween Groups110.950Within Groups90.000 | SquaresdfBetween Groups110.9503Within Groups90.00016 | SquaresdfMean SquareBetween Groups110.950336.983Within Groups90.000165.625 | SquaresdfMean SquareFBetween Groups110.950336.9836.575Within Groups90.000165.625 |

|                                                       | student-ivewman-keuis                                           |   | -    |                   | 14                                                                      |
|-------------------------------------------------------|-----------------------------------------------------------------|---|------|-------------------|-------------------------------------------------------------------------|
|                                                       |                                                                 |   |      | set for $t = .05$ | 13 -                                                                    |
| On a congrate cheet of paper                          | SPECIAL                                                         | Ν | 1    | 2                 | 12 -                                                                    |
| On a separate sheet of paper,<br>explain the outcome. | 2 All you can eat for<br>\$5.99, drink included                 | 5 | 7.40 |                   | 11 -                                                                    |
|                                                       | 1 All you can eat for \$5                                       | 5 | 8.20 |                   | ος 10 -<br>Ος 10 -                                                      |
|                                                       | 3 All you can eat for<br>\$5.99, clean restroom                 | 5 |      | 11.40             |                                                                         |
|                                                       | 4 All you can eat for<br>\$5.99, stats instruction<br>included! | 5 |      | 13.20             | 8     7       8     7       All you can eat for     All you can eat for |
|                                                       | Sig.                                                            |   | .601 | .248              | SPECIAL                                                                 |
|                                                       |                                                                 |   |      |                   |                                                                         |

Homework

| Homework 7.3: St<br>Breakfast!!!-                                                                                                                                       |                                                                              |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|
| Name that Stat!!                                                                                                                                                        | Key Features                                                                 | Statistic         |
| 1. Which type of saturated fat do people prefer? You ask (the same) 10 people to rate their satisfaction with both bacon and sausage as a breakfast choice.             | <ul> <li>2 groups of data</li> <li>Subjects matched (same people)</li> </ul> | Dept. t-test      |
| 2. What goes best with bacon, orange or pineapple juice? You have 10 people rate their satisfaction with orange-juice, and another 10 people rate pineapple juice.      | <ul> <li>2 groups of data</li> <li>Subjects not-matched</li> </ul>           | Indep. t-test     |
| 3. You think that smarter people tend to eat more bacon. You measure how pieces 10 customers eat, and how long it takes each to tip (ie, as a measure of intelligence). | <ul><li>1 group (2 variables)</li><li>Hypothesis of relationship</li></ul>   | Correlation       |
| 4. Does age moderate artery clogging? You form groups of people aged 10, 20, 30, and 40 years, and measure artery clogging after 5 years of an all bacon diet.          | <ul><li>4 groups of data</li><li>Only 1 IV (age)</li></ul>                   | 1-way ANOVA       |
| 5. Do people really tip 15%? You surreptitiously measure the percent given by 15 diners, and compare this to 15%.                                                       | <ul><li>1 group</li><li>Hypothesis of difference</li></ul>                   | One sample t-test |

6. <u>Output Interpretation</u>: Assume you're comparing 4 different marketing slogans for the restaurant. You run each program for 5 days, and recording how many customers order the advertised special.

| 1 All you can eat for \$5.99                                                                                        | CUSTOMRS       |                   |    |             |       |      |
|---------------------------------------------------------------------------------------------------------------------|----------------|-------------------|----|-------------|-------|------|
| <ul><li>2 All you can eat for \$5.99, drink included</li><li>3 All you can eat for \$5.99, clean restroom</li></ul> |                | Sum of<br>Squares | df | Mean Square | F     | Sig. |
| 4 All you can eat for \$5.99, stats instruction included!                                                           | Between Groups | 110.950           | 3  | 36.983      | 6.575 | .004 |
| Total                                                                                                               | Within Groups  | 90.000            | 16 | 5.625       |       |      |
|                                                                                                                     | Total          | 200.950           | 19 |             |       |      |
|                                                                                                                     |                |                   |    |             |       |      |

| What are your hypotheses?                                                              | The hypothesis was supported. The number of orders generated by                                                                                                 |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>0</sub> : $\mu_1 = \mu_2 = \mu_3 = \mu_4$<br>H <sub>A</sub> : Not all μ's equal | offering (in addition to base offer) a clean restroom (M=11.40) or stats instruction (M=13.20) significantly exceeded that generated by offering                |
|                                                                                        | nothing additional (M=8.20) or a free drink (M=7.40), F(3,16) = 6.575, p<br>$\leq .05$ . Offer type accounted for about 55% of the variance in orders, $\eta^2$ |
| Summarize F.                                                                           | = .5521.                                                                                                                                                        |

|                                       | Student-inewman-reuis                                           |   |               |                 |                                                                                 |
|---------------------------------------|-----------------------------------------------------------------|---|---------------|-----------------|---------------------------------------------------------------------------------|
| <mark>F(3,16) = 6.575, p ≤ .05</mark> |                                                                 |   | Subs<br>alpha | et for<br>= .05 | 14                                                                              |
|                                       | SPECIAL                                                         | N | 1             | 2               |                                                                                 |
|                                       | 2 All you can eat for<br>\$5.99, drink included                 | 5 | 7.40          |                 | 12<br>11                                                                        |
|                                       | 1 All you can eat for \$5.99                                    | 5 | 8.20          |                 |                                                                                 |
|                                       | 3 All you can eat for<br>\$5.99, clean restroom                 | 5 |               | 11.40           | CUSTOWIRS<br>6<br>6                                                             |
|                                       | 4 All you can eat for<br>\$5.99, stats instruction<br>included! | 5 |               | 13.20           | 8 au of                                                                         |
|                                       | Sig.                                                            |   | .601          | .248            | All you can eat for |
|                                       |                                                                 |   |               |                 | SPECIAL                                                                         |
|                                       |                                                                 |   |               |                 |                                                                                 |
|                                       |                                                                 |   |               |                 |                                                                                 |

### Study Background: Read Carefully!!

Social psychologists have studied extensively the variables that influence the ability of a speaker to persuade an audience to take the speaker's position on an issue. One important factor that influences the amount of attitude change a speaker can generate is the discrepancy between the position advocated by the speaker and the position of the audience. Up to a point, the more discrepant the speaker's position, the greater the attitude change that will result. However, if the speaker's position becomes too discrepant, the speaker looses credibility and the message is less persuasive.

It has been hypothesized that the nature of the relationship between message discrepancy and attitude change differs, depending on the expertise of the speaker, formally referred to as the source. According to this perspective, speakers with high expertise can take much more discrepant positions that speakers with low expertise and still obtain large amounts of attitude change. As an example of how this proposition could be tested, consider the following hypothetical experiment.

College students evaluated the quality of a passage of poetry on a 21-point scale and then listened to a taped message concerning this passage that was presented as representing the opinion of either an expert (a famous poetry critic) or a non-expert (an undergraduate student enrolled in a creative writing class). The messages were identical except for which source they were attributed to. In addition, the messages were constructed to be either slightly discrepant, moderately discrepant, or highly discrepant from students' initial ratings of quality. For example, in the large-discrepancy condition, if a student rated the passage as being relatively high in quality, the message argued that the passage was low in quality. For example, in the large-discrepancy condition, if a student rated that the relatively high in quality, the message, argued that the passage was low in quality. After listening to the message, students re-rated the poetry. The resulting design was a 3 x 2 factorial with three levels of message discrepancy (small, medium, or large) and two levels of source expertise (high versus low). The dependent variable was the amount of change in the quality ratings after listening to the message. Scores could range from -20 to +20, with higher values indicating grater attitude change in the direction advocated by the source. The data for the experiment are presented below along with intermediate statistics necessary to calculate the sums of squares.



| 4. Determine the typical Attitude<br>Change occurring when participants<br>experienced a large discrepancy from<br>a source low in expertise? Report the<br>appropriate mean (row, column, or<br>cell).       5. What condition produced the most<br>attitude change? Report the<br>appropriate mean (row, column, or<br>cell).         7. Which type of<br>message discrepancy<br>produced the largest<br>attitude change?<br>Report the<br>appropriate mean<br>(row, column, or cell).       8. Explain why we can't just base our interpretation of th<br>an ANOVA? Mention the difference between sample me<br>answer.         9. Complete this source of variation table.       50.40         Source of V.       SS       df       MS       F-obt         Msg Discrep.       50.40       361.00         A*B       45.067       533       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6. Which type of authorit<br>the most attitude change<br>appropriate mean (row, o<br>cell).<br>e results on the graph. Why<br>ans and population means      | e? Report the<br>column, or                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 4. Determine the typical Attitude<br>Change occurring when participants<br>experienced a large discrepancy from<br>a source low in expertise? Report the<br>appropriate mean (row, column, or<br>cell).       5. What condition produced the most<br>attitude change? Report the<br>appropriate mean (row, column, or<br>cell).         7. Which type of<br>message discrepancy<br>produced the largest<br>attitude change?<br>Report the<br>appropriate mean<br>(row, column, or cell).       8. Explain why we can't just base our interpretation of th<br>an ANOVA? Mention the difference between sample me<br>answer.         9. Complete this source of variation table.         Source of V.       SS       df       MS       F-obt         Msg Discrep.       50.40       1       361.00         A*B       45.067       1       361.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n:<br>6. Which type of authorit<br>the most attitude change<br>appropriate mean (row, o<br>cell).<br>e results on the graph. Wh<br>ans and population means | e? Report the<br>column, or<br>ny must we do<br>in your |
| 4. Determine the typical Attitude<br>Change occurring when participants<br>experienced a large discrepancy from<br>a source low in expertise? Report the<br>appropriate mean (row, column, or<br>cell).       5. What condition produced the most<br>attitude change? Report the<br>appropriate mean (row, column, or<br>cell).         7. Which type of<br>message discrepancy<br>produced the largest<br>attitude change?<br>Report the<br>appropriate mean<br>(row, column, or cell).       8. Explain why we can't just base our interpretation of th<br>an ANOVA? Mention the difference between sample me<br>answer.         9. Complete this source of variation table.         9. Complete this source of variation table.         Source of V.       SS       df       MS       F-obt         Msg Discrep.       50.40       1       361.00         A*B       45.067       1       361.00         Fror       12.8       .533       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6. Which type of authorit<br>the most attitude change<br>appropriate mean (row, o<br>cell).<br>e results on the graph. Why<br>ans and population means      | e? Report the<br>column, or<br>ny must we do<br>in your |
| 4. Determine the typical Attitude<br>Change occurring when participants<br>experienced a large discrepancy from<br>a source low in expertise? Report the<br>appropriate mean (row, column, or<br>cell).       5. What condition produced the most<br>attitude change? Report the<br>appropriate mean (row, column, or<br>cell).         7. Which type of<br>message discrepancy<br>produced the largest<br>attitude change?<br>Report the<br>appropriate mean<br>(row, column, or cell).       8. Explain why we can't just base our interpretation of th<br>an ANOVA? Mention the difference between sample me<br>answer.         9. Complete this source of variation table.       50.40         Source of V.       SS       df       MS       F-obt         Msg Discrep.       50.40       361.00         A*B       45.067       .533       .533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6. Which type of authorit<br>the most attitude change<br>appropriate mean (row, o<br>cell).<br>e results on the graph. Why<br>ans and population means      | e? Report the<br>column, or<br>ny must we do<br>in your |
| Change occurring when participants experienced a large discrepancy from a source low in expertise? Report the appropriate mean (row, column, or cell).       attitude change? Report the appropriate mean (row, column, or cell).         7. Which type of message discrepancy produced the largest attitude change? Report the an ANOVA? Mention the difference between sample mean (row, column, or cell).       8. Explain why we can't just base our interpretation of th an ANOVA? Mention the difference between sample meanswer.         9. Complete this source of variation table.       9. Complete this source of variation table.         Source of V.       SS       df       MS       F-obt         Msg Discrep.       50.40       361.00         A*B       45.067       1       361.00         Fror       12.8       .533       1       361.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the most attitude change<br>appropriate mean (row, o<br>cell).<br>e results on the graph. Wh<br>ans and population means                                    | e? Report the<br>column, or<br>ny must we do<br>in your |
| message discrepancy<br>produced the largest<br>attitude change?<br>Report the<br>appropriate mean<br>(row, column, or cell).an ANOVA? Mention the difference between sample me<br>answer.9. Complete this source of variation table.9. Complete this source of variation table.9. Complete this source of variation table.9. Source of V.Source of V.SSdfMsg Discrep.50.40Source Expertise192.531361.00A*B45.067Error12.8Source Intervention533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ans and population means                                                                                                                                    | in your                                                 |
| Source of V.       SS       df       MS       F-obt         Msg Discrep.       50.40       Image: Constraint of the second of the                                                                       | F-crit                                                                                                                                                      | η²                                                      |
| Msg Discrep.         50.40         Image: Constraint of the second | F-crit                                                                                                                                                      | η <sup>2</sup>                                          |
| Source Expertise         192.53         1         361.00           A*B         45.067         .533         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                         |
| A*B     45.067       Error     12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |                                                         |
| Error 12.8 .533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .1!                                                                                                                                                         | 5                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |                                                         |
| Total 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                         |
| Post-hoc test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                         |
| Subset         10. Summarize the three F tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the relation between                                                                                                                                    | the μ's.                                                |
| descrepancy N 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |                                                         |
| small 10 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                         |
| medium 10 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |                                                         |
| large 10 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                         |
| Sig. 1.000 .079<br>11. On a separate piece of paper<br>paragraph form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             | the analysis i                                          |

### Study Background: Read Carefully!!

Social psychologists have studied extensively the variables that influence the ability of a speaker to persuade an audience to take the speaker's position on an issue. One important factor that influences the amount of attitude change a speaker can generate is the discrepancy between the position advocated by the speaker and the position of the audience. Up to a point, the more discrepant the speaker's position, the greater the attitude change that will result. However, if the speaker's position becomes too discrepant, the speaker looses credibility and the message is less persuasive.

It has been hypothesized that the nature of the relationship between message discrepancy and attitude change differs, depending on the expertise of the speaker, formally referred to as the source. According to this perspective, speakers with high expertise can take much more discrepant positions that speakers with low expertise and still obtain large amounts of attitude change. As an example of how this proposition could be tested, consider the following hypothetical experiment.

College students evaluated the quality of a passage of poetry on a 21-point scale and then listened to a taped message concerning this passage that was presented as representing the opinion of either an expert (a famous poetry critic) or a non-expert (an undergraduate student enrolled in a creative writing class). The messages were identical except for which source they were attributed to. In addition, the messages were constructed to be either slightly discrepant, moderately discrepant, or highly discrepant from students' initial ratings of quality. For example, in the large-discrepancy condition, if a student rated the passage as being relatively high in quality, the message argued that the passage was low in quality. For example, in the large-discrepancy condition, if a student rated that the relatively high in quality, the message argued that the passage, argued that the passage was low in quality. After listening to the message, students re-rated the poetry. The resulting design was a 3 x 2 factorial with three levels of message discrepancy (small, medium, or large) and two levels of source expertise (high versus low). The dependent variable was the amount of change in the quality ratings after listening to the message. Scores could range from - 20 to +20, with higher values indicating grater attitude change in the direction advocated by the source. The data for the experiment are presented below along with intermediate statistics necessary to calculate the sums of squares.



|                                                                                                                                                                                                                                                                     |                                               |                                                                                                        |                         | 110110                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| 2. State the 3 null hypotheses you                                                                                                                                                                                                                                  | can te                                        | est with a 2-way ANOVA.                                                                                | 3. De                   | scribe the study design:                                                                                                   |  |
| Ho: Message Discrepancy: µ <sub>small</sub>                                                                                                                                                                                                                         | = <b>μ</b> m                                  | ned = <b>µ</b> large                                                                                   | 2x3 a=2 b=3             |                                                                                                                            |  |
| Ho: Source Expertise: $\mu_{high} = \mu_{lov}$                                                                                                                                                                                                                      | w                                             |                                                                                                        | [OR                     | 3x2 a=3 b=2]                                                                                                               |  |
| Ho: No Interaction                                                                                                                                                                                                                                                  |                                               |                                                                                                        |                         |                                                                                                                            |  |
| <ul> <li>4. Determine the typical Attitude</li> <li>Change occurring when participants experienced a large discrepancy from a source low in expertise? Report the appropriate mean (row, column, or cell).</li> <li>Llight Expertise 2</li> </ul>                   |                                               |                                                                                                        |                         | 6. Which type of authority produces<br>the most attitude change? Report the<br>appropriate mean (row, column, or<br>cell). |  |
| Large Disc (M = 1)                                                                                                                                                                                                                                                  | High Expertise &<br>Large Discrepancy (M = 9) |                                                                                                        | High Expertise (M=6.33) |                                                                                                                            |  |
| 7. Which type of message<br>discrepancy produced the largest<br>attitude change? Report the<br>appropriate mean (row, column, or                                                                                                                                    | mus                                           | xplain why we can't just base our i<br>st we do an ANOVA? Mention the<br>ulation means in your answer. | •                       | retation of the results on the graph. Why<br>ence between sample means and                                                 |  |
| <ul> <li>appropriate mean (row, column, or cell).</li> <li>Large Discrp (M=5)</li> <li>The graph only shows differences between sample means try represent population means. To determine if apparent differences among population new conduct an ANOVA.</li> </ul> |                                               |                                                                                                        |                         |                                                                                                                            |  |

9. Complete this source of variation table.

| Source of V.     | SS     | df | MS     | F-obt  | F-crit | η²    |
|------------------|--------|----|--------|--------|--------|-------|
| Msg Discrep.     | 50.40  | 2  | 25.2   | 47.279 | 3.40   | .1676 |
| Source Expertise | 192.53 | 1  | 192.53 | 361.00 | 4.26   | .64   |
| A*B              | 45.067 | 2  | 22.533 | 42.277 | 3.40   | .15   |
| Error            | 12.8   | 24 | .533   |        |        |       |
| Total            | 300.8  | 29 |        |        |        |       |

### Post-hoc test

|             |    | Subset |      |  |  |
|-------------|----|--------|------|--|--|
| descrepancy | Ν  | 1      | 2    |  |  |
| small       | 10 | 2.00   |      |  |  |
| medium      | 10 |        | 4.40 |  |  |
| large       | 10 |        | 5.00 |  |  |
| Sig.        |    | 1.000  | .079 |  |  |
|             |    |        |      |  |  |
|             |    |        |      |  |  |
|             |    |        |      |  |  |

10. Summarize the three F tests and the relation between the  $\mu^{\prime}s.$ 

| F(2,24) = 47.279, p ≤ .05 | $\mu_{\text{medium}}$ and $\mu_{\text{large}} > \mu_{\text{small}}$ |
|---------------------------|---------------------------------------------------------------------|
| F(1,24) = 361.00, p ≤ .05 | $\mu$ high exp > $\mu$ low exp                                      |
| F(2,24) = 42.277, p ≤ .05 |                                                                     |

11. On a separate piece of paper, explain the outcome of the analysis in paragraph form.



### **Descriptive Statistics**

#### Dependent Variable: att\_change expertise high Std. Deviation discrep Ν Mean small 3.00 .707 5 medium 7.00 .707 5 large 9.00 .707 5 Total 6.33 2.664 15 low small 5 1.00 .707 medium 1.80 .837 5 large .707 5 1.00 Total 1.27 .799 15 Total small 10 2.00 1.247 medium 4.40 2.836 10 large 5.00 4.269 10 Total 3.80 3.221 30

### att\_change

Student-Newman-Keuls<sup>a,b</sup>

|         |    | Subset |      |  |  |
|---------|----|--------|------|--|--|
| discrep | Ν  | 1      | 2    |  |  |
| small   | 10 | 2.00   |      |  |  |
| medium  | 10 |        | 4.40 |  |  |
| large   | 10 |        | 5.00 |  |  |
| Sig.    |    | 1.000  | .079 |  |  |

Maana far arawaa in hamaaanaawa awhaata ara diank

| Dependent Variable: att_change |                      |    |             |         |      |  |  |  |  |  |
|--------------------------------|----------------------|----|-------------|---------|------|--|--|--|--|--|
|                                | Type III Sum         |    |             |         |      |  |  |  |  |  |
| Source                         | of Squares           | df | Mean Square | F       | Sig. |  |  |  |  |  |
| Corrected Model                | 288.000 <sup>a</sup> | 5  | 57.600      | 108.000 | .000 |  |  |  |  |  |
| Intercept                      | 433.200              | 1  | 433.200     | 812.250 | .000 |  |  |  |  |  |
| expertise                      | 192.533              | 1  | 192.533     | 361.000 | .000 |  |  |  |  |  |
| discrep                        | 50.400               | 2  | 25.200      | 47.250  | .000 |  |  |  |  |  |
| expertise * discrep            | 45.067               | 2  | 22.533      | 42.250  | .000 |  |  |  |  |  |
| Error                          | 12.800               | 24 | .533        |         |      |  |  |  |  |  |
| Total                          | 734.000              | 30 |             |         |      |  |  |  |  |  |
| Corrected Total                | 300.800              | 29 |             |         |      |  |  |  |  |  |
|                                | · · · · · - '        |    | · · · ·     |         |      |  |  |  |  |  |

## Homework 8.2: Setting up Data for 2-way ANOVA

| 1. As you watch the website lecture | 2. Study Design: Participants rate the |  |  |
|-------------------------------------|----------------------------------------|--|--|
| video SPSS data entry for 2-way     | morality (DV) of described behaviors   |  |  |
| ANOVA, show proper data setup for   | (bad or good) under different lighting |  |  |
| problems #1 & #2                    | levels (low, med, high).               |  |  |
|                                     | ievels (iow, med, mgn).                |  |  |

| Homework |
|----------|
| nomework |

| $\frac{   }{y} = \frac{   }{y} = \frac{   }{y} = \frac{   }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }{y} = \frac{  }$ |          | Toy Color                       |                                                                                                                                      |      |                  |           |        | поше      | ework |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------|------------------|-----------|--------|-----------|-------|
| Boy ()       6       3         Boy ()       6       3         Girl()       5       10         6       11         Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| Girl()       4       12         Girl()       6       11         Image: Strain S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × E      | Boy () 6 3                      |                                                                                                                                      |      |                  |           |        |           |       |
| Girl()       5       10         6       11         Image: Secure String St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S        |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| 3. Examine the effect of attachment style (avoidant, secure) and extraversion (low, high) on number of close friends. Show below how the data should be entered into SPSS.       4. Does user age (young, middle-aged, or old) interact with web design (alpha, beta) in determining number of user errors (per 50 website orders)? DV: errors per 50 orders         Image: Check against lecture Sides       4. Does user age (young, middle-aged, or old) interact with web design (alpha, beta) in determining number of user errors (per 50 website orders)? DV: errors per 50 orders         Image: Check against lecture Sides       Image: Check against lecture sides         Attachment Style       V: errors per 50 orders         Image: Check against lecture sides       Image: Check against lecture sides         Attachment Style       Image: Check against lecture sides         Image: Check against lecture sides       Image: Check against lecture sides         Image: Check against lecture sides       A. Does user age (young, middle-aged, or old) interact with web design (alpha, beta) in determining number of user errors (per 50 website orders)?         DV: errors per 50 orders       Image: Check against lecture sides         Image: Check against lecture sides       Image: Check against lecture sides         Image: Check against lecture sides       Image: Check against lecture sides         Image: Check against lecture sides       Image: Check against lecture sides         Image: Check against lecture sides       Image: Check against lecture sides         Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (        | Girl() 5 10                     |                                                                                                                                      |      |                  |           |        |           |       |
| Image: state in the effect of attachment<br>style (avoidant, secure) and<br>extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.4. Does user age (young, middle-aged,<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?<br>DV: errors per 50 orders(Home, High Quality Day-Care, Low Quality Day-<br>Care), or the interaction between the two affect<br>number of aggressive acts per month?Image: state in the effect of attachment<br>style (avoidant, secure) and<br>extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.4. Does user age (young, middle-aged,<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?<br>DV: errors per 50 orders1015Image: state in the effect of attachment into SPSS.101510Image: state into SPSS.101510 <td></td> <td>0 11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 0 11                            |                                                                                                                                      |      |                  |           |        |           |       |
| Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?3. Examine the effect of attachment<br>style (avoidant, secure) and<br>extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.4. Does user age (young, middle-aged,<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -        |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?3. Examine the effect of attachment<br>style (avoidant, secure) and<br>extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.4. Does user age (young, middle-aged,<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?3. Examine the effect of attachment<br>style (avoidant, secure) and<br>extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.4. Does user age (young, middle-aged,<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?3. Examine the effect of attachment<br>style (avoidant, secure) and<br>extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.4. Does user age (young, middle-aged,<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?3. Examine the effect of attachment<br>style (avoidant, secure) and<br>extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.4. Does user age (young, middle-aged,<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>number of aggressive acts per month?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction between the two affect<br>or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?1015Image: Construction of the interaction of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| Image: Construction of the interaction between the two affect number of aggressive acts per month?3. Examine the effect of attachment style (avoidant, secure) and extraversion (low, high) on number of close friends. Show below how the data should be entered into SPSS.4. Does user age (young, middle-aged, or old) interact with web design (alpha, beta) in determining number of user errors (per 50 website orders)?<br>DV: errors per 50 orders1015Image: Construction of the interaction between the two affect number of aggressive acts per month?Image: Construction of the interaction between the two affect number of aggressive acts per month?Image: Construction of the interaction between the two affect number of aggressive acts per month?Image: Construction of the interaction of the interaction between the two affect number of aggressive acts per month?Image: Construction of the interaction between the two affect number of aggressive acts per month?Image: Construction of the interaction of the interaction between the two affect number of aggressive acts per month?Image: Construction of the interaction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
| (check against lecture slides)4. Does user age (young, middle-aged, or old) interact with web design (alpha, beta) in determining number of user errors (per 50 website orders)?4. Does user age (young, middle-aged, or old) interact with web design (alpha, beta) in determining number of user errors (per 50 website orders)?Image: Home272Image: Mathematical StyleImage: Mathematical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                 |                                                                                                                                      | Care | ), or the intera | ction be  | etween | the two a | ffect |
| 3. Examine the effect of attachment style (avoidant, secure) and extraversion (low, high) on number of close friends. Show below how the data should be entered into SPSS.       4. Does user age (young, middle-aged, or old) interact with web design (alpha, beta) in determining number of user errors (per 50 website orders)?       Image: Description of the data should be entered into SPSS.       10       15         Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.         Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.         Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.         Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into SPSS.       Image: Description of the data should be entered into S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                 |                                                                                                                                      | num  | ber of aggressi  | ve acts   | per mo | onth?     |       |
| style (avoidant, secure) and<br>extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.or old) interact with web design (alpha,<br>beta) in determining number of user<br>errors (per 50 website orders)?<br>DV: errors per 50 ordersImage: Construction of the secure of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | <b>°</b>                        |                                                                                                                                      |      |                  |           | Age    |           |       |
| extraversion (low, high) on number of<br>close friends. Show below how the<br>data should be entered into SPSS.beta) in determining number of user<br>errors (per 50 website orders)?<br>DV: errors per 50 ordersHome272Image: Construction of the provided structureDV: errors per 50 ordersImage: ConstructureImage: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                 | 4. Does user age (young, middle-aged, or old) interact with web design (alpha                                                        |      |                  | 5         | 10     | 15        |       |
| Close mends. show below how the data should be entered into SPSS.     Entors (per 50 website orders)?       Attachment Style     User Age       Avoidant     Secure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | extraver | ersion (low, high) on number of | beta) in determining number of user                                                                                                  |      | Homo             |           |        |           |       |
| Avoidant Secure Young Middle Old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                 |                                                                                                                                      | care |                  |           |        |           |       |
| Avoidant Secure   C. Young Middle Old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                | time | Day Care         | 5         | 1      | 3         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      | Day- |                  |           |        |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6        |                                 | Alpha 4 7 10                                                                                                                         |      |                  |           |        |           | 1     |
| $\begin{bmatrix} 2 & 7 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 5 & 6 & 8 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 5 & 6 & 8 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 5 & 6 & 8 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 5 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | versi    | _ow 2 7<br>1 6                  | $\begin{bmatrix} \overline{O} \\ -\overline{O} \end{bmatrix} \xrightarrow{\text{Alpha}} 5 & 6 & 8 \\ \hline 2 & 4 & 3 \end{bmatrix}$ |      |                  |           |        |           | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xtra     | 2 7                             | Beta         1         1           3         1         1                                                                             |      |                  |           |        |           | -     |
| Image: High     4     5       3     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | шн       |                                 |                                                                                                                                      |      |                  |           |        |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      |      |                  |           |        |           | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _        |                                 |                                                                                                                                      |      |                  |           |        |           | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      |      |                  |           |        |           | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      |      |                  |           |        |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      |      | /                |           |        |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      |      | /                |           |        |           | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      |      |                  |           |        |           | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                 |                                                                                                                                      |      |                  |           |        |           | J     |
| should add to five should add to five should add to five                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | hould add to five               | should add to five                                                                                                                   |      | should a         | add to fi | ve     |           |       |

## Homework 8.2B: 2-way ANOVA Annotation Exercise

| TASK                                                                                                                         | AGE                                                                                                                            | Mean                                                                                                                                                                                                                                                                                        | Std. Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N                                                                                                                                     |                                                                                                              |                                  |                                       | 1. Please show in an equation                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| fluid                                                                                                                        | 65                                                                                                                             | 100.00                                                                                                                                                                                                                                                                                      | 4.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                     |                                                                                                              |                                  |                                       | which numbers from the outp                                                                                                                   |
|                                                                                                                              | 75                                                                                                                             | 88.75                                                                                                                                                                                                                                                                                       | 4,787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                     | A develo                                                                                                     |                                  |                                       | you would use to calculate eac                                                                                                                |
|                                                                                                                              | 85                                                                                                                             | 80.00                                                                                                                                                                                                                                                                                       | 4.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                     | psycholo                                                                                                     | gist exam                        | ines                                  | of the folloing:                                                                                                                              |
|                                                                                                                              | Total                                                                                                                          | 89.58                                                                                                                                                                                                                                                                                       | 9,405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                    |                                                                                                              | of Task (                        |                                       | or the folloling.                                                                                                                             |
| crystalized                                                                                                                  | 65                                                                                                                             |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                     |                                                                                                              | 1                                | ones                                  |                                                                                                                                               |
| crystalized                                                                                                                  | 75                                                                                                                             | 101.25                                                                                                                                                                                                                                                                                      | 6.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.00                                                                                                                                 |                                                                                                              | Fluid vs.                        | 10.00                                 | - MSA                                                                                                                                         |
|                                                                                                                              | 0.554                                                                                                                          | 101.25                                                                                                                                                                                                                                                                                      | 4.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                     | Crystalliz                                                                                                   | ed intellig                      | ence)                                 | $F_{A} = \frac{MS_{A}}{MS_{err}} = = 33.646$                                                                                                  |
|                                                                                                                              | 85                                                                                                                             | 100.00                                                                                                                                                                                                                                                                                      | 4.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                     |                                                                                                              | (65, 75, 0                       |                                       | in Serr                                                                                                                                       |
|                                                                                                                              | Total                                                                                                                          | 100.83                                                                                                                                                                                                                                                                                      | 4.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                    |                                                                                                              |                                  |                                       |                                                                                                                                               |
| Total                                                                                                                        | 65                                                                                                                             | 100.63                                                                                                                                                                                                                                                                                      | 4.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                     |                                                                                                              | I) affect co                     | -                                     |                                                                                                                                               |
|                                                                                                                              | 75                                                                                                                             | 95.00                                                                                                                                                                                                                                                                                       | 8.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                     | performa                                                                                                     | ince Score                       | es.                                   | F <sub>B</sub> ==10.015                                                                                                                       |
|                                                                                                                              | 85                                                                                                                             | 90.00                                                                                                                                                                                                                                                                                       | 11.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                     | 14:12                                                                                                        |                                  |                                       |                                                                                                                                               |
|                                                                                                                              | Total                                                                                                                          | 95.21                                                                                                                                                                                                                                                                                       | 9.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                                    |                                                                                                              |                                  |                                       |                                                                                                                                               |
|                                                                                                                              |                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       |                                                                                                              |                                  |                                       |                                                                                                                                               |
|                                                                                                                              | Contractor of                                                                                                                  | 5.25                                                                                                                                                                                                                                                                                        | Type III Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                   |                                                                                                              |                                  | NUMBER OF                             | F <sub>A*B</sub> ==7.892                                                                                                                      |
| 1                                                                                                                            | Sour                                                                                                                           |                                                                                                                                                                                                                                                                                             | of Squares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | df                                                                                                                                    | Mean Square                                                                                                  | F                                | Sig.                                  |                                                                                                                                               |
|                                                                                                                              | Corre                                                                                                                          | ected Model                                                                                                                                                                                                                                                                                 | 1567.708ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                     | 313.542                                                                                                      | 13.892                           | .000                                  | L                                                                                                                                             |
|                                                                                                                              | Inter                                                                                                                          | cept                                                                                                                                                                                                                                                                                        | 217551.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                     | 217551.042                                                                                                   | 9639.185                         | .000                                  |                                                                                                                                               |
| 2                                                                                                                            | TASK                                                                                                                           |                                                                                                                                                                                                                                                                                             | 759.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                     | 759.375                                                                                                      | 33,646                           | .000                                  | MS <sub>B</sub> ==226.042                                                                                                                     |
| 30                                                                                                                           | AGE                                                                                                                            | 3                                                                                                                                                                                                                                                                                           | 452,083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                     | 226.042                                                                                                      | 10.015                           | .001                                  | -220.042                                                                                                                                      |
|                                                                                                                              | 10000                                                                                                                          | AGE                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.54                                                                                                                                 | 100000000000000000000000000000000000000                                                                      |                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                               |
|                                                                                                                              |                                                                                                                                |                                                                                                                                                                                                                                                                                             | 356.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                     | 178.125                                                                                                      | 7.892                            | .003                                  | L                                                                                                                                             |
|                                                                                                                              | Error                                                                                                                          |                                                                                                                                                                                                                                                                                             | 406.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                                                    | 22.569                                                                                                       |                                  |                                       |                                                                                                                                               |
|                                                                                                                              | Total                                                                                                                          |                                                                                                                                                                                                                                                                                             | 219525.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                    |                                                                                                              |                                  |                                       | $\eta^{2}_{A} = $                                                                                                                             |
|                                                                                                                              | Corre                                                                                                                          | ected Total                                                                                                                                                                                                                                                                                 | 1973.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                                                                                                    |                                                                                                              |                                  |                                       |                                                                                                                                               |
|                                                                                                                              |                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       |                                                                                                              |                                  |                                       |                                                                                                                                               |
|                                                                                                                              |                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       | 7.71.0                                                                                                       |                                  |                                       |                                                                                                                                               |
|                                                                                                                              |                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       | 110                                                                                                          |                                  | 1                                     |                                                                                                                                               |
| Student-News                                                                                                                 | nan-Keuls                                                                                                                      | a,b                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                     |                                  |                                       | $df_{B}==2$                                                                                                                                   |
| Student-News                                                                                                                 | man-Keuls                                                                                                                      | a,b                                                                                                                                                                                                                                                                                         | Subset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                     | 100                                                                                                          |                                  |                                       | df <sub>B</sub> ==2                                                                                                                           |
|                                                                                                                              |                                                                                                                                | a,b                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\neg$                                                                                                                                | 100                                                                                                          |                                  |                                       | df <sub>B</sub> ==2                                                                                                                           |
| AGE                                                                                                                          | N                                                                                                                              | 1                                                                                                                                                                                                                                                                                           | Subset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       | 100                                                                                                          |                                  |                                       | df <sub>B</sub> ==2                                                                                                                           |
| AGE<br>85                                                                                                                    | N 8                                                                                                                            |                                                                                                                                                                                                                                                                                             | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       | 100                                                                                                          |                                  | TASK                                  | df <sub>B</sub> ==2                                                                                                                           |
| AGE<br>85<br>75                                                                                                              | N<br>8<br>8                                                                                                                    | 1                                                                                                                                                                                                                                                                                           | 2 3<br>95.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       | 100                                                                                                          |                                  | TASK                                  | df <sub>B</sub> ==2                                                                                                                           |
| AGE<br>85<br>75<br>65                                                                                                        | N 8                                                                                                                            | 1 90.00                                                                                                                                                                                                                                                                                     | 2 3<br>95.00<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Country in                                                                                                                            | 100                                                                                                          |                                  | fluid                                 | df <sub>B</sub> ==2                                                                                                                           |
| AGE<br>85<br>75                                                                                                              | N<br>8<br>8                                                                                                                    | 1                                                                                                                                                                                                                                                                                           | 2 3<br>95.00<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .63                                                                                                                                   | 1005<br>90-                                                                                                  | 75                               |                                       | df <sub>B</sub> ==2                                                                                                                           |
| AGE<br>85<br>75<br>65                                                                                                        | N<br>8<br>8                                                                                                                    | 1 90.00                                                                                                                                                                                                                                                                                     | 2 3<br>95.00<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Country in                                                                                                                            | 100<br>90-<br>00<br>70                                                                                       | 76                               | fluid<br>crystalized                  | df <sub>B</sub> ==2                                                                                                                           |
| AGE<br>85<br>75<br>65<br>Sig.                                                                                                | N<br>8<br>8                                                                                                                    | 1<br>90.00<br>1.000                                                                                                                                                                                                                                                                         | 2 3<br>95.00<br>1.000 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                                                                                                                                   | 1000<br>90-<br>90-<br>70<br>65                                                                               | 25% 6                            | C fluid<br>Crystalized<br>85          | df <sub>B</sub> ==2                                                                                                                           |
| AGE<br>85<br>75<br>65<br>Sig.                                                                                                | N 8<br>8<br>8<br>8                                                                                                             | 1<br>90.00<br>1.000<br>useing one                                                                                                                                                                                                                                                           | 2 3<br>95.00 100<br>1.000 1.0<br>color for Factor A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (e.g., yellow)                                                                                                                        | and another for                                                                                              | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant                                                                                                               |
| AGE<br>85<br>75<br>65<br>Sig.                                                                                                | N 8<br>8<br>8<br>8                                                                                                             | 1<br>90.00<br>1.000<br>useing one                                                                                                                                                                                                                                                           | 2 3<br>95.00<br>1.000 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (e.g., yellow)                                                                                                                        | and another for                                                                                              | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            |                                                                                                                                               |
| AGE<br>85<br>75<br>65<br>Sig.<br>ghlight the f                                                                               | N 8<br>8<br>8<br>8<br>6<br>7<br>6<br>1<br>1<br>8<br>8                                                                          | 1<br>90.00<br>1.000<br>useing one<br>thing pertain                                                                                                                                                                                                                                          | 2 3<br>95.00<br>1.000 1.0<br>color for Factor A<br>ning to Factor A or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (e.g., yellow)<br>ne color, and                                                                                                       | and another for<br>everything for Fa                                                                         | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?                                                              |
| AGE<br>85<br>75<br>65<br>Sig.<br>ghlight the t<br>r words, ma                                                                | N 8<br>8<br>8<br>6<br>7<br>6<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8    | 1<br>90.00<br>1.000<br>useing one<br>thing pertain                                                                                                                                                                                                                                          | 2 3<br>95.00<br>100<br>1.000 1(<br>color for Factor A<br>ning to Factor A or<br>able, <u>the rows</u> for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (e.g., yellow)<br>ne color, and<br>Factors A &                                                                                        | and another for<br>everything for Fa                                                                         | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63                                           |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>hlight the f<br>r words, ma<br>• In the<br>• In the                                    | N<br>8<br>8<br>8<br>6<br>7<br>6<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 1<br>90.00<br>1.000<br>useing one<br>thing pertain<br>Variation ta<br>ve Stats tab                                                                                                                                                                                                          | 2 3<br>95.00 100<br>1.000 1 (<br>color for Factor A<br>ning to Factor A or<br>able, <u>the rows</u> for<br>le, <u>the means</u> for l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll                                                                      | and another for<br>everything for Fa<br>apsing across B)                                                     | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63                      |
| AGE<br>85<br>75<br>65<br>Sig.<br>•<br>• In the<br>• In the<br>• In the<br>• In the                                           | N<br>8<br>8<br>8<br>6<br>7<br>6<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 1<br>90.00<br>1.000<br>useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl                                                                                                                                                                                                         | 2 3<br>95.00 100<br>1.000 1.0<br>color for Factor A<br>ning to Factor A or<br>able, <u>the rows</u> for<br>le, <u>the means</u> for I<br>le, <u>the means</u> for I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll                                                    | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)                                 | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>••••••<br>• In the<br>• In the<br>• In the<br>• In the<br>• In the                          | Tollowing<br>ke every<br>Source of<br>Descripti<br>Descripti<br>Means Pl                                                       | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u>                                                                                                                                                                 | 2 3<br>95.00 100<br>1.000 11<br>color for Factor A<br>hing to Factor A or<br>able, <u>the rows</u> for<br>le, <u>the means</u> for I<br>le, <u>the means</u> for I<br>le, <u>the means</u> for I<br>ls of Factor A and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of                            | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)                                 | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>••••••<br>• In the<br>• In the<br>• In the<br>• In the<br>• In the                          | Tollowing<br>ke every<br>Source of<br>Descripti<br>Descripti<br>Means Pl                                                       | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u>                                                                                                                                                                 | 2 3<br>95.00 100<br>1.000 1.0<br>color for Factor A<br>ning to Factor A or<br>able, <u>the rows</u> for<br>le, <u>the means</u> for I<br>le, <u>the means</u> for I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of                            | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)                                 | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>••••••<br>• In the<br>• In the<br>• In the<br>• In the<br>• In the                          | Tollowing<br>ke every<br>Source of<br>Descripti<br>Descripti<br>Means Pl                                                       | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u>                                                                                                                                                                 | 2 3<br>95.00 100<br>1.000 11<br>color for Factor A<br>hing to Factor A or<br>able, <u>the rows</u> for<br>le, <u>the means</u> for I<br>le, <u>the means</u> for I<br>le, <u>the means</u> for I<br>ls of Factor A and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of                            | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)                                 | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>In the<br>1 n the    | N<br>8<br>8<br>8<br>8<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                               | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u><br>table, the leve                                                                                                                                              | 2 3<br>95.00 100<br>1.000 11<br>color for Factor A<br>hing to Factor A or<br>able, <u>the rows</u> for<br>le, <u>the means</u> for I<br>le, <u>the means</u> for I<br>le, <u>the means</u> for I<br>ls of Factor A and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown                   | and another for<br>everything for Fa<br>apsing across A)<br>Factor B                                         | Factor B (e.g.                   | tluid<br>crystalizec<br>s5            | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | N<br>8<br>8<br>8<br>6<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                          | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u><br>table, the leve<br>table, the leve                                                                                                                           | 2       3         95.00       100         1.000       1.0         1.000       1.0         color for Factor A or         able, the rows for le         the means for le         the means for le         the means for les         the means for les         the means for les         the means for les         the factor A and         evels of the Factor         ults for the three F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown                   | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)<br>Factor B                     | Factor B (e.g.                   | blue). In<br>er color:                | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | N<br>8<br>8<br>8<br>6<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                          | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u><br>table, the leve<br>table, the leve                                                                                                                           | 2 3<br>95.00 100<br>1.000 10<br>color for Factor A<br>ning to Factor A or<br>able, <u>the rows</u> for<br>le, <u>the means</u> for l<br>le, <u>the means</u> for l<br>le, <u>the means</u> for l<br>le, <u>the means</u> for l<br>le, <u>the means</u> for l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown                   | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)<br>Factor B                     | Factor B (e.g.                   | blue). In<br>er color:                | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>In the<br>In the<br>In the<br>In the<br>In the<br>In the<br>In the<br>In the           | N<br>8<br>8<br>8<br>6<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                          | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u><br>table, the leve<br>table, the leve                                                                                                          | 2       3         95.00       100         1.000       1.0         1.000       1.0         color for Factor A or         able, the rows for le         the means for le         the means for le         the means for les         the means for les         the means for les         the means for les         the factor A and         evels of the Factor         ults for the three F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown<br>Factors (A, B, | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)<br>Factor B                     | Factor B (e.g.                   | blue). In<br>er color:                | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | N<br>8<br>8<br>8<br>6<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                          | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u><br>table, the leve<br>table, the leve<br>table, the ference<br>score for 65                                                                                     | 2       3         95.00       100         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000       1.0         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown<br>Factors (A, B, | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)<br>Factor B                     | Factor B (e.g.                   | blue). In<br>er color:                | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | N<br>8<br>8<br>8<br>8<br>6<br>7<br>6<br>7<br>6<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                          | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u><br>table, the leve<br>table, the leve<br>table, the ference<br>e F-test resu                                                                                    | 2       3         95.00       100         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         110       10         120       10         120       10         120       10         120       10 <td< td=""><td>(e.g., yellow)<br/>ne color, and<br/>Factors A &amp;<br/>Factor A (coll<br/>Factor B (coll<br/>the <u>levels</u> of<br/>shown<br/>Factors (A, B,</td><td>and another for<br/>everything for Fa<br/>apsing across B)<br/>apsing across A)<br/>Factor B</td><td>Factor B (e.g.</td><td>blue). In<br/>er color:</td><td>6. Which pattern of significant<br/>difference is shown in the post<br/>hoc table?<br/>a. 90&lt;95&lt;100.63<br/>b. [90=95]&lt;100.63<br/>c. 90&lt;[95=100.63]</td></td<>                                                | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown<br>Factors (A, B, | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)<br>Factor B                     | Factor B (e.g.                   | blue). In<br>er color:                | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | N<br>8<br>8<br>8<br>8<br>6<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                          | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats table<br>ve Stats tablo<br>ot, the <u>leve</u><br>table, the leve<br>table, the leve<br>table, the leve<br>table, the stable<br>e F-test resu                                                                | 2       3         95.00       100         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         110       10         110       10         110       10         110       10         120       10 <td< td=""><td>(e.g., yellow)<br/>ne color, and<br/>Factors A &amp;<br/>Factor A (coll<br/>Factor B (coll<br/>the <u>levels</u> of<br/>shown<br/>Factors (A, B,</td><td>and another for<br/>everything for Fa<br/>apsing across B)<br/>apsing across A)<br/>Factor B<br/>&amp; A*B)<br/>, A*B:</td><td>Factor B (e.g.</td><td>blue). In<br/>er color:</td><td>6. Which pattern of significant<br/>difference is shown in the post<br/>hoc table?<br/>a. 90&lt;95&lt;100.63<br/>b. [90=95]&lt;100.63<br/>c. 90&lt;[95=100.63]</td></td<>                      | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown<br>Factors (A, B, | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)<br>Factor B<br>& A*B)<br>, A*B: | Factor B (e.g.                   | blue). In<br>er color:                | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | N<br>8<br>8<br>8<br>8<br>6<br>7<br>6<br>7<br>6<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                          | 1<br>90.00<br>1.000<br>Useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u><br>table, the leve<br>table, the leve<br>table, the leve<br>table, the stats<br>e F-test resu<br>score for 65<br>describes th<br>was not sign<br>s, fluid intel | 2       3         95.00       100         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         11       10         12       10         13       10         14       10         15       10         15       10         15       10         16       10         16       10         17       10         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown<br>Factors (A, B, | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)<br>Factor B<br>& A*B)<br>, A*B: | Factor B (e.g.                   | blue). In<br>er color:                | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |
| AGE<br>85<br>75<br>65<br>Sig.<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | N<br>8<br>8<br>8<br>8<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                          | 1<br>90.00<br>1.000<br>useing one<br>thing pertain<br>Variation ta<br>ve Stats tabl<br>ve Stats tabl<br>ot, the <u>leve</u><br>table, the <u>le</u><br>e F-test resu<br>score for 65<br>describes th<br>was not sig<br>s, fluid intel<br>s, both fluid                                      | 2       3         95.00       100         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         100       10         110       10         110       10         110       10         110       10         120       10 <td< td=""><td>(e.g., yellow)<br/>ne color, and<br/>Factors A &amp;<br/>Factor A (coll<br/>Factor B (coll<br/>the <u>levels</u> of<br/>shown<br/>Factors (A, B,</td><td>and another for<br/>everything for Fa<br/>apsing across B)<br/>apsing across A)<br/>Factor B<br/>&amp; A*B)<br/>, A*B:</td><td>Factor B (e.g.<br/>actor B anothe</td><td>, blue). In<br/>er color:</td><td>6. Which pattern of significant<br/>difference is shown in the post<br/>hoc table?<br/>a. 90&lt;95&lt;100.63<br/>b. [90=95]&lt;100.63<br/>c. 90&lt;[95=100.63]</td></td<> | (e.g., yellow)<br>ne color, and<br>Factors A &<br>Factor A (coll<br>Factor B (coll<br>the <u>levels</u> of<br>shown<br>Factors (A, B, | and another for<br>everything for Fa<br>apsing across B)<br>apsing across A)<br>Factor B<br>& A*B)<br>, A*B: | Factor B (e.g.<br>actor B anothe | , blue). In<br>er color:              | 6. Which pattern of significant<br>difference is shown in the post<br>hoc table?<br>a. 90<95<100.63<br>b. [90=95]<100.63<br>c. 90<[95=100.63] |



| Greed    | ent Variable:life_sa<br>Comparison         | Mean       | Std.<br>Dev | N       |               |                    |          | life_sats   | if      |       |                    | umbers from the output<br>uld use to calculate each<br>owing: |
|----------|--------------------------------------------|------------|-------------|---------|---------------|--------------------|----------|-------------|---------|-------|--------------------|---------------------------------------------------------------|
| Good     | low luxury                                 | 3.60       | 1.673       | 5       |               | · 8-               |          |             | P 0     | Greed | the follo          | Jwilig.                                                       |
|          | medium luxury                              | 3.80       | .837        | 5       |               | Est Marg Means     |          |             |         | Good  |                    |                                                               |
|          | high luxury                                | 2.20       | .837        | 5       |               | ¥ 6⁻               |          |             |         | - Bad | F <sub>A</sub> = · | $\frac{MS_A}{MS_{err}} == 55.19$                              |
|          | Total                                      | 3.20       | 1.320       | 15      |               | E 5-               | -        |             |         |       |                    | MSerr                                                         |
| Bad      | low luxury                                 | 5.00       | .707        | 5       |               | Ξ́4-               | 0-       | - 9         |         |       |                    |                                                               |
|          | medium luxury                              | 5.40       | 1.140       | 5       |               | й з-               |          |             |         |       | F <sub>B</sub> =   | =1.104                                                        |
|          | high luxury                                | 7.80       | .837        | 5       |               | 2-                 |          |             | Ø       |       |                    |                                                               |
|          | Total                                      | 6.07       | 1.534       | 15      |               |                    | low      |             | high    |       |                    |                                                               |
| Total    | low luxury                                 | 4.30       | 1.418       | 10      |               |                    | luxury   |             | DOUTY   |       |                    |                                                               |
|          | medium luxury                              | 4.60       | 1.265       | 10      |               |                    | C        | ompariso    | n       |       | F <sub>A*B</sub>   | ==12.56                                                       |
|          | high luxury                                | 5.00       | 3.055       | 10      |               |                    |          |             |         |       |                    |                                                               |
|          | Total                                      | 4.63       | 2.025       | 30      |               |                    |          |             |         |       |                    |                                                               |
|          |                                            |            |             |         |               |                    |          |             |         |       | MS                 | <sub>*B</sub> ==14.033                                        |
|          |                                            |            |             |         |               | of Between         | Subjec   | ts Effects  |         |       |                    | T1.000                                                        |
|          | rialism can "b                             |            | Dep         | endent  | Variable:life |                    |          |             |         |       |                    |                                                               |
|          | out." People li                            | sted       |             |         |               | Type III<br>Sum of | 1.1      | Mean        | 1020    |       |                    |                                                               |
|          | r good or bad                              |            | Sou         |         |               | Squares            | df       | Square      | F       | Sig.  | η <sup>2</sup> A*I | B=                                                            |
| thing    | s about Greed                              |            |             | rected  | Model         | 92.167*            | 5        | 18.433      | 16.50   | .000  |                    |                                                               |
| and t    | hen saw imag                               | es         | Inte        | rcept   |               | 644.033            | 1        | 644.03      | 576.7   | .000  |                    |                                                               |
| prom     | pting a                                    |            | Gre         | 12      |               | 61.633             | 1        | 61.633      | 55.19   | .000  | df                 | =2                                                            |
| Com      | parison of the                             | ir         | 100.00      | nparis  |               | 2.467              | 2        | 1.233       | 1.104   | .348  | UIB=               | =2                                                            |
| life w   | ith different                              |            | Gre         | ed * Co | mparison      | 28.067             | 2        | 14.033      | 12.56   | .000  |                    |                                                               |
| levels   | s of lifestyle                             |            | Erro        | r       |               | 26.800             | 24       | 1.117       |         |       |                    |                                                               |
| luxur    | y (low, mediur                             | n,         | Tota        | d .     |               | 763.000            | 30       |             |         |       |                    |                                                               |
| or hig   | gh). Participar                            | nts        | Cor         | rected  | Total         | 118.967            | 29       |             |         |       |                    |                                                               |
| then     | rated their ow                             | /n         | ş           | R Sq    | uared = .775  | (Adjusted R        | Squar    | ed = .728)  |         |       |                    |                                                               |
| Life S   | atisfaction.                               |            |             |         |               |                    |          |             |         |       |                    |                                                               |
| liabliab | t the following use                        | oing ono   | color for   | Eacto   |               | ow) and ano        | thor for | Eactor P (o | a bluo) | In    |                    |                                                               |
|          | ls, make everythir                         |            |             |         |               |                    |          |             |         |       | 6. Whic            | h pattern of significant                                      |
|          |                                            | 51         | 0           |         |               | 5                  | 5        |             |         |       |                    | ice is shown in the post h                                    |
|          | n the Source of Va<br>n the Descriptive S  |            |             |         |               |                    | ross RI  |             |         |       | table?             |                                                               |
|          | n the Descriptive S                        |            |             |         |               |                    |          |             |         |       | a.                 | There is no post hoc                                          |
|          | n the Means Plot,                          |            |             |         |               |                    | ,        |             |         |       |                    | table                                                         |
|          |                                            |            |             |         |               |                    |          |             |         |       |                    | 4.30<4.60<5.00                                                |
|          |                                            |            |             |         |               |                    |          |             |         |       | C.                 | 4.30=4.60=5.00<br>[4.30=4.60]<5.00                            |
| ormally  | / summarize the F-                         | -test resi | Its for t   | he thre | e Factors (A  | . B. & A*R)        |          |             |         |       | u.                 | נא.טע-א.טען<ט.טע                                              |
|          |                                            |            |             |         |               |                    |          |             |         |       |                    |                                                               |
|          |                                            |            | D           |         |               | , A <sup>°</sup> B | •        |             |         | _     |                    |                                                               |
|          |                                            |            |             |         |               |                    |          |             |         |       |                    |                                                               |
| Vhetter  | a the evenence life                        | cotiof     | lon for '   | ho 6!-' |               | dition?            |          |             |         |       |                    |                                                               |
| vnat wa  | as the average life                        | satistact  | ion for t   | ne nigi | i iuxury cond | aition?            |          |             |         |       |                    |                                                               |
| Vhich st | tatement best des                          | cribes th  | e intera    | ction?  |               |                    |          |             |         |       |                    |                                                               |
|          | he interaction wa                          |            |             |         |               |                    |          |             |         |       |                    |                                                               |
| b. V     | When people listed                         | d good th  | ings abo    |         |               |                    |          |             |         |       |                    |                                                               |
|          | Vhen people listed                         |            |             |         |               |                    |          |             |         |       |                    |                                                               |
|          |                                            |            |             |         |               |                    |          |             |         |       |                    |                                                               |
|          | When luxury levels<br>have vast difference |            |             |         |               |                    |          |             |         |       |                    |                                                               |

## Homework 8.2B: 2-way ANOVA Annotation Exercise - KEY

| TASK        | AGE   | Mean   | Std. Deviation | N  |
|-------------|-------|--------|----------------|----|
| fluid       | 65    | 100.00 | 4.082          | 4  |
|             | 75    | 88.75  | 4.787          | 4  |
|             | 85    | 80.00  | 4.082          | 4  |
|             | Total | 89.58  | 9.405          | 12 |
| crystalized | 65    | 101.25 | 6.292          | 4  |
|             | 75    | 101.25 | 4.787          | 4  |
|             | 85    | 100.00 | 4.082          | 4  |
|             | Total | 100.83 | 4.687          | 12 |
| Total       | 65    | 100.63 | 4.955          | 8  |
|             | 75    | 95.00  | 8.018          | 8  |
|             | 85    | 90.00  | 11.339         | 8  |
|             | Total | 95.21  | 9.264          | 24 |

A developmental psychologist examines how type of Task (ones requiring Fluid vs. Crystallized intelligence) and Age (65, 75, or 85 years old) affect cognitive performance Scores.

1. Please show in an equation which numbers from the output you would use to calculate each of the folloing:



<mark>226.042</mark> <mark>=10.015</mark>  $F_{B}=$ 22.569

F<sub>A\*B</sub>=<sup>178.125</sup>=7.892

 $MS_{B} = \frac{452.083}{226.042}$ 

6. Which pattern of significant

difference is shown in the post

90<95<100.63

[90=95]<100.63

90<[95=100.63]

There is no post hoc

759.375

 $\eta^2_{A} = \frac{1973.958}{1973.958}$ 

 $df_{B} = \frac{3 - 1 = 2}{3 - 1 = 2}$ 

hoc table?

e.

f.

g.

h



AGE

75

65

Sig

Type III Sum Source of Squares df Mean Square F Sig Corrected Model 5 313,542 1567.708ª 13.892 000 Intercept 9639,185 217551.042 1 217551.042 000 TASK 759.375 1 759.375 33.646 000 AGE 10.015 452.083 226.042 001 TASK \* AGE 356.250 2 178.125 7.892 003 Error 18 22.569 406.250 Total 24 219525,000 Corrected Total 1973,958 23



2. Highlight the following useing one color for Factor A (e.g., yellow) and another for Factor B (e.g., blue). In other words, make everything pertaining to Factor A one color, and everything for Factor B another color:

- In the Source of Variation table, the rows for Factors A & B
- In the Descriptive Stats table, the means for Factor A (collapsing across B)
- In the Descriptive Stats table, the means for Factor B (collapsing across A)
- In the Means Plot, the levels of Factor A and the levels of Factor B

Subset

2

95.00

1.000

In the Post Hoc table, the levels of the Factor shown

a,b

1

90.00

1.000

Student-Newman-Keuls

N

8

8

8

3. Formally summarize the F-test results for the three Factors (A, B, & A\*B)

A: \_F(1,18)=33.646, p<.05\_\_\_\_, B: \_F(2,18)=10.015, p<.05\_\_\_, A\*B: \_F(2,18)=7.892, p<.05\_\_\_\_

4. What was the average score for 65 year olds? <u>100.63</u>

5. Which statement best describes the interaction?

- e. The interaction was not significant
- As age increases, fluid intelligence decreases while crystalized intelligence increases f.

As age increases, both fluid and crystalized intelligence decrease g.

As age increases, fluid intelligence decreases while crystalized intelligence remains about the same h.



|                             |                                          |                          |                                              |                  |                   |                                            |         |                 |             |          | Homew                                                            |
|-----------------------------|------------------------------------------|--------------------------|----------------------------------------------|------------------|-------------------|--------------------------------------------|---------|-----------------|-------------|----------|------------------------------------------------------------------|
|                             | Descriptive S                            | Statistics               |                                              |                  |                   |                                            |         |                 |             |          | 1. Please show in an equatio                                     |
| Depende                     | ent Variable:life_sa                     | itsif                    |                                              |                  |                   |                                            |         | -               | -           |          | which numbers from the                                           |
| Greed                       | Comparison                               | Mean                     | Std.<br>Dev                                  | N                |                   |                                            |         | life_sats       | if          |          | output you would use to                                          |
| Good                        | Comparison<br>low luxury                 | 3.60                     | 1.673                                        | 5                |                   | 8-                                         |         |                 |             | Greed    | calculate each of the followin                                   |
| 0000                        | medium luxury                            | 3.80                     | .837                                         | 5                |                   | Ë 7-                                       |         |                 |             | - Good   |                                                                  |
|                             | high luxury                              | 2.20                     | 837                                          | 5                |                   | <b>2</b> 6-                                |         |                 | -           | Bad      | $F_{A} = \frac{MS_{A}}{MS_{err}} = \frac{61.633}{1.117} = 55.19$ |
|                             | Total                                    | 3.20                     | 1.320                                        | 15               |                   | 2 5-                                       | -       |                 |             |          | $MS_{err} = \frac{1.117}{1.117} = \frac{1.117}{1.117}$           |
| Bad                         | low luxury                               | 5.00                     | .707                                         | 5                |                   | Est Marg Means                             |         |                 |             |          |                                                                  |
|                             | medium luxury                            | 5.40                     | 1.140                                        | 5                |                   | 5 3-                                       | 0-      | -               |             |          | 1 222                                                            |
|                             | high luxury                              | 7.80                     | .837                                         | 5                |                   | ۳ °                                        |         |                 | 0           |          | $F_{\rm B} = \frac{1.233}{1.117} = 1.104$                        |
|                             | Total                                    | 6.07                     | 1.534                                        | 15               |                   | -1                                         | low     | medium          | high        |          |                                                                  |
| Total                       | low luxury                               | 4.30                     | 1.418                                        | 10               |                   |                                            | luxury  |                 | uxury       |          |                                                                  |
|                             | medium luxury                            | 4.60                     | 1.265                                        | 10               |                   |                                            | С       | ompariso        | n           |          | $F_{A^*B} = \frac{14.033}{1.117} = 12.56$                        |
|                             | high luxury                              | 5.00                     | 3.055                                        | 10               |                   |                                            |         |                 |             |          | 1 A^B 1.117                                                      |
|                             | Total                                    | 4.63                     | 2.025                                        | 30               |                   |                                            |         |                 |             |          |                                                                  |
|                             |                                          |                          |                                              |                  |                   |                                            |         |                 |             |          |                                                                  |
|                             |                                          |                          |                                              |                  | Tests             | of Between                                 | Subjec  | te Efforte      |             |          | $MS_{A^*B} = \frac{28.067}{2} = 14.033$                          |
| Mato                        | rialism can "b                           |                          | Dep                                          | endent Va        | riable:life       |                                            | Janjor  | AS LINGAS       |             |          |                                                                  |
|                             | ut." People li                           |                          |                                              |                  |                   | Type III                                   |         | 1               | -           |          |                                                                  |
|                             | r good or bad                            |                          | Sou                                          | rre.             |                   | Sum of<br>Squares                          | df      | Mean<br>Square  | F           | Sig      | $\eta^{2}_{A^{*}B} = \frac{28.067}{118.967}$                     |
|                             |                                          |                          |                                              | rce<br>rected Mo | del :             | 92.167*                                    | 5       | 18.433          | 16.50       | .000     | η <sup>-</sup> Α*Β <sup>=</sup><br>118.967                       |
|                             | s about Greed                            |                          |                                              | rcept            | aer               | 644.033                                    | 1       | 644.03          | 576.7       | .000     |                                                                  |
|                             | hen saw imag                             | es                       | Gree                                         | 101233           |                   | 61.633                                     | 1       | 61.633          | 55.19       | .000     |                                                                  |
|                             | pting a                                  |                          |                                              | nparison         | _                 | 2.467                                      | 2       | 1.233           | 1.104       | .348     | df <sub>B</sub> = <mark>3-1=2</mark>                             |
|                             | parison of the<br>ith different          | ir                       |                                              | ed * Com         | arison            | 28.067                                     | 2       | 14.033          | 12.56       | .000     |                                                                  |
|                             |                                          |                          | Erro                                         |                  | anaon             | 26.800                                     | 24      | 1.117           | 12.00       |          | L                                                                |
|                             | of lifestyle                             | 1923                     | Tota                                         |                  |                   | 763.000                                    | 30      |                 |             |          |                                                                  |
| 2.365                       | y (low, mediu                            |                          | 104.0                                        | <br>rected To    | al                | 118,967                                    | 29      |                 |             |          |                                                                  |
|                             | h). Participar                           |                          | _                                            |                  |                   | (Adjusted R                                | 12.5    | ed = 728)       |             | <u> </u> |                                                                  |
|                             | rated their ow                           | vn                       | •                                            | . Is organi      | 04110             | Availableaux                               | oquan   | 04 ( 20)        |             |          |                                                                  |
| Life S                      | atisfaction.                             |                          |                                              |                  |                   |                                            |         |                 |             |          | c.                                                               |
| Highlight                   | the following use                        | eing one c               | olor for                                     | Factor A         | (e.g., yell       | ow) and anot                               | ther fo | r Factor B (e   | .g., blue). | In other |                                                                  |
|                             | e everything per                         | -                        |                                              |                  |                   |                                            |         |                 | -           |          | 6. Which pattern of significar                                   |
| • In                        | n the Source of Va                       | ariation ta              | ble, the                                     | rows for         | Factors A         | & B                                        |         |                 |             |          | difference is shown in the po                                    |
|                             | n the Descriptive S                      |                          |                                              |                  |                   |                                            | ross B) |                 |             |          | hoc table?                                                       |
|                             | n the Descriptive S                      |                          |                                              |                  |                   |                                            | ross A) |                 |             |          | e. There is no post ho                                           |
| • Ir                        | n the Means Plot,                        | the levels               | s of Fac                                     | or A and         | the <u>levels</u> | of Factor B                                |         |                 |             |          | f 4.20 4 (0 5.00                                                 |
|                             |                                          |                          |                                              |                  |                   |                                            |         |                 |             |          | f. 4.30<4.60<5.00<br>g. 4.30=4.60=5.00                           |
|                             |                                          |                          |                                              |                  |                   |                                            |         |                 |             |          | h. [4.30=4.60]<5.00                                              |
| Formally                    | summarize the F                          | -test resu               | lts for tl                                   | ne three F       | actors (A         | B, & A*B)                                  |         |                 |             |          |                                                                  |
|                             | <mark>4)=55.19, p&lt;.05</mark>          |                          |                                              |                  |                   |                                            | 56 p~   | 05              |             |          |                                                                  |
| ••• _ <mark>• (•,2</mark> • | <u>,</u>                                 | _ , D <mark>r (2</mark>  | <u>,                                    </u> | ιση μ<.υ.        | <u> </u>          | _· ( <del>&lt;</del> ,<7) <sup>-</sup> 12, | ου, μ×. | <mark>~~</mark> |             |          |                                                                  |
|                             |                                          |                          |                                              |                  |                   |                                            |         |                 |             |          |                                                                  |
| What wa                     | s the average life                       | satisfacti               | on for t                                     | he high Iu       | xury cond         | dition? _5.00                              |         |                 |             |          |                                                                  |
| M/hich ct                   | atement best des                         | scribas the              | intera                                       | rtion?           |                   |                                            |         |                 |             |          |                                                                  |
|                             |                                          |                          |                                              |                  |                   |                                            |         |                 |             |          |                                                                  |
|                             | he interaction wa                        |                          |                                              | ut arood         | their life        | caticfaction                               | docros  |                 | v lovala in | crossed  |                                                                  |
|                             | Vhen people lister<br>Vhen people lister |                          |                                              |                  |                   |                                            |         |                 |             |          |                                                                  |
|                             | Vhen luxury levels                       |                          |                                              |                  |                   |                                            |         |                 |             |          |                                                                  |
|                             | ast differences, b                       | <mark>ut when l</mark> u | <mark>uxury l</mark> e                       |                  |                   |                                            |         |                 |             |          |                                                                  |
|                             | fe satisfaction, wl                      |                          |                                              |                  |                   |                                            |         |                 |             |          |                                                                  |

## Homework 8.3: 2-Way ANOVA Write-ups

This homework will help you practice the paragraph write-ups required for 2-way ANOVAs.

Industrial/Organizational psychology studies factors that effect job performance, so let's imagine an I/O psychologists studying two different independent variables that might affect the amount of effort someone puts into a task: size of team and evaluation arrangement.

<u>IV#1: Size of team</u>: Social psychologists have studied diffusion of responsibility – the tendency for the effort of individuals to decrease as the number of individuals on a team increases. (You might also call this the slacker effect). As the number of teammates increases, each person tends to feel less responsible for the overall outcome, and so he or she tends to get lazy. We can imagine the psychologist putting people in situations with two, four, or eight teammates.

<u>IV#2: Peer evaluation</u>: I/O psychologist can tell you that if people are held accountable for their performance they have more incentive to put forth effort. Perhaps having people evaluate their teammates can counteract the slacker effect described above. Maybe having more teammates could even increase effort if you knew there would be more people evaluating you. Lets imagine the researcher establishing two conditions: One where participants expect peer evaluation and one where they don't.

<u>Note:</u> The following three pages have <u>three distinct outcomes</u> that might occur. I've generated three different SPSS outcomes so that you can practice writing-up different outcomes.

- For HW 8.3a: Write up outcomes #1 and #2. (Two paragraphs.)
- For HW 8.3b: Write up outcome #3. (One paragraph).

You can find a key for outcomes #1 and #3 on the website

All 2-way write-ups can follow the same simple pattern:

- 1. Statement about how hypotheses overall.
- 2. Explain outcome for hypothesis #1 a possible main effect (e.g., for number of teammates)
- 3. Explain outcome for hypothesis #2 another possible main effect (e.g., for peer evaluations)
- 4. Explain outcome for hypothesis #3 a possible interaction
- 5. Explain practical significance for any significant effects.

<u>Outcome #1</u>: Some of the hypotheses were supported. There was a main effect for teammates. Participants with two teammates worked harder (M = 12.70) than those with four teammates (M = 6.8), who in turn worked harder than those with 8 teammates (M = 3.8), F(2,24) = 34.751, p≤.05. However, there was no main effect for peer evaluations. Those who expected peer evaluations (M = 8.33) did not differ significantly from those who did not expect evaluations (M = 7.20), F(1,24) = 1.633, n.s. The two variables did not interact, F(2,24) = .684, n.s. Number of teammates accounted for a large amount of variance in effort,  $\eta^2$  = .7202.

<u>Outcome #3</u>: Some of the hypotheses were supported. There was no main effect for number of teammates. Participants with two teammates (M = 7.10), four teammates (M = 6.70, or eight teammates (M = 7.60) did not differ significantly in effort, F(2,24) = .359, n.s. Participants expecting a peer evaluation put forth greater effort (M = 10.13) than those not expecting an evaluation (M = 4.13), F(1,24) = 47.647, p≤ .05. Finally, there was a significant interaction, F(2,24) = 16.535, p≤ .05. With peer evaluations, an increase in teammates increases effort. We revaluation accounts for the most variance in effort,  $\eta^2 = .4519$ , although the interaction also accounted for a large amount of variance,  $\eta^2 = .3137$ .

## Homework 8.4: Paragraphs & Name that Stat Review

1. Paragraph Write-up: To compare different techniques for reducing aggression in kids, you measure the number of aggressive acts seen during one day after 4 weeks of role-playing therapy (1,2,1,4), time-out restrictions (3,4,2,4), pink-room restrictions (6,5,7,6), and watching Barney (9,8,7,8).

2. Paragraph Write-up: Are extraverts more likely to enjoy scary movies? You reason that extraverts will tend to seek stimulation, and so should be more inclined to like the stimulation of getting scared senseless. You collect the following extraversion scores: 15,15,20,30,35,35,40 and desire to see scary movies 3,2,3,6,4,5,4. Test the hypothesis that the two variables are related.

3. Paragraph Write-up: You've developed a test of persistence that you think will nicely complement the SAT in predicting college grades. After all, obtaining a high GPA requires not only intelligence but (perhaps more importantly) hard work. For a single group of students, you obtain both the following GPAs (2.00,2.50,3.20,3.00,3.20, 3.60,3.75) and persistence scores (10,13,16,17,17,20,25), respectively. (Do both a correlation write-up and regression analysis.)

4. Identify the correct statistic

a. Test a weight loss clinic's claim that customers lose 15 pounds on average. You've talked to 9 people and recorded their weight lost.

b. Do women who receive social support during pregnancy have healthier babies at birth? You compare the weights of 7 new-borns from women receiving the extra social-support and compare this to the weights of 7 women receiving no special support.

c. A mother claims her child is smarter than 1 in 100 kids; she scored 120 on an IQ test ( $\mu$ =100,  $\sigma$  = 7).

d. A developmental psychologist argues that social skills tend to correlate strongly with intelligence. You have assessments of social skills and IQ for 10 kids.

e. A developmental psychologist argues that corporeal punishment causes kids to resent their parents. He measures resentment levels before and after corporeal punishment.

f. A developmental psychologist suggests he can predict the number of inappropriate, attention grabbing behaviors by the number of attentive parent-child interactions initiated by the parent. He observers the interaction of 20 parent-child dyads, and records the number of each behavior.

g. A developmental psychologist argues that kids will have less discipline problems if their parents both explain why particular behaviors are inappropriate AND reinforce good behavior. He compares the behavior problems displayed by kids with four types of discipline techniques: (1) punishment, (2) explanation, (3) reinforcement, (4) explanation + reinforcement.

5. Paragraph Write-up: Does hunger make food smell better? From previous research you know that most people rate the smell of a Whopper as a 4 on a 7 point scale. A statistics professor administers a 24 hour exam (to ensure her students won't eat during this time), then ask those still conscious to rate the smell of a Whopper. They rate the Whopper as follows (5,6,3,4,6,2,3,5,5)

6. Paragraph Write-up: You wonder if perfume really makes people appear more attractive. Six male participants rate a female confederate (i.e., your assistant) who is wearing perfume (6,7,5,6,7) and another six participants rate the same assistant when not wearing perfume (7,6,6,6,8).

7. Paragraph Write-up: You are interested in the relationship between stress and laughter. The research literature suggests that laughter can actually change someone's physiological response to stress. In your study you tell participants that they will perform a learning task in which they will receive a mild shock for wrong answers. You measure their galvanic skin response (a measure of stress) before (6, 9, 7, 8) and after you make them laugh (4, 5, 7, 5).

## Homework 8.4 Paragraphs & Name that Stat Review Key



5. The hypothesis was not supported. The rating hungry participants give the Whopper (M=4.33) is not significantly higher than for normal participants ( $\mu$  = 4), t(8) = .707, n.s. Note: You'd calculate the d statistic if you had rejected the Ho.

|        | One-Sample Statistics |      |                |                    |  |  |  |  |  |  |  |  |
|--------|-----------------------|------|----------------|--------------------|--|--|--|--|--|--|--|--|
|        | N                     | Mean | Std. Deviation | Std. Error<br>Mean |  |  |  |  |  |  |  |  |
| rating | 9                     | 4.33 | 1.414          | .471               |  |  |  |  |  |  |  |  |

|        | One-Sample Test                              |    |                 |                    |       |       |  |  |  |  |  |
|--------|----------------------------------------------|----|-----------------|--------------------|-------|-------|--|--|--|--|--|
|        | Test Value = 4                               |    |                 |                    |       |       |  |  |  |  |  |
|        | 95% Confidence Interval of the<br>Difference |    |                 |                    |       |       |  |  |  |  |  |
|        | t                                            | df | Sig. (2-tailed) | Mean<br>Difference | Lower | Upper |  |  |  |  |  |
| rating | .707                                         | 8  | .500            | .333               | 75    | 1.42  |  |  |  |  |  |

### Group Statistics

|        | group      | N | Mean | Std. Deviation | Std. Error<br>Mean |
|--------|------------|---|------|----------------|--------------------|
| rating | perfume    | 5 | 6.20 | .837           | .374               |
|        | no perfume | 5 | 6.60 | .894           | .400               |

#### Independent Samples Test

|        |                                | Equa | s Test for<br>Ility of<br>Inces |     |      | t-test i            | for Equality | of Means           |                                |        |
|--------|--------------------------------|------|---------------------------------|-----|------|---------------------|--------------|--------------------|--------------------------------|--------|
|        |                                |      |                                 |     |      |                     |              |                    | 95% Con<br>Interval<br>Differe | of the |
|        |                                | F    | Sig.                            | t   | df   | Sig. (2-<br>tailed) | Mean<br>Diff | Std.<br>Error Diff | Lower                          | Upper  |
| rating | Equal variances<br>assumed     | .094 | .767                            | 730 | 8    | .486                | 400          | .548               | -1.663                         | .863   |
|        | Equal variances not<br>assumed |      |                                 | 730 | 7.96 | .486                | 400          | .548               | -1.664                         | .864   |

6. The hypothesis was not supported. Participants in the perfume condition did not give significantly higher ratings (M=6.20) than participants in the non-perfume condition (M=6.60), t(8) = .730, n.s. Note: You'd calculate the d statistic if you had rejected the Ho.

|        | Paired Samples Statistics |      |   |                |                    |  |  |  |  |  |  |
|--------|---------------------------|------|---|----------------|--------------------|--|--|--|--|--|--|
|        |                           | Mean | N | Std. Deviation | Std. Error<br>Mean |  |  |  |  |  |  |
| Pair 1 | before                    | 7.50 | 4 | 1.291          | .645               |  |  |  |  |  |  |
|        | after                     | 5.25 | 4 | 1.258          | .629               |  |  |  |  |  |  |

### Paired Samples Test

|                       |       | Paired Differences |                    |                                                 |       |       |    |                     |
|-----------------------|-------|--------------------|--------------------|-------------------------------------------------|-------|-------|----|---------------------|
|                       |       |                    |                    | 95% Confidence<br>Interval of the<br>Difference |       |       |    |                     |
|                       | Mean  | Std.<br>Deviation  | Std. Error<br>Mean | Lower                                           | Upper | t     | df | Sig. (2-<br>tailed) |
| Pair 1 before - after | 2.250 | 1.708              | .854               | 468                                             | 4.968 | 2.635 | 3  | .078                |

7. The hypothesis was not supported. Participants in the laughing condition did not show significantly lower stress levels after laughing (M=5.25) than before (M=7.50), t(3)=2.635, n.s. Note: You'd calculate the d statistic if you had rejected the Ho.

## HW 8.4 Instructors Key -- Students can ignore this.

1. The hypothesis was supported. Participants watching Barney engaged in significantly more aggressive acts (M=8.00) than those in the pink room (M=6.00), who in turn engaged in more aggressive acts than those in either the time-out (M=3.25) or role-play (M=2.00) conditions, F (3,12) = 27.51, p≤.05. The effect of technique on aggression was large,  $\eta^2$ =.8731.

2. The hypothesis was not supported. Extraversion did not correlate significantly with desire to see a scary movie, r(5) = .684, n.s.

3. The hypothesis was supported. Persistence and GPA correlated significanctly, r(5) = .943,  $p \le .05$ . Persistence accounts for a large amount of variance in GPA,  $r^2 = .8892$ . y'=.120x + 1.016

4.

- a. one-sample t-test
- b. ind. t-test
- c. z-score
- d. correlation
- e. dep t-test
- f.regression
- g. one-way ANOVA

5. The hypothesis was not supported. The rating hungry participants give the Whopper (M=4.33) is not significantly higher than for normal participants ( $\mu = 4$ ), t(8) = .707, n.s.

6. The hypothesis was not supported. Participants in the perfume condition did not give significantly higher ratings (M=6.20) than participants in the non-perfume condition (M=6.60), t(8) = .730, n.s.

7. The hypothesis was not supported. Participants in the laughing condition did not show significantly higher stress levels after laughing (M=5.25) than before laughing (M=7.50), t(3) = 2.635, n.s.

### Homework 8.5: Practice Quiz #1

Student-Newman-Keuls<sup>a,b</sup>

N

8

8

8

8

Meditation

10 min

20 min

30 min

40 min

Sig.

Subset

2

5.88

1.0

1

3.63

3.63

4.75

.070

Dependent Variable: Happiness

A researcher tests whether 1 month of daily meditation (10, 20, 30, or 40 min/day) and religiosity (religious or not religious) affects happiness. She obtained the following results.

| Dependent Variable: Happiness |       |      |           |    |  |  |  |  |  |
|-------------------------------|-------|------|-----------|----|--|--|--|--|--|
| Meditati                      | Relig |      | Std.      |    |  |  |  |  |  |
| on                            | ious  | Mean | Deviation | N  |  |  |  |  |  |
| 10 min                        | yes   | 3.75 | .957      | 4  |  |  |  |  |  |
|                               | no    | 3.50 | 1.291     | 4  |  |  |  |  |  |
|                               | Total | 3.63 | 1.061     | 8  |  |  |  |  |  |
| 20 min                        | yes   | 3.75 | 1.258     | 4  |  |  |  |  |  |
|                               | no    | 3.50 | .577      | 4  |  |  |  |  |  |
|                               | Total | 3.63 | .916      | 8  |  |  |  |  |  |
| 30 min                        | yes   | 5.50 | .577      | 4  |  |  |  |  |  |
|                               | no    | 4.00 | .816      | 4  |  |  |  |  |  |
|                               | Total | 4.75 | 1.035     | 8  |  |  |  |  |  |
| 40 min                        | yes   | 7.50 | .577      | 4  |  |  |  |  |  |
|                               | no    | 4.25 | 1.258     | 4  |  |  |  |  |  |
|                               | Total | 5.88 | 1.959     | 8  |  |  |  |  |  |
| Total                         | yes   | 5.13 | 1.784     | 16 |  |  |  |  |  |
|                               | no    | 3.81 | .981      | 16 |  |  |  |  |  |
|                               | Total | 4.47 | 1.565     | 32 |  |  |  |  |  |

| Source                 | Type III Sum<br>of Squares | df | Mean<br>Square | F       | Sig. |
|------------------------|----------------------------|----|----------------|---------|------|
| Corrected Model        | 53.719ª                    | 7  | 7.674          | 8.278   | .000 |
| Intercept              | 639.031                    | 1  | 639.031        | 689.292 | .000 |
| Meditation             | 27.844                     | 3  | 9.281          | 10.011  | .000 |
| Religious              | 13.781                     | 1  | 13.781         | 14.865  | .001 |
| Meditation * Religious | 12.094                     | 3  | 4.031          | 4.348   | .014 |
| Error                  | 22.250                     | 24 | .927           |         |      |
| Total                  | 715.000                    | 32 |                |         |      |
| Corrected Total        | 75.969                     | 31 |                |         |      |

### **Estimated Marginal Means of Happiness**



|                              | 1. Formally summarize the result of the F-test for Factor B. (e.g.: t (7) =)                                    |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                              | 2. Calculate $\eta^2$ for Factor A (if appropriate)                                                             |  |  |  |  |  |
|                              | 3. What two specific values (give numbers) are used to calculate the F value for the interaction?               |  |  |  |  |  |
|                              | 4. What specific means (give numbers) would you use in describing whether there was a main effect for Factor B? |  |  |  |  |  |
|                              | 5. What was the average happiness level for <u>religious people</u> doing <u>10 minutes of meditation</u> ?     |  |  |  |  |  |
|                              | 6. Little "a" is equal to what numeric value?                                                                   |  |  |  |  |  |
|                              | 7. The things that can affect the dependent variable in a two-way ANOVA are called [one-word].                  |  |  |  |  |  |
| 8. Which statement best desc | ribes the interaction                                                                                           |  |  |  |  |  |

- a. The interaction was not significant.
  - b. As meditation time increased, happiness increased for both religious & non-religious participants.
  - c. As meditation time increased, happiness increased more for religious (vs. non-religious) participants.
  - d. Increasing meditation time from 10 to 20 minutes doesn't increase happiness, but increasing it from 20 to 30, and from 30 to 40 does.
- 9. Which pattern of significant differences is shown in the post-hoc table?
  - a. 10min < 20 min < 30 min < 40 min
  - b. [10 min = 20 min = 30 min ] < 40 min
  - c. 10 min < [ 20 min = 30 min = 40 min ]
  - d. [10 min = 20 min] < [ 30 min = 40 min ]

10. Name a common household pet. Three letters, the first one is "D" and the last is "G."

Dependent Variable: TestScr

A researcher tests the impact of practice time (10,20,30,40,50 min/day) and material (video vs. workbook) on math test performance.

| Dependent Variable: TestScr |          |      |           |    |  |  |  |  |
|-----------------------------|----------|------|-----------|----|--|--|--|--|
|                             |          |      | Std.      |    |  |  |  |  |
| Time                        | Material | Mean | Deviation | N  |  |  |  |  |
| 10 min                      | video    | 4.00 | .707      | 5  |  |  |  |  |
|                             | workbook | 3.80 | .837      | 5  |  |  |  |  |
|                             | Total    | 3.90 | .738      | 10 |  |  |  |  |
| 20 min                      | video    | 3.80 | .837      | 5  |  |  |  |  |
|                             | workbook | 4.00 | .707      | 5  |  |  |  |  |
|                             | Total    | 3.90 | .738      | 10 |  |  |  |  |
| 30 min                      | video    | 4.00 | .707      | 5  |  |  |  |  |
|                             | workbook | 5.40 | .548      | 5  |  |  |  |  |
|                             | Total    | 4.70 | .949      | 10 |  |  |  |  |
| 40 min                      | video    | 4.00 | .707      | 5  |  |  |  |  |
|                             | workbook | 6.00 | .707      | 5  |  |  |  |  |
|                             | Total    | 5.00 | 1.247     | 10 |  |  |  |  |
| 50 min                      | video    | 4.40 | .548      | 5  |  |  |  |  |
|                             | workbook | 6.20 | .837      | 5  |  |  |  |  |
|                             | Total    | 5.30 | 1.160     | 10 |  |  |  |  |
| Total                       | video    | 4.04 | .676      | 25 |  |  |  |  |
|                             | workbook | 5.08 | 1.222     | 25 |  |  |  |  |
|                             | Total    | 4.56 | 1.110     | 50 |  |  |  |  |

| Dependent variable. Testoci |              |    |          |         |      |  |  |  |
|-----------------------------|--------------|----|----------|---------|------|--|--|--|
|                             | Type III Sum |    | Mean     |         |      |  |  |  |
| Source                      | of Squares   | df | Square   | F       | Sig. |  |  |  |
| Corrected Model             | 39.520ª      | 9  | 4.391    | 8.444   | .000 |  |  |  |
| Intercept                   | 1039.680     | 1  | 1039.680 | 1999.38 | .000 |  |  |  |
| Time                        | 16.320       | 4  | 4.080    | 7.846   | .000 |  |  |  |
| Material                    | 13.520       | 1  | 13.520   | 26.000  | .000 |  |  |  |
| Time * Material             | 9.680        | 4  | 2.420    | 4.654   | .004 |  |  |  |
| Error                       | 20.800       | 40 | .520     |         |      |  |  |  |
| Total                       | 1100.000     | 50 |          |         |      |  |  |  |
| Corrected Total             | 60.320       | 49 |          |         |      |  |  |  |

| restact                             |    |      |      |  |  |  |  |  |
|-------------------------------------|----|------|------|--|--|--|--|--|
| Student-Newman-Keuls <sup>a,b</sup> |    |      |      |  |  |  |  |  |
| Subset                              |    |      |      |  |  |  |  |  |
| Time                                | N  | 1    | 2    |  |  |  |  |  |
| 20 min                              | 10 | 3.90 |      |  |  |  |  |  |
| 10 min                              | 10 | 3.90 |      |  |  |  |  |  |
| 30 min                              | 10 |      | 4.70 |  |  |  |  |  |
| 40 min                              | 10 |      | 5.00 |  |  |  |  |  |
| 50 min                              | 10 |      | 5.30 |  |  |  |  |  |
| Sig. 1.000 .163                     |    |      |      |  |  |  |  |  |
|                                     |    | 1.1  |      |  |  |  |  |  |

TestScr



| 1. Ca | alculate | η2 for | Factor B | (if | appropriate) |
|-------|----------|--------|----------|-----|--------------|
|-------|----------|--------|----------|-----|--------------|

- 2. When discussing Factor B, what means would you use? (specific numbers)
- 3. Little "b" is equal to what value? (specific number)
- 4. The values that an Independent Variable takes on are called \_\_\_\_\_ (a term).
- 5. What two specific <u>numeric</u> values yield the F value for A\*B?
- 6. Formally summarize the F-test result for Factor A. e.g., t(7) = ..... etc.
- 7. Formally summarize the F-test result for Factor B.
- 8. Overall there were 2 significant \_\_\_\_\_\_ effects and 1 significant \_\_\_\_\_.
- 9. What was the average test score for people doing workbooks for 30 minutes per day?

### 10. Which statement best describes the interaction

- a. The interaction was not significant.
- b. As practice time increases video participants do worse while workbook participants do better.
- c. As practice time increases in general both video and workbook participants do better.
- d. As practice time increases workbook participants eventually improve but video participants do not.

### 11. Which pattern of significant differences is shown in the post-hoc table?

- a. 10min < 20 min < 30 min < 40 min < 50 min
- b. 10 min = 20 min = 30 min = 40 min = 50 min
- c. 10, 20 min < 30, 40, & 50 min
- d. 20, 10 30 min < 40, 50 min

# Homework 9.1 - $\chi^2$ "Chi Squared"

|                 | Approve                         | Oppose               |                                                   | $\neg$    |              | True                         | False     | Don'       | t Know     |  |
|-----------------|---------------------------------|----------------------|---------------------------------------------------|-----------|--------------|------------------------------|-----------|------------|------------|--|
| F               | 45                              | 30                   | N=                                                | .    -    | OF           | 37                           | 10        |            | 7          |  |
| F               |                                 |                      |                                                   |           | EF           |                              |           |            |            |  |
|                 | 50%                             | 50%                  |                                                   |           |              | 50%                          | 40%       | 1          | 0%         |  |
|                 |                                 |                      |                                                   |           |              |                              |           |            |            |  |
| ck (vs<br>t eat | s. those that d<br>ers. Conduct | lidn't) were n       | ose who had a<br>hore likely to k<br>Independence | e red- In |              | archer wone<br>lent) relates | to suppor | rt for ga  | y marriag  |  |
|                 | ving data:                      |                      |                                                   |           |              |                              |           | cal Affili |            |  |
|                 |                                 | Red-Meat Ea<br>Yes N |                                                   |           | ge           |                              | Dem<br>15 | Rep<br>2   | Indep<br>7 |  |
| 100++           | Yes                             | 20 8                 |                                                   |           | Gay Marriage | Approve                      |           |            |            |  |
|                 | No                              | 10 2                 | 2                                                 |           | Gay I        | Oppose                       | 7         | 20         | 7          |  |
|                 |                                 |                      | I                                                 |           |              |                              |           |            |            |  |
|                 |                                 |                      |                                                   |           | $\chi^2 =$   |                              |           |            |            |  |
| =               |                                 |                      |                                                   |           | ι –          |                              |           |            |            |  |
|                 |                                 |                      |                                                   |           |              |                              |           |            |            |  |
|                 |                                 |                      |                                                   |           |              |                              |           |            |            |  |
|                 |                                 |                      |                                                   |           |              |                              |           |            |            |  |

## Homework 9.1 - $\chi^2$ "Chi Squared" Key



## Homey Work 9.4: Conceptual Review for Final

[Use the following scenario for questions 1-4] Researchers manipulate noise level (5,10,15, 20 decibels) and test for an impact on reading comprehension among college students.

- 1. Which of the following would increase the treatment effect?
  - a. changing the levels to 15, 20, 25, 30
  - b. changing the levels to 5, 15, 25, 35
  - c. using more subjects
  - d. decreasing  $MS_{BG}$
  - e. a&b
- 2. Which of the following would decrease sampling error?
  - a. making the sound quality more soothing
  - b. using a variety of reading materials to test reading comprehension
  - c. removing other possible distractions
  - d. getting more power
  - e. increasing  $MS_{BG}$
- 3. Which of the following pairs of reading comprehension scores (for groups 1 & 2) show a large  $MS_{BG}$  and a small  $MS_{WG}$ ?
  - a. 10,20,10,15 and 20,10,20,15
  - b. 5,10,5,15 and 40,45,40,35
  - c. 5,30,10,5 and 40,70,80,40
  - d. 10,30,5,40 and 20,40,20,80
- 4. If the ANOVA is significant, the experimenter will calculate a \_\_\_\_\_\_ to examine difference between means and a \_\_\_\_\_\_ to assess practical significance.
  - a.  $\eta^2$ ; post hoc
  - b. post hoc ; coefficient of determination
  - C.  $F; \eta^2$
  - d. post hoc ;  $\eta^2$
  - e. (nothing needed); post hoc
- 5. A researcher is testing whether social anxiety correlates with alcohol consumption. Which of the following would make it more likely that she could reject the null hypothesis?
  - a. large sample; small r
  - b. large  $\rho$ ; large sample.
  - c. large r ; small  $\rho$
  - d. large Sy'; large sample
  - e. small Sy' and shallow slope of regression line
  - f. small p ; large Sy'
- 6. A researcher hopes to show that students studying 50 or more hours for the Baadwidnoombrs quantitative ability test do better than the overall average (50 points, with a known σ). Which of the following makes it more likely he and his pet parrot can reject the Ho?
  - a. The scores of participants who study have lower variability
  - b. The scores of participants who study have higher variability
  - c. The scores of the general population have lower variability
  - d. The scores of the general population have higher variability
  - e. The difference between sx and  $\sigma x$  is small
  - f. The difference between sx and  $\sigma x$  is large

- 7. Which of the following will increase power?
  - a. Increase MS<sub>BG</sub>; Increase MS<sub>WG</sub>
  - b. Increase treatment; Increase  $MS_{WG}$
  - c. Decrease sampling error; Decrease treatment error
  - d. Decrease  $MS_{BG}$ ; Decrease  $MS_{WG}$
  - e. Increase MS<sub>BG</sub>; Decrease error
- 8. As t<sub>critical</sub> increases, \_\_\_\_\_
  - a. t<sub>obt</sub> decreases
  - b. treatment effect increases
  - c. rejection of Ho becomes less likely
  - d. power becomes more likely
  - e. size of d likely increases
- 9. As sampling error increases
  - a. t<sub>obt</sub> decreases
  - b. treatment increases
  - c. t<sub>crit</sub> increases
  - d. d increases
  - e. tobt remains unchanged

- 10. When doing correlation & regression we become more likely to reject Ho when
  - a. Sy' increases
  - b. r gets smaller
  - c. r<sup>2</sup> gets smaller
  - d. prediction error decreases
  - e. slope of regression line gets flatter
- 11. For a given distribution, relative to variance
  - a. SS is larger
  - b. sx is larger
  - c.  $\Sigma(x-x_{bar})$  is larger
  - d.  $\Sigma(x-\mu)$  is larger

e. 
$$\sqrt{s_x^2}$$
 is larger

- 12. As r increases
  - a. prediction accuracy decreases
  - b. the likelihood of  $\rho$ =0 increases
  - c. Sy decreases
  - d. Sy' increases
  - e.  $\beta$  decreases
  - f. the chance of rejecting Ho increases
- 13. If we reject Ho, we then calculate an \_\_\_\_\_\_ statistic. [2 words]
- 14. Deciding whether an observed correlation indicates an actual correlation in the population requires the process of \_\_\_\_\_\_\_. [2 words]
- 15. As  $\beta$  decreases \_\_\_\_\_ increases.
- 16. \_\_\_\_\_ represents the chance of a Type I error. [symbol]
- 17. If the effect of one IV depends upon the level of another IV we call that a(n) \_\_\_\_\_\_ effect [2-words].
- 18. With a z or t-test, standard error tells us the \_\_\_\_\_ [2 words] based on sampling error alone.
- 19. The t-test differs from the z because we must estimate \_\_\_\_\_\_. [First 2 words of name]
- 20. When doing regression, the variability around the regression line is expressed by \_\_\_\_\_\_. [symbol]

## Homey Work 9.4: Conceptual Review for Final - Key

[Use the following scenario for questions 1-4] Researchers manipulate noise level (5,10,15, 20 decibels) and test for an impact on reading comprehension among college students.

- 1. Which of the following would increase the treatment effect?
  - a. changing the levels to 15, 20, 25, 30
  - b. changing the levels to 5, 15, 25, 35
  - c. using more subjects
  - d. decreasing MS<sub>BG</sub>
  - e. a&b
- 2. Which of the following would decrease sampling error?
  - a. making the sound quality more soothing
  - b. using a variety of reading materials to test reading comprehension
  - removing other possible distractions
  - d. getting more power
  - e. increasing  $MS_{BG}$
- 3. Which of the following pairs of reading comprehension scores (for groups 1 & 2) show a large  $MS_{BG}$  and a small  $MS_{WG}$ ?
  - a. 10,20,10,15 and 20,10,20,15
  - b. 5,10,5,15 and 40,45,40,35
  - c. 5,30,10,5 and 40,70,80,40
  - d. 10,30,5,40 and 20,40,20,80
- 4. If the ANOVA is significant, the experimenter will calculate a \_\_\_\_\_\_ to examine difference between means and a \_\_\_\_\_\_ to assess practical significance.
  - a.  $\eta^2$ ; post hoc
  - b. post hoc ; coefficient of determination
  - c. F;η<sup>2</sup>
  - d. post hoc ; η<sup>2</sup>
  - e. (nothing needed); post hoc
- 5. A researcher is testing whether social anxiety correlates with alcohol consumption. Which of the following would make it more likely that she could reject the null hypothesis?
  - a. large sample; small r

### b. large **p** ; large sample

- c. large r ; small  $\rho$
- d. large Sy'; large sample
- e. small Sy' and shallow slope of regression line
- f. small p ; large Sy'
- 6. A researcher hopes to show that students studying 50 or more hours for the Baadwidnoombrs quantitative ability test do better than the overall average (50 points, with a known σ). Which of the following makes it more likely he and his pet parrot can reject the Ho?
  - a. The scores of participants who study have lower variability
  - b. The scores of participants who study have higher variability
  - c. The scores of the general population have lower variability
  - d. The scores of the general population have higher variability
  - e. The difference between sx and  $\sigma x$  is small
  - f. The difference between sx and  $\sigma x$  is large

- 7. Which of the following will increase power?
  - a. Increase MS<sub>BG</sub>; Increase MS<sub>WG</sub>
  - b. Increase treatment; Increase MS<sub>WG</sub>
  - c. Decrease sampling error; Decrease treatment error
  - d. Decrease  $MS_{BG}$ ; Decrease  $MS_{WG}$
  - e. Increase MS<sub>BG</sub>; Decrease error
- 8. As t<sub>critical</sub> increases, \_\_\_\_\_
  - a. t<sub>obt</sub> decreases
  - b. treatment effect increases
  - c. rejection of Ho becomes less likely
  - d. power becomes more likely
  - e. size of d likely increases
- 9. As sampling error increases

### a. t<sub>obt</sub> decreases

- b. treatment increases
- c. t<sub>crit</sub> increases
- d. d increases
- e. tobt remains unchanged

- 10. When doing correlation & regression we become more likely to reject Ho when
  - a. Sy' increases
  - b. r gets smaller
  - c. r<sup>2</sup> gets smaller
  - d. prediction error decreases
  - e. slope of regression line gets flatter
- 11. For a given distribution, relative to variance

### a. SS is larger

- b. s<sub>x</sub> is larger
- c.  $\Sigma(x-x_{bar})$  is larger
- d.  $\Sigma(x-\mu)$  is larger

e. 
$$\sqrt{{s_x}^2}$$
 is larger

- 12. As r increases
  - a. prediction accuracy decreases
  - b. the likelihood of  $\rho$ =0 increases
  - c. Sy decreases
  - d. Sy' increases
  - e.  $\beta$  decreases
  - f. the chance of rejecting Ho increases
- 13. If we reject Ho, we then calculate an <u>effect size</u> statistic. [2 words]
- 15. As β decreases <u>power</u> increases.
- 16. \_\_α \_\_\_\_\_ represents the chance of a Type I error. [symbol]
- 17. If the effect of one IV depends upon the level of another IV we call that a(n) <u>interaction</u> effect.
- 18. With a z or t-test, standard error tells us the <u>difference expected</u> [2 words] based on sampling error alone.
- 19. The t-test differs from the z because we must estimate <u>standard error</u>. [First 2 words of name]

### Homework 10.1: Journal Reading

This exercise requires you to read and interpret actual passages regarding statistics from real psychological research journals. In several cases you will need to extrapolate on what you've learned and make your best guess. The purpose is to help prepare you for reading research articles in preparation for conducting your own research project in PSYC 302, Research Methods.

<u>Article #1</u>: Banerjee, P., Chatterjee, P., & Sinha, J. (2012). Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. Psychological Science. <u>HELPFUL HINTS</u>: These authors hypothesize that people unconsciously associate bad behavior with darkness and good behavior with light. They prime people to think about one or the other and then see if this affects their perceptions and preferences regarding light.

- 1. IV:\_\_\_\_\_
- 2. DV: \_\_\_\_\_
- 3. Obtained t value: \_\_\_\_\_
- 4. Type of t-test: \_\_\_\_\_
- 5. Mean for the ethical condition \_\_\_\_\_
- 6. Was there a treatment effect? \_\_\_\_
- 7. Based on the effect size statistic, how many standard deviation units of difference does the IV cause?
- 8. The effect size is \_\_\_\_\_.
- 9. DV for brightness perception: \_\_\_\_\_
- 10. How big of difference did they find in perception of brightness? (State the statistic and its value): \_\_\_\_\_
- 11. What was the preference for the lamp in the ethical condition vs. the unethical condition: \_\_\_\_\_vs.\_ \_\_\_\_
- 12. The largest effect size was for which object?
- 13. For which objects were there <u>no</u> significant differences?
- 14. Why would the above objects not show a significant difference?

<u>Study 1:</u> "Forty participants at a large public university participated in this study in return for partial course credit. We asked participants to recall and describe in detail either an ethical or an unethical deed from their past and to describe any feelings or emotions associated with it (Zhong & Liljenquist, 2006). After completing a filler task, participants were asked to judge the brightness of the room, using a 7-point scale (1 = low, 7 = high). At test revealed a significant difference in perception of the room's brightness between the two conditions (ethical condition: M = 5.3; unethical condition: M = 4.71), t(38) = 2.03, p < .05, Cohen's d = 0.65. As predicted, participants in the unethical condition judged the room to be darker than did participants in the ethical condition. In our next study, we sought to extend these findings by testing whether participants who recalled unethical behavior, relative to those who recalled ethical behavior, exhibited a greater preference for light-producing objects (i.e., lamp, candle, and flashlight) that would brighten the room."

Study 2: "Seventy-four students participated in this study in return for partial course credit. As in Study 1, we asked participants to recall and describe either an unethical or an ethical deed from their past, as well as the feelings or emotions they associated with it. Next, participants were asked to indicate their preferences for the following products: a jug, a lamp, crackers, a candle, an apple, and a flashlight. Responses were made using 7-point scales (1 = low, 7 = high). We also asked participants to estimate (in watts) the brightness of the light in the lab. As expected, participants in the unethical condition found the lab to be darker than did participants in the ethical condition (ethical condition: M = 87.6 W; unethical condition: M = 74.3 W), t(72) = 2.7, p < .01, d = 0.64. Moreover, as predicted, participants in the unethical condition demonstrated greater preference for the light-related objects (but not the other objects): lamp (ethical condition: M = 2.34; unethical condition: M = 4.16), t(72) = 5.23, p < .0001, d = 1.23; candle (ethical condition: M = 2.37; unethical condition: M = 3.62), t(72) = 3.36, p < .01, d = 0.79; and flashlight (ethical condition: M = 2.35; unethical condition: M = 4.33), t(72) = 5.68, p < .0001, d = 1.33."

<u>Article #2</u>: Eppig, C., Fincher, C. L., & Thornhill, R. (2011). Parasite prevalence and the distribution of intelligence among the states of the USA. Intelligence, 39(2-3), 155-160. <u>HELPFUL HINTS</u>:  $\checkmark$  The authors hypothesize that in early childhood development the body makes a trade-off between maximizing brain functioning and maximizing immune system functioning. If the body detects a high parasite-stress environment, it will devote more resources to the immune system, thereby sacrificing a some level of intelligence. They therefore predict that people will be less intelligent in regions of the country where there are more risks from parasites (typically those areas that are closer to the equator – that is, lower in latitude).  $\bigstar$  They conduct a hierarchical regression which tries to control for other potential variables (e.g., educational quality) that could provide another explanation for the relationship between IQ and parasite-stress).

- 15. Parasite-stress (PS) correlated with what geographical variable?
- 16. As you head south, PS \_\_\_\_\_.
- 17. What amount of variance in PS could you account for with latitude: \_\_\_\_\_\_.

Excerpt from literature review. Hint: The authors are providing evidence that their measure of parasite-stress (i.e., the level of risk for a parasite infection in a given area) measures what it is supposed to.  $\checkmark$  "This index of parasite-stress, Parasite-Stress USA, is validated by the fact that it shows a negative correlation with latitude (-0.45, n=50, and p=0.001; or after removing the latitudinal outliers Alaska and Hawaii, -0.71, n=48, and p=0.0001) just as do global measures of parasite-stress (Cashdan, 2001; Guernier, Hochberg, & Guégan, 2004; Low, 1990). Furthermore,

- 18. What's the correlation between PS and life expectancy?
- 19. At what level was this relationship significant?
- 20. Which variable was standardized?
- 21. What's the cor. between IQ and PS?\_\_\_\_\_
- 22. What percent of variance in IQ can you account for with PS?
- 23. The reason n=50 is because that's the number of \_\_\_\_\_.
- 24. Based on the regression line, if PS is 2 standard deviations above average, the average IQ should be just a little above
- 25. What's the next best predictor of IQ?
- 26. Besides the PS, the only other negative correlation with IQ is with

Parasite-Stress USA was correlated strongly and negatively across US states with the average lifespan expectancy at birth for both sexes in the year 2000 according to data we collected from www.census.gov (r=-0.67, n=50, and p=0.0001). Similar strong relationships between infectious disease stress and lifespan expectancy are found in cross-national analyses (Thornhill et al., 2009). This variable was z-scored (mean= -0.0044, median=-0.023, and SD=0.91). See Fincher and Thornhill (in press) for further details and data."

Excerpt from Results: "Average state IQ and parasite stress correlated at r=-0.67 (n=50, and p=0.0001; Fig. 1). Average IQ also correlated significantly with wealth (r=0.32, n=50, and p=0.025), percent of teachers highly qualified (r=0.42, n=50, and p=0.0023), and student– teacher ratio (r=-0.31, n=50, and p=0.031) (see Table 1 for additional correlations).



Fig. 1. Bivariate relationship between average U.S. state IQ and infectious disease stress. Average state IQ and parasite stress correlated at r = -0.67 (n = 50, and p < 0.0001). The line is the least-squares line through the points.

#### Table 1

Zero-order correlations among all variables.

|                                                                    |                                                                        | 1.      | 2.            | 3.           | 4.           | 5.                | 6.        | 7.        | 8.      |
|--------------------------------------------------------------------|------------------------------------------------------------------------|---------|---------------|--------------|--------------|-------------------|-----------|-----------|---------|
| 1. Average IQ                                                      |                                                                        |         | -0.67**       | -0.31 "      | 0.42*        | 0.27 <sup>†</sup> | 0.34 *    | 0.28*     | 0.32 *  |
| 2. Parasite stress                                                 |                                                                        |         |               | -0.0069      | -0.11        | -0.15             | -0.047    | 0.013     | - 0.065 |
| <ol><li>Student-teacher ratio</li></ol>                            |                                                                        |         |               |              | -0.35*       | 0.12              | -0.0007   | 0.020     | 0.052   |
| 4. Percent of teachers highly qu                                   | alified                                                                |         |               |              |              | -0.23             | -0.07     | 0.029     | -0.049  |
| 5. Median household income                                         |                                                                        |         |               |              |              |                   | 0.88**    | 0.77**    | 0.95*   |
| 6. Income per capita                                               |                                                                        |         |               |              |              |                   |           | 0.80 **   | 0.95*   |
| 7. Gross state product                                             |                                                                        |         |               |              |              |                   |           |           | 0.91 *  |
| 8. Wealth                                                          |                                                                        |         |               |              |              |                   |           |           |         |
| ll others $p>0.10$ . All $n=50$ .<br>* $p<0.001$ .<br>* $p<0.05$ . | 27. What                                                               | s the a | cor. IQ and N | 1ed. Househo | Id income?   |                   | Is it sig | nificant? |         |
|                                                                    | 28. What's the best predictor of Household income? What's the r value? |         |               |              |              |                   |           |           |         |
| 2                                                                  |                                                                        | s the i | Jest predicto |              |              |                   |           |           |         |
|                                                                    | 9 The re                                                               | lation  | ship betwee   | n IO and hou | sehold incon | na isn't sia      | hut       |           |         |

- 30. If a relationship has two asterisks it's significant at the \_\_\_\_\_ level.
- 31. What's the amount of variance accounted for in IQ after entering just PS in the first step?
- 32. What does the amount of variance accounted for reach after everything is entered in the third step? \_\_\_\_\_
- 33. Is PS still significant after they've controlled for wealth, education, etc.?

<u>Excerpt from Results</u>: Hierarchical regression was used to predict average state IQ using parasite stress, wealth, percent of teachers highly qualified, and student/teacher ratio (Table 2). Parasite stress was added in the first iteration of the model, resulting in a change in  $R^2$  of 0.445. Wealth was added in the second iteration of the model, resulting in a change in  $R^2$  of 0.075. Both education variables were added simultaneously in the third iteration of the model because they both measure the same theoretical construct, resulting in a change in  $R^2$  of 0.133. While these variables were added into the model in order of presumed causal priority, adding these variables in a different order did not appreciably change the additive  $R^2$  of each iteration. In the final model, parasite stress (Std Beta= -0.62, variance inflation factor (VIF)=1.02, and p=0.0001), wealth (Std Beta=0.30, VIF=1.00, and p=0.0006), percent of teachers highly qualified (Std Beta=0.29, VIF=1.16, and p=0.0019), and student/teacher ratio (Std Beta=-0.22, VIF=1.15, and p=0.015) (Table 3) were all significant predictors of average state IQ. The whole model  $R^2$  was 0.698 (p=0.0001)." Also see Table 2 below.

Homework





# Table 2 Hierarchical regression model predicting average state IQ.

| Model | Term      | р        | R <sup>2</sup> | change in R <sup>2</sup> |
|-------|-----------|----------|----------------|--------------------------|
| 1     |           | < 0.0001 | 0.445          | 0.445                    |
|       | Parasites | < 0.0001 |                |                          |
| 2     |           | < 0.0001 | 0.520          | 0.075                    |
|       | Parasites | < 0.0001 |                |                          |
|       | Wealth    | 0.0094   |                |                          |
| 3     |           | < 0.0001 | 0.698          | 0.133                    |
|       | Parasites | < 0.0001 |                |                          |
|       | Wealth    | 0.0006   |                |                          |
|       | HQT       | 0.0019   |                |                          |
|       | STR       | 0.015    |                |                          |

HQT = percent of teachers highly qualified; and STR = student/teacher ratio.

Answer the following based on the above model (not your own intuition).

34. What's the fundamental driver of infectious disease risk? \_\_\_\_\_

35. What's the direction of relationship between education and infectious disease risk?

- 36. As infectious disease risk increases, wealth \_\_\_\_\_
- 37. Can education increase intelligence?
- 38. As intelligence increases, what happens to infectious disease risk? \_\_\_\_\_\_. Speculate below on why they might suggest this relationship:

### Homework 10.1: Journal Reading -Key

This exercise requires you to read and interpret actual passages regarding statistics from real psychological research journals. In several cases you will need to extrapolate on what you've learned and make your best guess. The purpose is to help prepare you for reading research articles in preparation for conducting your own research project in PSYC 302, Research Methods.

<u>Article #1</u>: Banerjee, P., Chatterjee, P., & Sinha, J. (2012). Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. Psychological Science. <u>HELPFUL HINTS</u>: These authors hypothesize that people unconsciously associate bad behavior with darkness and good behavior with light. They prime people to think about one or the other and then see if this affects their perceptions and preferences regarding light.

| <ol> <li>IV: <u>recalling (un)ethical deed</u></li> <li>DV: <u>brightness perception, 1-7 scale</u></li> <li>Obtained t value: <u>2.03</u></li> <li>Type of t-test: <u>Independent</u></li> <li>Mean for the ethical condition <u>5.3</u></li> <li>Was there a treatment effect? <u>Yes</u></li> <li>Based on the effect size statistic, how many standard deviation units of difference does the IV cause? <u>0.65</u></li> <li>The effect size is <u>Medium</u>.</li> </ol>                                                                                                                 | <u>Study 1:</u> "Forty participants at a large public university participated in this study in return for partial course credit. We asked participants to recall and describe in detail either an ethical or an unethical deed from their past and to describe any feelings or emotions associated with it (Zhong & Liljenquist, 2006). After completing a filler task, participants were asked to judge the brightness of the room, using a 7-point scale (1 = low, 7 = high). A t test revealed a significant difference in perception of the room's brightness between the two conditions (ethical condition: M = 5.3; unethical condition: M = 4.71), t(38) = 2.03, p < .05, Cohen's d = 0.65. As predicted, participants in the unethical condition judged the room to be darker than did participants in the ethical condition. In our next study, we sought to extend these findings by testing whether participants who recalled unethical behavior, relative to those who recalled ethical behavior, exhibited a greater preference for light-producing objects (i.e., lamp, candle, and flashlight) that would brighten the room."                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>9. DV for brightness perception:estimated Wattage</li> <li>10. How big of difference did they find in perception of brightness? (State the statistic and its value): _d=0.64</li> <li>11. What was the preference for the lamp in the ethical condition vs. the unethical condition: _M=2.34vsM=4.16</li> <li>12. The largest effect size was for which object?Flashlight</li> <li>13. For which objects were there no significant differences?Jug, Crackers, Apple</li> <li>14. Why would the above objects not show a significant difference?They do not give off light</li> </ul> | <u>Study 2</u> : "Seventy-four students participated in this study in return for partial course credit. As in Study 1, we asked participants to recall and describe either an unethical or an ethical deed from their past, as well as the feelings or emotions they associated with it. Next, participants were asked to indicate their preferences for the following products: a jug, a lamp, crackers, a candle, an apple, and a flashlight. Responses were made using 7-point scales (1 = low, 7 = high). We also asked participants to estimate (in watts) the brightness of the light in the lab. As expected, participants in the unethical condition found the lab to be darker than did participants in the ethical condition (ethical condition: M = 87.6 W; unethical condition: M = 74.3 W), t(72) = 2.7, p < .01, d = 0.64. Moreover, as predicted, participants in the unethical condition demonstrated greater preference for the light-related objects (but not the objects): lamp (ethical condition: M = 2.34; unethical condition: M = 4.16), t(72) = 5.23, p < .0001, d = 1.23; candle (ethical condition: M = 2.37; unethical condition: M = 3.62), t(72) = 3.36, p < .01, d = 0.79; and flashlight (ethical condition: M = 2.35; unethical condition: M = 4.33), t(72) = 5.68, p < .0001, d = 1.33." |

<u>Article #2</u>: Eppig, C., Fincher, C. L., & Thornhill, R. (2011). Parasite prevalence and the distribution of intelligence among the states of the USA. Intelligence, 39(2-3), 155-160. <u>HELPFUL HINTS</u>:  $\checkmark$  The authors hypothesize that in early childhood development the body makes a trade-off between maximizing brain functioning and maximizing immune system functioning. If the body detects a high parasite-stress environment, it will devote more resources to the immune system, thereby sacrificing a some level of intelligence. They therefore predict that people will be less intelligent in regions of the country where there are more risks from parasites (typically those areas that are closer to the equator – that is, lower in latitude).  $\checkmark$  They conduct a hierarchical regression which tries to control for other potential variables (e.g., educational quality) that could provide another explanation for the relationship between IQ and parasite-stress).





Table 1

Zero-order correlations among all variables.

|                                                                                                                                                                                                                                     |                                              | 1.                       | 2.                            | 3.                                                                 | 4.                       | 5.                                             | 6.                                            | 7.                                                      | 8.                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------|--------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|
| <ol> <li>Average IQ</li> <li>Parasite stress</li> <li>Student-teacher ratio</li> <li>Percent of teachers highly</li> <li>Median household income</li> <li>Income per capita</li> <li>Gross state product</li> <li>Wealth</li> </ol> |                                              |                          | -0.67**                       | -0.31*<br>-0.0069                                                  | 0.42*<br>-0.11<br>-0.35* | 0.27 <sup>†</sup><br>-0.15<br>0.12<br>-0.23    | 0.34*<br>-0.047<br>-0.0007<br>-0.07<br>0.88** | 0.28 *<br>0.013<br>0.020<br>0.029<br>0.77 **<br>0.80 ** | 0.32*<br>-0.065<br>0.052<br>-0.049<br>0.95**<br>0.95**<br>0.91** |
| All others p>0.10. All n = 50.<br>** p<0.001.<br>* p<0.05.<br>† p<0.1.                                                                                                                                                              | 29. What'<br><mark>0.9!</mark><br>30. The re | s the b<br>5<br>elations | est predictor<br>ship between | ed. Household<br>of Household<br>IQ and house<br>isterisks it's si | d income? _              | _ <mark>Wealth or I</mark><br>e isn't sig., bi | ncome per ca                                  | apita_ Wha                                              | t's the r value?                                                 |

- What's the amount of variance accounted for in IQ after entering just PS in the first step?
   <u>R<sup>2</sup>=0.445</u>\_\_\_\_\_
- What does the amount of variance accounted for reach after everything is entered in the third step? \_\_\_\_R<sup>2</sup>=0.698\_\_\_\_\_
- 34. Is PS still significant after they've controlled for wealth, education, etc.? <u>Yes</u>

<u>Excerpt from Results</u>: Hierarchical regression was used to predict average state IQ using parasite stress, wealth, percent of teachers highly qualified, and student/teacher ratio (Table 2). Parasite stress was added in the first iteration of the model, resulting in a change in R<sup>2</sup> of 0.445. Wealth was added in the second iteration of the model, resulting in a change in R<sup>2</sup> of 0.075. Both education variables were added simultaneously in the third iteration of the model because they both measure the same theoretical construct, resulting in a change in R<sup>2</sup> of 0.133. While these variables were added into the model in order of presumed causal priority, adding these variables in a different order did not appreciably change the additive R<sup>2</sup> of each iteration. In the final model, parasite stress (Std Beta= -0.62, variance inflation factor (VIF)=1.02, and p=0.0001), wealth (Std Beta=0.30, VIF=1.00, and p=0.0006), percent of teachers highly qualified (Std Beta=0.29, VIF=1.16, and p=0.0019), and student/teacher ratio (Std Beta=-0.22, VIF=1.15, and p=0.015) (Table 3) were all significant predictors of average state IQ. The whole model R<sup>2</sup> was 0.698 (p=0.0001)." <u>Also see Table 2 below</u>.



Fig. 2. The directions of influences predicted by our hypothesis among climate, infectious disease, intelligence, education, and wealth.

| Table 2      |            |       |            |         |           |
|--------------|------------|-------|------------|---------|-----------|
| Hierarchical | regression | model | predicting | average | state IQ, |

| Model | Term      | р        | R <sup>2</sup> | change in R <sup>2</sup> |
|-------|-----------|----------|----------------|--------------------------|
| 1     |           | < 0.0001 | 0.445          | 0.445                    |
|       | Parasites | < 0.0001 |                |                          |
| 2     |           | < 0.0001 | 0.520          | 0.075                    |
|       | Parasites | < 0.0001 |                |                          |
|       | Wealth    | 0.0094   |                |                          |
| 3     |           | < 0.0001 | 0.698          | 0.133                    |
|       | Parasites | < 0.0001 |                |                          |
|       | Wealth    | 0.0006   |                |                          |
|       | HQT       | 0.0019   |                |                          |
|       | STR       | 0.015    |                |                          |

HQT = percent of teachers highly qualified; and STR = student/teacher ratio.

Answer the following based on the above model (not your own intuition).

- 35. What's the fundamental driver of infectious disease risk? \_\_\_\_Climate?\_
- 36. What's the direction of relationship between education and infectious disease risk? \_\_\_\_Negative\_\_\_\_\_

37. As infectious disease risk increases, wealth \_\_\_\_\_Decreases

38. Can education increase intelligence? <u>No, the model shows causality running from Intelligence to Education</u>

39. As intelligence increases, what happens to infectious disease risk? <u>Decreases</u>?.... Speculate below on why they might suggest this relationship: As intelligence increases, people invest more resources in public health and prevention (e.g., vaccinations).

### Homework 10.2: Conceptual Final Review, MC & FIB practice

- 1) A researcher tested whether participants would recommend longer prison sentences if the description of the crime was paired with a disgusting smell. Which of the following would increase the <u>treatment effect</u>?
  - a) more serious crimes
  - b) more disgusting crimes
  - c) more disgusting odors
  - d) standardize smelling ability (e.g., no people with colds)
  - e) standardize participants (e.g., no law enforcement people)
- 2) An educational psychologist examined the effect of peer teaching on writing skills. She randomly placed students in freshman composition into one of three groups, 0, 5, or 10 hours peer teaching, and then compared grades on final papers at the semester's end. Which of the following would likely decrease MSwg?
  - a) including a wider range of students in the study
  - b) giving more guidance in effective peer teaching
  - c) switching to 0, 10, and 20 hrs of peer teaching
  - d) basing the assessment on two final papers (averaged together) rather than just one
- 3) Which of the following is affected by treatment effect?
  - a) MS<sub>bg</sub>
  - b) df<sub>bg</sub>
  - c) MS<sub>wg</sub>
  - d) SS<sub>wg</sub>
  - e) a&b
- 4) Conceptually, \_\_\_\_\_ influences both the top and bottom portions of the F ratio
  - a) df<sub>bg</sub>
  - b) dgwg
  - c) sampling error
  - d) sample size
  - e) treatment effect
- 5) The statistic  $\eta^2$  is a measure of ...
  - a) practical significance
  - b) statistical significance
  - c) sampling error
  - d) power
- 6) In a 2-way ANOVA, we do a \_\_\_\_\_\_ test if there are 3 or more \_\_\_\_\_\_ of an IV.
  - a) post-hoc, factors
  - b)  $\eta^2$ , levels
  - c)  $\eta^2$ , factors
  - d) post-hoc, levels

- 7) Variance is defined as the
  - a) square root of the average deviation around the mean
  - b) square root of the average squared deviation around the mean
  - c) average of the squared deviations around the mean
  - d) sum of the squared deviations around the mean
- 8) When doing a t-test, t<sub>obt</sub> will get larger if
  - a) treatment effect increases
  - b) sampling error increases
  - c) t<sub>critical</sub> decreases
  - d) α increases
  - e) the observed difference gets smaller
- 9) Retaining the Ho means:
  - a) You claim the sample comes from an alternative distribution
  - b) Power was too large
  - c) There is no chance of a treatment effect being present
  - d) There is no chance of a Type I error
- 10) If God tells you that for a given t-test the true treatment effect for the sample is zero, then the true treatment effect is
  - a) d = 1
  - b) d = 0
  - c) d < .05
  - d) d > 0
- 11) A t-test is less powerful than a z-test because it
  - a) use more degrees of freedom
  - b) estimates standard error
  - c) estimates the treatment effect
  - d) requires a larger n
- 12) With a t-test, as n decreases the shape of the distribution becomes
  - a) more like a z-distribution
  - b) more accurate
  - c) shorter in the middle and taller at the tails
  - d) more like an F distribution
- 13) A researcher tests whether a sample (n=16) of students from Hogwartz High do significantly better on an end of grade test (M=107) than normal ( $\mu$  = 88). Rejecting the Ho in this case means
  - a) concluding that the true population is  $\mu = 88$
  - b) there's no sampling error
  - c)  $\beta$  is large
  - d) claiming  $\rho \neq 0$
  - e) claiming d > 0

- 14) If the <u>variance accounted for</u> in openness by promotion motivation increases from .29 to .45, then \_\_\_\_\_\_ is decreasing.
  - a) r<sup>2</sup>
  - b) Sy'
  - c) the slope of the line
  - d) Sy
- 15) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. Which of the following would increase power?
  - a) Including people with a wide variety of sleep disorders
  - b) Decrease  $\alpha$
  - c) Increase β
  - d) Accept only people with moderate intelligence
  - e) Ensure that participants are practicing the meditation regiment as directed
- 16) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. Which of the following would determine which groups differed significantly?
  - a) F-test
  - b) t-test
  - c) post hoc
  - d) d
  - e) η<sup>2</sup>
- 17) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. If the researcher rejects the Ho when in fact meditation has no impact on sleep, which of the following is/are true?
  - a) the true treatment effect is zero
  - b) A type I error has occurred
  - c) Beta = 1
  - d) the researcher is probably a bad person
  - e) a&b
  - f) a, b, & c
- 18) When doing a t-test, if the treatment effect gets stronger then
  - a) t-critical increases
  - b) df decreases
  - c) t obtained decreases
  - d) the difference expected increases
  - e) the difference observed increases
  - f) a & b

- 19) A  $\chi^2$  is performed with data at the \_\_\_\_\_\_ level of measurement
- 20) The  $\chi^2$  test for \_\_\_\_\_\_ is similar to how a two-way Anova can detect an interaction.
- 21) In a 2-way ANOVA notation MS stands for \_\_\_\_\_\_. and SS stands for \_\_\_\_\_.
- 22) A(n) \_\_\_\_\_ graphs the frequency distribution of observed scores using vertical, touching columns.
- 23) If treatment effect increases dramatically when conducting an F-test, then \_\_\_\_\_\_ should increases and \_\_\_\_\_\_ should stay the same.
- 24) If the data are normal distributed, the \_\_\_\_\_ is the preferred measure of central tendency.
- 25) A \_\_\_\_\_ converts a raw score to a standard score (with a mean of zero and a standard deviation of 1).
- 26) In calculating an ANOVA, you compute MS by dividing \_\_\_\_\_\_ by \_\_\_\_\_.
- 27) In a 2-way ANOVA, there are 3 F tests, which could produce three different \_\_\_\_\_ [one word] -- one for each of the 3 \_\_\_\_\_ [one word].
- 28) In a 2-way ANOVA, there are two possible \_\_\_\_\_\_ effects and one possible \_\_\_\_\_\_ effect.
- 29) The "design" of a 2-way ANOVA concerns the respective \_\_\_\_\_\_ of the two IVs.
- 30) To consider the main effect for factor A requires \_\_\_\_\_across the levels of factor B when looking at the relevant means.
- 31) If a frequency distribution showed 2 distinct peaks we might consider the \_\_\_\_\_ as the best measure of central tendency.
- If you reject the Ho, you might make a \_\_\_\_\_\_ decision making error.
- 33) As the slope of the regression line increases, r<sup>2</sup> will
- 34) Whereas "r" is a test of \_\_\_\_\_\_ significance, r<sup>2</sup> is a test of \_\_\_\_\_\_ significance.

### Homework 10.2 Conceptual Final Review, MC & FIB practice - Key

- A researcher tested whether participants would recommend longer prison sentences if the description of the crime was paired with a disgusting smell. Which of the following would increase the <u>treatment effect</u>?
  - a) more serious crimes
  - b) more disgusting crimes
  - c) more disgusting odors
  - d) standardize smelling ability (e.g., no people with colds)
  - e) standardize participants (e.g., no law enforcement people)
- 2) An educational psychologist examined the effect of peer teaching on writing skills. She randomly placed students in freshman composition into one of three groups, 0, 5, or 10 hours peer teaching, and then compared grades on final papers at the semester's end. Which of the following would likely decrease MSwg?
  - a) including a wider range of students in the study
  - b) giving more guidance in effective peer teaching
  - c) switching to 0, 10, and 20 hrs of peer teaching
  - basing the assessment on two final papers (averaged together) rather than just one
- 3) Which of the following is affected by treatment effect?
  - a) MS<sub>bg</sub>
  - b) df<sub>bg</sub>
  - c) MS<sub>wg</sub>
  - d) SS<sub>wg</sub>
  - e) a&b
- 4) Conceptually, \_\_\_\_\_ influences both the top and bottom portions of the F ratio
  - a) df<sub>bg</sub>
  - b) dg<sub>wg</sub>

#### c) sampling error

- d) sample size
- e) treatment effect
- 5) The statistic  $\eta^2$  is a measure of ...

#### a) practical significance

- b) statistical significance
- c) sampling error
- d) power
- 6) In a 2-way ANOVA, we do a \_\_\_\_\_\_ test if there are 3 or more \_\_\_\_\_\_ of an IV.
  - a) post-hoc, factors
  - b)  $\eta^2$ , levels
  - c) η<sup>2</sup>, factors
  - d) post-hoc, levels

- 7) Variance is defined as the
  - a) square root of the average deviation around the mean
  - b) square root of the average squared deviation around the mean
  - c) average of the squared deviations around the mean
  - d) sum of the squared deviations around the mean
- 8) When doing a t-test, t<sub>obt</sub> will get larger if

#### a) treatment effect increases

- b) sampling error increases
- c) t<sub>critical</sub> decreases
- d)  $\alpha$  increases
- e) the observed difference gets smaller
- 9) Retaining the Ho means:
  - a) You claim the sample comes from an alternative distribution
  - b) Power was too large
  - c) There is no chance of a treatment effect being present
  - d) There is no chance of a Type I error
- 10) If God tells you that for a given t-test the true treatment effect for the sample is zero, then the true treatment effect is
  - a) d = 1
  - b) d = 0
  - c) d < .05
  - d) d > 0
- 11) A t-test is less powerful than a z-test because it
  - a) use more degrees of freedom
  - b) estimates standard error
  - c) estimates the treatment effect
  - d) requires a larger n
- 12) With a t-test, as n decreases the shape of the distribution becomes
  - a) more like a z-distribution
  - b) more accurate
  - c) shorter in the middle and taller at the tails
  - d) more like an F distribution
- 13) A researcher tests whether a sample (n=16) of students from Hogwartz High do significantly better on an end of grade test (M=107) than normal (μ = 88). Rejecting the Ho in this case means
  - a) concluding that the true population is  $\mu = 88$
  - b) there's no sampling error
  - c)  $\beta$  is large
  - d) claiming  $\rho \neq 0$

- 14) If the <u>variance accounted for</u> in openness by promotion motivation increases from .29 to .45, then \_\_\_\_\_\_ is decreasing.
  - a) r<sup>2</sup>
  - b) Sy'
  - c) the slope of the line
  - d) β
- 15) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. Which of the following would increase power?
  - a) Including people with a wide variety of sleep disorders
  - b) Decrease  $\alpha$
  - c) Increase  $\beta$
  - d) Accept only people with moderate intelligence
  - e) Ensure that participants are practicing the meditation regiment as directed
- 16) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. Which of the following would determine which groups differed significantly?
  - a) F-test
  - b) t-test
  - <mark>c) post hoc</mark>
  - d) d
  - e) η<sup>2</sup>
- 17) A researcher examines the effect of meditation type (mindfulness, mantra, and movement) on insomnia, measuring hours slept per night. If the researcher rejects the Ho when in fact meditation has no impact on sleep, which of the following is/are true?
  - a) the true treatment effect is zero
  - b) A type I error has occurred
  - c)  $\beta = 1$
  - d) the researcher is probably a bad person
  - <mark>e) a&b</mark>
  - f) a, b, & c
- When doing a t-test, if the treatment effect gets stronger then
  - a) t-critical increases
  - b) df decreases
  - c) t-obtained decreases
  - d) the difference expected increases
  - e) the difference observed increases
  - f) a&b

- 19) A  $\chi^2$  is performed with data at the <u>nominal</u> level of measurement
- 20) The  $\chi^2$  test for <u>independence</u> is similar to how a two-way Anova can detect an interaction.
- In a 2-way ANOVA notation MS stands for <u>means</u> squared and SS stands for <u>squares</u>.
- A(n) <u>histogram</u> graphs the frequency distribution of observed scores using vertical, touching columns.
- If treatment effect increases dramatically when conducting an F-test, then <u>MSbg</u> should increases and <u>MSwg</u> should stay the same.
- 24) If the data are normal distributed, the <u>mean</u> is the preferred measure of central tendency.
- A <u>z-score</u> converts a raw score to a standard score (with a mean of zero and a standard deviation of 1).
- 26) In calculating an ANOVA, you compute MS by dividing <u>SS</u> by <u>df</u>.
- 27) In a 2-way ANOVA, there are 3 F tests, which could produce three different <u>effects</u> [one word] -- one for each of the 3 <u>factors</u> [one word].
- 28) In a 2-way ANOVA, there are two possible \_main\_ effects and one possible \_interaction\_ effect.
- 29) The "design" of a 2-way ANOVA concerns the respective \_levels\_ of the two IVs.
- 30) To consider the main effect for factor A requires \_collapsing\_across the levels of factor B when looking at the relevant means.
- If a frequency distribution showed 2 distinct peaks we might consider the <u>\_mode</u> as the best measure of central tendency.
- 32) If you reject the Ho, you might make a <u>Type I</u> decision making error.
- As the slope of the regression line increases, r<sup>2</sup> will \_increase\_\_.
- Whereas "r" is a test of \_\_\_\_\_statistical\_\_\_\_ significance, r<sup>2</sup> is a test of \_\_\_practical\_\_\_\_ significance.