Chapter 10

Finite-State Markov Chains

Introductory Example: Googling Markov Chains

Google means many things: it is an Internet search engine, the company that produces the search
engine, and a verb meaning to search on the Internet for a piece of information. Although it may
seem hard to believe, there was a time before people could “google” to find the capital of Botswana,
or a recipe for deviled eggs, or other vitally important matters. Users of the Internet depend on
trustworthy search engines — the amount of available information is so vast that the searcher relies
on the search engine not only to find those webpages that contain the terms of the search, but also
to return first those webpages most likely to be relevant to the search. Early search engines had no
good way of determining which pages were more likely to be relevant. Searchers had to check the
returned pages one by one, which was a tedious and frustrating process. This situation improved
markedly in 1998, when search engines began to use the information contained in the hyperlinked
structure of the World Wide Web to help to rank pages. Foremost among this new generation
of search engines was Google, a project of two computer science graduate students at Stanford
University: Sergey Brin and Lawrence Page.

Brin and Page reasoned that a webpage was important if it had hyperlinks to it from other important
pages. They used the idea of random surfer. a web surfer moving from webpage to webpage
merely by choosing at random which hyperlink to follow. The motion of the surfer among the
webpages can be modeled using Markov chains, which were introduced in Section 4.9. The pages
that this random surfer visits more often ought to be more important, and thus more relevant if their
content matches the terms of a search. Although Brin and Page did not not know it at the time,
they were attempting to find the steady-state vector for a particular Markov chain whose transition
matrix modeled the hyperlinked structure of the web. After some important modifications to this
impressively large matrix (detailed in Section 10.2), a steady-state vector can be found, and its
entries can be interpreted as the amount of time a random surfer will spend at each webpage. The
calculation of this steady-state vector is the basis for Google’s PageRank algorithm.

So the next time you google the capital of Botswana, know that you are using the results of this
chapter to find just the right webpage.



Even though the number of webpages is huge, it is still finite. When the link structure of the World
Wide Web is modeled by a Markov chain, each webpage is a state of the Markov chain. This
chapter continues the study of Markov chains begun in Section 4.9, focusing on those Markov
chains with a finite number of states. Section 10.1 introduces useful terminology and develops
some examples of Markov chains: signal transmission models, diffusion models from physics, and
random walks on various sets. Random walks on directed graphs will have particular application to
the PageRank algorithm. Section 10.2 defines the steady-state vector for a Markov chain. Although
all Markov chains have a steady-state vector, not all Markov chains converge to a steady-state
vector. When the Markov chain converges to a steady-state vector, that vector can be interpreted
as telling the amount of time the chain will spend in each state. This interpretation is necessary for
the PageRank algorithm, so the conditions under which a Markov chain converges to a steady-state
vector will be developed. The model for the link structure of the World Wide Web will then be
modified to meet these conditions, forming what is called the Google matrix. Sections 10.3 and
10.4 discuss Markov chains that do not converge to a steady-state vector. These Markov chains
can be used to model situations in which the chain eventually becomes confined to one state or a
set of states. Section 10.5 introduces the fundamental matrix. This matrix can be used to calculate
the expected number of steps it takes the chain to move from one state to another, as well as the
probability that the chain ends up confined to a particular state. In Section 10.6, the fundamental
matrix is applied to a model for run production in baseball: the number of batters in a half inning
and the state in which the half inning ends will be of vital importance in calculating the expected
number of runs scored.
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10.1 Introduction and Examples

Recall from Section 4.9 that Markov chain is a mathematical model for movement between
states A process starts in one of these states and moves from state to state. The moves between
states are callestepsor transitions. The terms “chain” and “process” are used interchangeably,
so the chain can be said to move between states and to be “at a state” or “in a state” after a certain
number of steps.

The state of the chain at any given step is not known; what is known is the probability that the
chain moves from statgto statei in one step. This probability is calledti@nsition probability
for the Markov chain. The transition probabilities are placed in a matrix calledramsition
matrix P for the chain by entering the probability of a transition from state state: at the
(1,7)-entry of P. So if there weren states named, 2, ...m, the transition matrix would be the
m X m matrix

From:
1 m To:
1
P = l
Dij — | i

The probabilities that the chain is in each of the possible statesasteps are listed in state
vector x,,. If there arem possible states the state vector would be

ai

X, = | a; «—— Probability that the chain is at stataftern steps

Am

State vectors angrobability vectors since their entries must sumtoThe state vectax, is called
theinitial probability vector .

Notice that thej*" column of P is a probability vector — its entries list the probabilities of a
move from statg to the states of the Markov chain. The transition matrix is thgsoahastic
matrix since all of its columns are probability vectors.

The state vectors for the chain are related by the equation

Xnpi1 = Px, (1)
forn =1,2,.... Notice that Equation (1) may be used to show that
x, = P"x (2)

Thus any state vectasr,, may be computed from the initial probability vectqrand an appropriate
power of the transition matri®.
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This chapter concerns itself with Markov chains with a finite number of states; that is, those
chains for which the transition matrik is of finite size. To use a finite-state Markov chain to
model a process, the process must have the following properties, which are implied by Equations
(1) and (2).

1. Since the values in the vectry,,; depend only on the transition matrix and onx,,, the
state of the chain before timemust have no effect on its state at time- 1 and beyond.

2. Since the transition matri®¥ does not change with time, the probability of a transition from
one state to another must not depend upon how many steps the chain has taken.

Even with these restrictions, Markov chains may be used to model an amazing variety of processes.
Here is a sampling.

Signal Transmission

Consider the problem of transmitting a signal along a telephone line or by radio waves. Each
piece of data must pass through a multi-stage process to be transmitted, and at each stage there
is a probability that a transmission error will cause the data to be corrupted. Assume that the
probability of an error in transmission is not effected by transmission errors in the past and does
not depend on time, and that the number of possible pieces of data is finite. The transmission
process may then be modeled by a Markov chain. The object of interest is the probability that a
piece of data goes through the entire multi-stage process without error. Here is an example of such
a model.

EXAMPLE 1 Suppose that each bit of data is either a 0 or a 1, and at each stage there is a
probability p that the bit will pass through the stage unchanged. Thus the probability jsthat
the bit will be transposed. The transmission process is modeled by a Markov chain, with) states

and1 and transition matrix
From:

0 1 To:
p_ { P 1-— p} 0
1—0p P 1
It is often easier to visualize the action of a Markov chain by representing its transition probabilities
graphically as in Figure 1. The points are the states of the chain, and the arrows represent the
transitions.
Suppose thap = .99. Find the probability that the signal O will still be a O after a 2-stage

transmission process.

Solution Since the signal begins as 0, the probability that the chain begins at 0 is 100%, or 1; that
is, the initial probability vector is
1
=[o]
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1-p

Figure 1: Transition diagram for signal transmission.

To find the probability of a two-step transition, compute

o — Py — 99 011°[1 [ 9802 .0198 1] [ .9802
2 71 01 .99 0] | .0198 .9802 01 | .0198

The probability that the signal O will still be a O after the 2-stage process is.9808. Notice

that this is not the same as the probability that the 0 is transmitted without error; that probability
would be(.99)% = .9801. Our analysis includes the very small probability that the 0 is erroneously
changed to 1 in the first step, then back to 0 in the second step of transmission. [ |

Diffusion

Consider two compartments filled with different gases which are separated only by a membrane
which allows molecules of each gas to pass from one container to the other. The two gases will
then diffuse into each other over time, so that each container will contain some mixture of the
gases. The major question of interest is what mixture of gases is in each container at a time after
the containers are joined. A famous mathematical model for this process was described originally
by the physicists Paul and Tatyana Ehrenfest. Since their preferred term for “container” was urn,
the model is called thEhrenfest urn modelfor diffusion.

Label the two urnsi and B, and placé: molecules of gas in each urn. At each time step, select
one of the2k molecules at random and move it from its urn to the other urn, and keep track of the
number of molecules in urd. This process can be modeled by a finite-state Markov chain: the
number of molecules in urA aftern + 1 time steps depends only on the number in draftern
time steps, the transition probabilities do not change with time, and the number of states is finite.

EXAMPLE 2 For this example, let = 3. Then the two urns contain a total @molecules, and
the possible states for the Markov chain éyd, 2, 3, 4, 5, and6. Notice first that if there ar@

molecules in urm at timen, then there must bemolecule in urnd at timen + 1, and if there are
6 molecules in urM at timen, then there must b&@ molecules in urrd at timen + 1. In terms of



6 CHAPTER 10 Finite-State Markov Chains

the transition matrixP, this means that the columns ihcorresponding to statésand6 are

0 0
1 0
0 0
po=1|0 andp6: 0
0 0
0 1
_0_ _0_

If there are: molecules in urnA at timen, with 0 < i < 6, then there must be eithér 1 or

7+ 1 molecules in urM at timen + 1. In order for a transition fromto : — 1 molecules to occur,

one of thei molecules in urmM must be selected to move; this event happens with probabjility
Likewise a transition fromi to i + 1 molecules occurs when one of the- : molecules in urnB

is selected, and this occurs with probability— i) /6. Allowing i to range froml to 5 creates the
columns of P corresponding to these states, and the transition matrix for the Ehrenfest urn model
with k£ = 3 is thus

) 0 1 2 3 4 5 6 )
0 1/6 0 0 0 0 Ojo
1 0 1/3 0 0 0 01
0 5/66 0 1/2 0 0 0]z
P=]0 0o 2/3 0 2/3 0 0|3
0 0 0 1/2 0 5/6 0]a
0 O 0 0O 1/3 0 1]s
10 0 0 0 0 1/6 0]e
Figure 2 shows a transition diagram of this Markov chain. Another model for diffusion will be
considered in the Exercises for this section. |
5 2 1 1
1 6 3 2 3 6
XU D D} X g >
1 1 1 2 5 1
6 6

Figure 2: Transition diagram of the Ehrenfest urn model.

Random Walks on{1,...,n}

Molecular motion has long been an important issue in physics. Einstein and others investigated
Brownian motion, which is a mathematical model for the motion of a molecule exposed to colli-
sions with other molecules. The analysis of Brownian motion turns out to be quite complicated,
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but a discrete version of Brownian motion calledeadom walk provides an introduction to this
important model. Think of the statds,2,...,n} as lying on a line. Place a molecule at a point
that is not on the end of the line. At each step the molecule moves left one unit with probability
p and right one unit with probability — p. See Figure 3. The molecule thus “walks randomly”
along the line. Ifp = 1/2, the walk is calledsimple, or unbiased If p # 1/2, the walk is said to
bebiased

1-p 1-p 1-p 1-p
p p p p
Figure 3: A graphical representation of a random walk.

The molecule must move either to the left or right at the states.,n — 1, but it cannot do
this at the endpointsandn. The molecule’s possible movements at the endpadiatsdn must be
specified. One possibility is to have the molecule stay at an endpoint forever once it reaches either
end of the line. This is called @ndom walk with absorbing boundaries, and the endpoints
andn are calledabsorbing states Another possibility is to have the molecule bounce back one
unit when an endpoint is reached. This is calledrrdom walk with reflecting boundaries.

EXAMPLE 3 Arandom walk or{1,2, 3,4, 5} with absorbing boundaries has a transition matrix
of

1 2 3 4 5
1 p 0 0 0]1
0 0 P 0 0]z
P={0 1-p 0 P 0|3
0 0 1—»p 0 0|4
0 0 0 1—p 1|s

since the molecule at statehas probabilityl of staying at staté, and a molecule at statehas
probability 1 of staying at staté. A random walk on{1, 2, 3,4, 5} with reflecting boundaries has
a transition matrix of

1 2 3 4 5
0o p 0 0 0]z
1 0 p 0 02
P={0 1-—p 0 P 0|3
0 0 1—p 0 1|4
0 0 0 1—p 0]s

since the molecule at statehas probabilityl of moving to state, and a molecule at statehas
probability 1 of moving to statel. |

In addition to their use in physics, random walks also occur in problems related to gambling
and its more socially acceptable variants: the stock market and the insurance industry.
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EXAMPLE 4 Consider a very simple casino game. A gambler (who still has some money left

with which to gamble) flips a fair coin and calls heads or tails. If the gambler is correct, he wins a
dollar; if he is wrong, he loses a dollar. Suppose that the gambler will quit the game when either
he has wom dollars or has lost all of his money.

Suppose that = 7 and the gambler starts with $4. Notice that the gambler’s winnings move
either up or down $1 at each move, and once the gambler’s winnings @earch, they do not
change any more since the gambler has quit the game. Thus the gambler’s winnings may be
modeled by a random walk with absorbing boundaries and sfates2,3,4,5,6,7}. Since a
move up or down is equally likely in this cage= 1/2 and the walk is simple.

Random Walk on Graphs

It is useful to perform random walks on geometrical objects other than the one-dimensional line.
For example, graph is a collection of points and lines connecting some of the points. The points

of a graph are called vertices, and the lines connecting the vertices are called the edges. In Figure
4, the vertices are labeled with the numbethrough?.

Figure 4: A graph with seven vertices.

To define simple random walk on a graph, allow the chain to move from vertex to vertex on
the graph. At each step the chain is equally likely to move along any of the edges attached to the
vertex. For example, if the molecule is at state Figure 4, it has probability /2 of moving to
state 2 and probability /2 of moving to stateés. This Markov chain is called aimple random
walk on a graph.



EXAMPLE 5 Simple random walk on the graph in Figure 4 has transition matrix

1 2 3
[0 1/3 1/4
/2 0 1/4

/2 1/3 0
P=/0 0 1/4
0 1/3 1/4

0 0 0

0 0 0

Find the probability that the chain in Figure 4 moves from sédie state2 in exactly3 steps.

Solution Compute

X3:P3X0:P3

so the probability of moving from stateto state2 in exactly3 steps is0417.

Sometimes interpreting a random process as a random walk on a graph can be useful.
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EXAMPLE 6 Suppose a mouse runs through the five-room maze on the left side of Figure 5. The
mouse moves to a different room at each time step. When the mouse is in a particular room, it is
equally likely to choose any of the doors out of the room. Note that a Markov chain can model the
motion of the mouse. Find the probability that a mouse starting in rdo@turns to that room in

exactly5 steps.

Figure 5: The five-room maze with overlaid graph.
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Solution A graph is overlaid on the maze on the right side of Figure 5. Notice that the motion of
the mouse is identical to simple random walk on the graph, so the transition matrix is

1 2 3 4 5
o0 1/3 1/4 0 01
12 0 1/4 1/3 0 |2
P=|1/2 1/3 0 1/3 1/2|3
0 1/3 1/4 0 1/2|a
0 0 1/4 1/3 0 |s
and find that
0 1507
0 2143
x5 =Pxo=P° | 1| =] .2701
0 2143
0 1507
Thus the probability of a return to roosnin exactly5 steps is2701. [ |

Another interesting object on which to walk randomly idieected graph. A directed graph
is a graph in which the vertices are not joined by lines but by arrows. See Figure 6.

1

26 4

5¢ 6

7
Figure 6: A directed graph with seven vertices.

To perform a simple random walk on a directed graph, allow the chain to move from vertex to
vertex on the graph but only in the directions allowed by the arrows. At each step the walker is
equally likely to move away from its current state along any of the arrows pointing away from the
vertex. For example, if the molecule is at state Figure 6, it has probability /3 of moving to
state3, stateb, and stated.

The PageRank algorithm which Google uses to rank the importance of pages on the World
Wide Web (see the Chapter Introduction) begins with a simple random walk on a directed graph.
The Web is modeled as a directed graph where the vertices are the pages and an arrow is drawn
from pagej to page:i if there is a hyperlink from pagg to pagei. A person surfs randomly in
the following way: when the surfer gets to a page, he or she chooses a link from the page so that
it is equally probable to choose any of the possible “outlinks.” The surfer then follows the link to
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arrive at another page. The person surfing in that way is performing a simple random walk on the
directed graph that is the World Wide Web.

EXAMPLE 7 Consider a set of seven pages hyperlinked by the directed graph in Figure 6. If the
random surfer starts at pagefind the probability that the surfer is at pagafter four clicks.

Solution The transition matrix for the simple random walk on the directed graph is

1 2 3 4 5 6 7
0 1/2 0 0 0 0 0]
0 0 1/3 0 1/2 0 0]z
1 0 0 0 0 1/3 0]s
P=[0 0 1/3 1 0 0 O0]a
0 1/2 0 0 0 1/3 0]s
0 0 1/3 0 1/2 0 O0]s
o 0 0 0 0 1/3 1|7

Notice that there are no arrows coming from either stadestate?. If the surfer clicks on a link to
either of these pages, there is no link to click on rekbr that reason, the transition probabilities
pas @Ndp77 are set equal td — the chain must stay at stater state7 forever once it enters either
of these states. Computing gives

1319
.0833
.0880
x4 = P'xg = | .1389
2199
.0833
2546

so the probability of being &t after exactly4 clicks is.0880. |

States! and7 are absorbing states for the Markov chain in the previous example. In technical
terms they are calledangling nodesand are quite common on the Web — data pages in particular
usually have no links leading from them. Dangling nodes will appear in the next section, where
the PageRank algorithm will be explained.

As was noted in Section 4.9, the most interesting questions about Markov chains concern their
long-term behavior; that is, the behavior ©f asn increases. This study will occupy a large
portion of this chapter. The foremost issues in our study will be whether the sequence of vectors
{x,} is converging to some limiting vector asncreases, and how to interpret this limiting vector
if it exists. Convergence to a limiting vector will be addressed in the next section.

1Using the “Back” key is not allowed — the state of the chain before timeust have no effect on its state at time
n + 1 and beyond.
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Practice Problems

1. Fill in the missing entries in the stochastic matrix

1
P = *
.6

O o %
% W MO

2. In the signal transmission model in Example 1, supposeptkat03. Find the probability
that the signal “1” will be a “0” after a 3-stage transmission process.
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10.1 Exercises

In Exercises 1 and 2, determine whetliers a
stochastic matrix. 1P is not a stochastic matrix,
explain why not.

3 4 3.7
1oar=| 2] b= ]

15 2 11
2'&P:{05} UPZ[B—J] 10

In Exercises 3 and 4, computg in two ways:
by computingx; andx,, and by computing”3.

. r= 4 2 =], ]

In Exercises 5 and 6, the transition matfxfor

a Markov chain with stategand1 is given. As-
sume that in each case the chain starts in state
0 at timen = 0. Find the probability that the
chain is in statd at timen.

12.
_ | 1/3 3/4 _
5.]3—{2/3 1/4},71—3
4 2
G'P_[.G _8],71—5

In Exercises 7 and 8, the transition matfxfor
a Markov chain with state8, 1 and2 is given.
Assume that in each case the chain starts in s
0 at timen = 0. Find the probability that the
chain is in statd at timen.

[1/3 1/4 1/2
1/3 1/2 1/4
| 1/3 1/4 1/4

,n=2

,n=3

SN
SRS

[ 1
6
3

9.

13.

Introduction and Examples 13

Consider a pair of Ehrenfest urns. If there
are currently 3 molecules in one urn and
5 in the other, what is the probability that
the exact same situation will apply after

a. 4 selections?
b. 5 selections?

. Consider a pair of Ehrenfest urns. If there

are currently no molecules in one urn and
7 in the other, what is the probability that
the exact same situation will apply after
a. 4 selections?
b. 5 selections?

. Consider unbiased random walk on the set

{1,2,3,4,5,6}. Whatis the probability of
moving from2 to 3 in exactly 3 steps if the
walk has

a. reflecting boundaries?

b. absorbing boundaries?
Consider biased random walk on the set
{1,2,3,4,5,6} with p = 2/3. What is
the probability of moving fron2 to 3 in
exactly 3 steps if the walk has

a. reflecting boundaries?

b. absorbing boundaries?

IntExercises 13 and 14, find the transition matrix
€ . :
or the simple random walk on the given graph.
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14.

1
= -G
4\(5

In Exercises 15 and 16, find the transition ma-
trix for the simple random walk on the given di-

rected graph. 18. The mouse is placed inroom 3 of the maze
below.
15.
1 2 a. Construct a transition matrix and an

initial probability vector for the
mouse’s travels.

b. What are the probabilities that the
mouse is in each of the rooms after
4 moves?

16. 1

2 5 .
In Exercises 19 and 20, suppose a mouse wan-

In Exercises 17 and 18, suppose a mouse waers through the given maze some of whose
ders through the given maze. The mouse mugiors are “one-way”: they are just large enough
move into a different room at each time step, amgér the mouse to squeeze through in only one
is equally likely to leave the room through angirection. The mouse still must move into a dif-
of the available doorways. ferent room at each time step if possible. When
faced with accessible openings into two or more

17. The mouse is placed in room 2 of the mareoms, the mouse chooses them with equal prob-

below. ability.

a. Construct a transition matrix and an19. The mouse is placed in room 1 of the maze
initial probability vector for the below.

mouse’s travels.

b. What are the probabilities that the a. Construct a transition matrix and an
mouse is in each of the rooms after initial probability vector for the
3 moves? mouse’s travels.
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b. What are the probabilities that the 22.
mouse is in each of the rooms after

4 moves?
I I
1 2 3
4 5 6
| [

23.

20. The mouse is placed inroom 1 of the maze
below.

a. Construct a transition matrix and an
initial probability vector for the
mouse’s travels.

b. What are the probabilities that the
mouse is in each of the rooms after
3 moves?

In Exercises 21 and 22, mark each statemer.
True or False. Justify each answer.

21. a. The columns of a transition matrix

for a Markov chain must sum to 1.

b. The transition matri¥’ may change
over time.

c. The(i, j)-entry in a transition matrix

Introduction and Examples 15

a. The rows of a transition matrix for a
Markov chain must sum to 1.

. If {x, } is a Markov chain, thes,,
must depend only on the transition
matrix andx,,.

. The(i, j)-entry in P3 gives the prob-
ability of a move from statéto state
j in exactly three time steps.

The weather in Charlotte, North Carolina
can be classified as either sunny, cloudy,
or rainy on a given day. Climate data from

2003 reveal the following facts:

e If a day is sunny, then the next day
is sunny with probability .65, cloudy
with probability .1, and rainy with
probability .25.

e If a day is cloudy, then the next day
is sunny with probability .25, cloudy
with probability .25, and rainy with
probability .5.

e If a day is rainy, then the next day
is sunny with probability .25, cloudy
with probability .15, and rainy with
probability .60.

Suppose it is cloudy on Monday. Use a
Markov chain to find the probabilities of
the different kinds of possible weather on
Friday.

Suppose that whether it rains in Charlotte
tomorrow depends on the weather condi-
tions for today and yesterday. Climate data
in 2003* show that

e If it rained yesterday and today, then
it will rain tomorrow with probabil-
ity .58.

P gives the probability of a move
from statej to state;.

2http://www.wunderground.com/history/airport
/KCLT/2003/1/1/MonthlyHistory.html
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25.

26.

27.

CHAPTER 10 Finite-State Markov Ch

e If it rained yesterday but not today,
then it will rain tomorrow with prob-
ability .29.

e If it rained today but not yesterday,
then it will rain tomorrow with prob-
ability .47.

e Ifit did not rain yesterday and today,
then it will rain tomorrow with prob-
ability .31.

Even though the weather depends on the
last two days in this case, we can create
Markov chain model using the states

1 itrained yesterday and today

2 itrained yesterday but not today 29.
3 itrained today but not yesterday

4 itdid not rain yesterday and today

So, for example, the probability of a tran-
sition from state 1 to state 188, and the
transition from state 1 to state 3(s

a. Complete the creation of the transi-
tion matrix for this Markov chain.

b. If it rains on Tuesday and is clear on
Wednesday, what is the probability
of no rain on the next weekend?

Consider a set of four webpages hyper-
linked by the directed graph in Exercise
15. If a random surfer starts at page 1,
what is the probability that the surfer is at

each of the pages after 3 clicks? 30

Consider a set of five webpages hyper-
linked by the directed graph in Exercise
16. If a random surfer starts at page 2,
what is the probability that the surfer is at
each of the pages after 4 clicks?

Consider a model for signal transmission
where data is sent as two-bit bytes. Then
there are four possible bytes 00, 01, 10,
and 11 which are the states of the Markov

£8.

ains

chain. At each stage there is a probability
p that each bit will pass through the stage
unchanged.

a. Construct the transition matrix for
the model.

b. Suppose that = .99. Find the prob-
ability that the signal “01” will still
be “01” after a three-stage transmis-
sion.

Consider a model for signal transmission
where data is sent as three-bit bytes. Con-
struct the transition matrix for the model.

Another version of the Ehrenfest model
for diffusion starts withk molecules of gas
in each urn. One of thek molecules is
picked at random just as in the Ehrenfest
model in the text. The chosen molecule is
then moved to the other urn with a fixed
probability p and is placed back in its urn
with probabilityl—p. (Note that the Ehren-
fest model in the text is this model with

p=1)

a. Letk = 3. Find the transition matrix
for this model.

b. Letk = 3 andp = 1/2. If there
are currently no balls in Urdl, what
is the probability that there will bg
balls in Urn A after5 selections?

. Another model for diffusion is called the
Bernoulli-LaPlace model. Two urns (Urn
A and UrnB) contain a total o2k mole-
cules. In this casé; of the molecules are
of one type (called Type | molecules) and
k are of another type (Type Il molecules).
In addition, £ molecules must be in each
urn all times. At each time step, a pair
of molecules is selected, one from Ufn
and one from Urm3, and these molecules
change urns. Let the Markov chain model
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the number of Type | molecules in Urn
A (which is also the number of Type Il
molecules in UrnB).

a. Suppose that there gré&ype | mole-
culesinUrnA with 0 < 5 < k. Ex-
plain why the probability of a tran-
sition toj — 1 Type | molecules in
Urn Ais (j/k)?, and why the proba-
bility of a transition toj + 1 Type |
molecules in Urnd is ((k — j)/k)%.

b. Letk = 5. Use the result in part
a. to set up the transition matrix for
the Markov chain which models the
number of Type | molecules in Urn
A.

c. Letk = 5 and begin with all Type |
molecules in UrmA. What is the dis-
tribution of Type | molecules after 3
time steps?

31. To win a game in tennis, one player must

score four points and must also score at
least two points more than his or her oppo-
nent. Thus if the two players have scored
an equal number of points (which is called
“deuce” in tennis jargon), one player must
then score two points in a row to win the
game. Suppose that players A and B are
playing a game of tennis which is at deuce.
If A wins the next point, it is called “ad-
vantage A’ while if B wins the point it is
“advantage B.” If the game is at advantage
A and player A wins the next point, then
player A wins the game. If player B wins
the point at advantage A the game is back
at deuce.

a. Suppose that the probability that A
wins any point igp. Model the prog-
ress of a tennis game starting at deuce
using a Markov chain with the five
states

Introduction and Examples 17

deuce

advantage A

advantage B

A wins the game

B wins the game

Find the transition matrix for this
Markov chain.

b. Letp = .6. Find the probability that
the game is at “advantage B” after
three points starting at deuce.

b wWNPE

32. \Wolleyball uses two different scoring sys-

tems in which a team must win by at least
two points. In both systems rally begins
with a serve by one of the teams and ends
when the ball goes out of play, touches the
floor, or a player commits a fault. The
team that wins the rally gets to serve for
the next rally. Games are played to 15, 25
or 30 points.

a. Inrally point scoringthe team that
wins a rally is awarded a point no
matter which team served for the
rally. Assume that team A has prob-
ability p of winning a rally for which
it serves, and that team B has proba-
bility ¢ of winning a rally for which
it serves. Model the progress of a
volleyball game using a Markov chain
with the six states

1 tied— A serving

tied — B serving

A ahead by 1 point — A serving

B ahead by 1 point — B serving

A wins the game

B wins the game

Find the transition matrix for this

Markov chain.

b. Suppose that team A and team B are
tied 15-15 in a 15-point game and
that team A is serving. Let = ¢ =
.6. Find the probability that the game
is not finished after three rallies.

O Ul WN
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c. Inside out scoringhe team that wins
a rally is awarded a point only when
it served for the rally. Assume that
team A has probability of winning
a rally for which it serves, and that
team B has probability of winning
arally for which it serves. Model the
progress of a volleyball game using
a Markov chain with the eight states

tied — A serving

tied — B serving

A ahead by 1 point — A serving

A ahead by 1 point — B serving

B ahead by 1 point — A serving

B ahead by 1 point — B serving

A wins the game

B wins the game

Find the transition matrix for this

Markov chain.

co~NOoO O, WNBE

d. Suppose that team A and team B are
tied 15-15 in a 15-point game and
that team A is serving. Let = ¢ =
.6. Find the probability that the game
is not finished after three rallies.

33. Suppose thaP is a stochastic matrix all
of whose entries are greater than or equal
to p. Show that all of the entries iR™ are
greater than or equal foforn = 1,2, .. ..



10.1 Introduction and Examples

Solutions to Practice Problems

1. Since a stochastic matrix must have columns that sum to

1 5 2
P= 3 .3 .3
6 .2 .5
2. The transition matrix for the model is
97 .03
P= { .03 .97}

Since the signal begins as “1”, the initial probability vector is

o[t

To find the probability of a three-step transition, compute

wir o] [3] =] i)

— p3 —
Xp = Pxo = { 0847 9153 | | 1 9153

The probability of a change to “0” is thu8847.

19
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10.2 The Steady-State Vector and Google’s PageRank

As was seen in Section 4.9, the most interesting aspect of a Markov chain is its long-range behavior:
the behavior ok, asn increases without bound. In many cases, the sequence of végigrés
converging to a vector which is called teeady-state vectoifor the Markov chain. This section

will review how to compute the steady-state vector of a Markov chain, explain how to interpret
this vector if it exists, and will offer an expanded version of Theorem 18 in Section 4.9, which
describes the circumstances under whigh} converges to a steady-state vector. This Theorem
will be applied to the Markov chain model used for the World Wide Web in the previous section
and will show how the PageRank method for ordering the importance of webpages is derived.

Steady-State Vectors
In many cases, the Markov chair) and the matrixP™ change very little for large values of

EXAMPLE 1 To begin, recall Example 3 from Section 4.9. That example concerned a Markov

b 203 1
chain with transition matrix? = | .3 .8 .3 | and initial probability vectok, = | 0 |. The
2 0 4 0

3
vectorsx,, were seen to be converging to the veafor= | .6 |. This result may be written as
1

lim x, = q. Increasing powers of the transition matfxmay also be computed, giving:

n—oo

3700 .2600 .3300 | [ 3290 .2820 .3210 |
P%2 = 4500 .7000 .4500 P3 = 5250 .6500 .5250
| 1800 .0400 .2200 | | 1460 .0680 .1540 |
[ 3133 2914 .3117 | [ 3064 .2958 .3061 |
P*=| 5625 .6250 .5625 P> = | 5813 .6125 .5813
| 1242 0836 .1258 | | 1123 .0917 1127 |
23002 .2999 .3002 3000 .3000 .3000
P = | 5994 .6004 .5994 P% = | 6000 .6000 .6000
1004 .0997 .1004 1000 .1000 .1000

so the sequence of matricéB"} also seems to be converging to a matrix:dncreases, and this
matrix has the unusual property that all of its columns egualhe example also showed that

Pq = q. This equation forms the definition for the steady-state vector, and is a straightforward
way to calculate it.

DEFINITION If P is a stochastic matrix, thensteady-state vector(or equilibrium vector or
invariant probability vector ) for P is a probability vectory such that

Pq=q
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Exercises 36 and 37 will show that every stochastic mdtipas a steady-state vectprNotice
that1 must be an eigenvalue of any stochastic matrix, and the steady-state vector is a probability
vector which is also an eigenvector Bfassociated with the eigenvallie
Although the definition of the steady-state vector makes the calculatigséightforward, it
has a major drawback: there are Markov chains which have a steady-stateqvbatdor which
lim x, # q: the definition is not sufficient fok,, to converge. Examples 3-5 below will show

n—o0

different ways in whichx,, can fail to converge — later in this section the conditions under which
lim x,, = q will be restated. For now, consider whgameans whenim x,, = q, as it does in the

n—oo n—oo

example above. Whetim x,, = q there are two ways to interpret this vector.

n—oo

e Sincex, is approximately equal tq for largen,the entries ing approximate the probability
that the chain is in each state aftetime steps. Thus in the above example, no matter the
value of the initial probability vector, after many steps the probability that the chain is in
state 1 is approximately, = .3. Likewise the probability that the chain is in state 2 in the
distant future is approximately, = .6, and the probability that the chain is in state 3 in the
distant future is approximately = .1. So the entries i give long-run probabilities.

e WhenN is large,q approximates,, for almost all values ofi < N. Thus the entries i
approximate the proportion of time steps that the chain spends in each state. In the above
example, the chain will end up spendigof the time steps in state 1 of the time steps in
state 2, andl of the time steps in state 2. So the entrieg igive the proportion of the time
steps spent in each state, which are calledtieipation timesfor each state.

EXAMPLE 2 For an application of computing, consider the rat-in-the-maze example (Example
6, Section 10.1). In this example, the position of a rat in a five-room maze is modeled by a Markov
chain with stateg1, 2, 3,4, 5} and transition matrix

1 2 3 4 5
0 1/3 1/4 0 0
/2 0 1/4 1/3 0
P=1/2 1/3 0 1/3 1/2
0 1/3 1/4 0 1/2
0O 0 1/4 1/3 0

ga A W N

The steady-state vector may be computed by solving the syBtgm q, which is equivalent to
the homogeneous systgiit — 1)q = 0. Row reduction gives

—1 1/3 1/4 0 0 0 1000 —10
1/2 -1 1/4 1/3 0 0 0100 —=3/20
1/2 1/3 -1 1/3 1/2 0| ~|00 10 -2 0
0 1/3 1/4 -1 1/2 0 0001 =3/20
0 0 1/4 1/3 -1 0 0000 0 0
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SO a general solution is

Letting ¢5 be the reciprocal of the sum of the entries in the vector gives the steady-state vector

1 1/7 142857

|32 3/14 214286
a=-1 2 | =| 2/7 | ~ | 285714
[EY 3/14 214286

1 1/7 142857

There are again two interpretations tgrlong-run probabilities and occupation times. After many
moves, the probability that the rat will be in room 1 at a given time is approximately 1/7 no matter
how where the rat began its journey. Put another way, the rat is expected to be in room 1 for 1/7
(or about 14.3%) of the time.

Again notice that taking high powers of the transition maffigives matrices whose columns
are converging tey; for example,

144169 141561 .142613 .144153 .142034
212342 216649 214286 .211922 .216230
P = | 285226 .285714 .286203 .285714 .285226
216230 .211922 214286 .216649 .212342
142034 144153 .142613 .141561 .144169

The columns of”!° are very nearly equal to each other, and each column is also nearly equal to
[

Interpreting the Steady-State Vector

As noted above, every stochastic matrix will have a steady-state vector, but in some cases steady-
state vectors cannot be interpreted as vectors of long-run probabilities or of occupation times. The
following examples show some difficulties.

EXAMPLE 3 Consider an unbiased random walk oh 2, 3,4, 5} with absorbing boundaries.
The transition matrix is

1 2 3 4 5
1 12 0 0 0]1
0 0 1/2 0 02
P=|0 1/2 0 1/2 0]s
0 0 1/2 0 04
0 0 0 1/2 1|s
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Notice that only two long-term possibilities exist for this chain — it must end up in S@tstatel.
Thus the probability that the chain is in state® or 3 becomes smaller and smallerascreases,
asP" illustrates:

1 .74951 .49951 .24951 0 1 .749985 .499985 .249985 0
0 .00049 0  .00049 0 0 .000015 0 .000015 0
PP=0 0 00098 0 O0]|,PY=1]0 0 .000030 0 0
0 .00049 0  .00049 0 0 .000015 0 000015 0
0 .24951 .49951 .74951 1 0 .249985 .499985 .749985 1
It seems thaf’ converges to the matrix

1 75 5 25 0

00 0 0 0

00 0 0 O

00 0 0 O

0 25 5 .75 1

asn increases. But the columns of this matrix are not equal; the probability of ending up either
at1 or at5 depends on where the chain begins. Although the chain has steady-state vectors, they
cannot be interpreted as in Example 1. Exercise 23 confirms that if < 1 the vector

S OO

1—g¢q

is a steady-state vector fd?. This matrix then has an infinite number of possible steady-state
vectors, which shows in another way thagt cannot be expected to have convergent behavior
which does not depend o). |

EXAMPLE 4 Consider an unbiased random walk éh 2, 3,4,5} with reflecting boundaries.
The transition matrix is

1 2 3 4 5
0 1/2 0 0 0]
1 0 1/2 0 0]z
P=|0 1/2 0 1/2 0|3
0 0 1/2 0 1|4
0 0 0 1/2 0fs

If the chainx,, starts at staté, notice that it can return tb only whenn is even, while the chain
can be at stat2 only whenn is odd. In fact, the chain must be at an even-numbered site wien
odd and at an odd-numbered site wheis even. If the chain were to start at stafgnowever, this

situation would be reversed: the chain must be at an odd-numbered sitewihead and at an
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even-numbered site whenis even. Thereforel>” cannot converge to a unigue matrix sinee
looks very different depending on whethers even or odd, as shown:

2505 0 2500 O .2495 0 2502 0 .2498 0
0 5005 0 4995 0 5005 0 5000 O .4995

P =1 5000 0 .5000 0O .5000 |,P* = 0 5000 0 .5000 O
0 4995 0  .5005 O 4995 0 5000 0  .5005

2495 0 2500 O  .2505 0 .2498 0 .2502 0

Even thoughP™ does not converge to a unique matrixgdoes have a steady-state vector. In fact,

1/8
1/4
1/4
1/4
1/8

is a steady-state vector fét (see Exercise 32). This vectoan be interpreted as giving long-run
probabilities and occupation times in a sense that will be made precise in Section 10.4. B

EXAMPLE 5 Consider a Markov chain ofil, 2, 3,4, 5} with transition matrix

1 2 3 4
(1/4 1/3 1/2 0
1/4 1/3 1/4 0
P=|1/2 1/3 1/4 0 0
O 0 0 1/3 3/4
0O 0 0 2/3 1/4

5 -
0
0

a A W N

If this Markov chain begins in statels 2, or 3, then it must always be at one of those states.
Likewise if the chain starts at staté®r 5, then it must always be at one of those states. The chain
splits into two separate chains, each with its own steady-state vector. In thiftasaverges to

a matrix whose columns are not equal. The vectors

4/11 0

3/11 0

4/11 | and 0
0 9/17
0 8/17

both satisfy the definition of steady-state vector (Exercise 33). The first vector gives the limiting
probabilities if the chain starts at state, or 3, and the second does the same for the statesl
5. [
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Regular Matrices

Examples 1 and 2 show that in some cases a Markov chaiwith transition matrixP has a
steady-state vectay for which

limP”:[q q - q}

n—oo

In these cases; can be interpreted as a vector of long-run probabilities or occupation times for the
chain. These probabilities or occupation times do not depend on the initial probability vector; that
is, for any probability vectoky,

lim P"xy = lim x,, =q
Notice also thaty is the only probability vector which is also an eigenvectoradissociated with
the eigenvalue.

Examples 3, 4, and 5 do not have such a steady-state wgdimExamples 3 and 5 the steady-
state vector is not unique; in all three examples the matrixdoes not converge to a matrix with
equal columns as increases. The goal is then to find some property of the transition nfathat
leads to these different behaviors, and to show that this property causes the differences in behavior.

A little calculation shows that in Examples 3, 4, and 5, every matrix of the Bfrhas some
zero entries. In Examples 1 and 2, however, some powét bés all positive entries. As was
mentioned in Section 4.9, this is exactly the property that is needed.

DEFINITION A stochastic matrixP is regular if some powerP* contains only strictly positive
entries.

Since the matrixP* contains the probabilities of &step move from one state to another, a
Markov chain with a regular transition matrix has the property that, for sbniieis possible to
move from any state to any other in exacklysteps. The following theorem expands upon the
content of Theorem 18 in Section 4.9. One idea must be defined before the theorem is presented.
The limit of a sequence ofi x n matrices is then x n matrix (if one exists) whoséi, j) entry
is the limit of the(i, j) entries in the sequence of matrices. With that understanding, here is the
theorem.

THEOREM 1 If Pis aregulam xm transition matrix withm > 2, then the following statements
are all true.

(a) There is a stochastic matiiksuch thatlim P" = II.

n—oo

(b) Each column ofI is the same probability vectey.
(c) For any initial probability vectoky, lim P"xq, = q.

(d) The vectorq is the unique probability vector which is an eigenvectoroassociated with
the eigenvalué.

(e) All eigenvalues\ of P other thanl have|)\| < 1.
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A proof of Theorem 1 is given in Appendix 1. Theorem 1 is a special case of the Perron-
Frobenius Theorem, which is used in applications of linear algebra to economics, graph theory,
and systems analysis. Theorem 1 shows that a Markov chain with a regular transition matrix has
the properties found in Examples 1 and 2. For example, since the transition matrExample 1
is regular, Theorem 1 justifies the conclusion tR&tconverges to a stochastic matrix all of whose

3
columns equaty = | .6 |, as numerical evidence seemed to indicate.
1

PageRank and the Google Matrix

In Section 1, the notion of a simple random walk on a graph was defined. The World Wide Web
can be modeled as a directed graph, with the vertices representing the webpages and the arrows
representing the links between webpages. Rdie the huge transition matrix for this Markov

chain. If the matrixP were regular, then Theorem 1 would show that there is a steady-state vector

q for the chain, and that the entries ¢ncan be interpreted as occupation times for each state.

In terms of the model, the entries ¢nwould tell what fraction of the random surfer’s time was
spent at each webpage. The founders of Google, Sergey Brin and Lawrence Page, reasoned that
“important” pages had links coming from other “important” pages. Thus the random surfer would
spend more time at more important pages and less time at less important pages. But the amount
of time spent at each page is just the occupation time for each state in the Markov chain. This
observation is the basis for PageRank, which is the model that Google uses to rank the importance
of all webpages it catalogs:

The importance of a webpage may be measured by the rela-
tive size of the corresponding entry in the steady-state vector
q for an appropriately chosen Markov chain.

Unfortunately, simple random walk on the directed graph model for the Web is not the appro-
priate Markov chain, because the matfxis not regular. Thus Theorem 1 will not apply. For
example, consider the seven-page Web modeled in Section 10.1 using the directed graph in Figure
1. The transition matrix is

1 2 3 4 5 6 7
0 1/2 0 0 0 0 0]
O 0 1/3 0 1/2 0 0]z
1 0 0 0 0 1/3 0]s
P=[0 0 1/3 1 0 0 0]a
0 1/2 0 0 0 1/3 0]s
0 0 1/3 0 1/2 0 O0s
o 0 0 0 0 1/3 1|7

Pages! and7 are dangling nodes, and so are absorbing states for the chain. Just as in Example 3,
the presence of absorbing states implies that the state vegtaisnot approach a unique limit as
n — oo. To handle dangling nodes, an adjustment is made: to
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3
2 e
5 p6

°

7

Figure 1: A seven-page Web.

ADJUSTMENT 1: If the surfer reaches a dangling node, the surfer will pick any page in the Web
with equal probability and will move to that page. In terms of the transition matyiK state; is
an absorbing state, replace colughaf P with the vector

1/n
1/n
1/:n

wheren is the number of rows (and columnsh).
In the seven-page example, the transition matrix is now

1 2 3 4 5 6 7
0 12 0 1/7 0 0 1/7|1
0 0 1/3 1/7 12 0 1/7|2
1 0 0 1/7 0 1/3 1/7|s
P.=/0 0 1/3 1/T 0 0 1/7|a
0o 12 0 1/7 0 1/3 1/7|s
0 0 1/3 1/7 1/2 0 1/7|s
o 0 0 1/7 0 1/3 1/7|7

Yet even this adjustment is not sufficient to ensure that the transition matrix is regular: while
dangling nodes are no longer possible, it is still possible to have “cycles” of pages. If paked
only to page: and page linked only to pagej, a random surfer entering either page would be
condemned to spend eternity linking from page pagej and back again. Thus the columns of
P* corresponding to these pages would always have zeros in them, and the transitionfnatrix
would not be regular. Another adjustment is needed.

ADJUSTMENT 2: Let p be a number betweeihand1. Assume the surfer is now at page
With probability p the surfer will pick from among all possible links from the pageith equal
probability and will move to that page. With probability— p the surfer will pickany page in the
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Web with equal probability and will move to that page. In terms of the transition ma&jtixhe
new transition matrix will be
G=pP.+(1-pK

whereKis ann x n matrix all of whose columns ate

1/n

1/n

1/n
The matrixG is called theGoogle matrix, and G is now a regular matrix since all entries in
G' = @ are positive. Although any value pfbetweern) and1 is allowed, Google is said to use

a value ofp = .85 for their PageRank calculations. In the seven-page Web example, the Google
matrix is thus

01/2 0 1/7 0 0 1/7 17 17 1/7 1/7 1/7 1)7 17
0 0 1/3 1/7 1/2 0 1/7 1/7 1)7 17 17 1)7 1)7 1)7
1 0 0 1/T 0 1/3 1/7 1/7 1)7 17 1)7 1)7 1)7 1)7
G = 8|0 0 1/31/7 0 0 1/7|+.15|1/7 1)7 1)7 1/7 1/7 1/7 1/7
01/2 0 1/7 0 1/3 17 1/7 17 17 1)7 1)7 1)7 1)7
0 0 1/3 1/7 1/2 0 1/7 1/7 1)7 17 17 1)7 1)7 1)7
0 0 0 1/7 0 1/3 1/7 | 17 17 17 17 17 17 17 |

021429 446429 .021429 .142857 .021429 .021429 .142857
021429 .021429 .304762 .142857 .446429 .021429 142857
871429 .021429 .021429 .142857 .021429 .304762 .142857
= 021429 .021429 .304762 .142857 .021429 .021429 .142857

021429 446429 .021429 142857 .021429 .304762 .142857

021429 .021429 304762 .142857 .446429 .021429 142857
| 021429 .021429 .021429 .142857 .021429 .304762 .142857

It is now possible to find the steady-state vector by the methods of this section:

116293
168567
191263
q= | .098844
164054
168567
092413

so the most important page according to PageRank is padpch has the largest entry ap The
complete ranking i8, 2 and6, 5, 1, 4, and7.

3pageRank really usesZé which has all its columns equal to a probability vectowhich could be linked to
an individual searcher of group of searchers. This modification also makes it easier to police the Web for websites
attempting to generate Web traffic. SBeogle’s PageRank and Beyond: the Science of Search Engine Rahkings
Amy N. Langville and Carl D. Meyer (Princeton: Princeton University Press, 2006) for more information.
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NUMERICAL NOTE

The computation of is not a trivial task, since the Google matrix has over 8 billion rows and
columns. Google uses a version of the power method introduced in Section 5.8 to campute
While the power method was used in that section to estimate the eigenvalues of a matrix, it can
also be used to provide estimates for eigenvectors. Sjrsen eigenvector ofr corresponding

to the eigenvalué, the power method applies. It turns out that only between 50 and 100 iterations
of the method are needed to get the vecido the accuracy that Google needs for its rankings. It
still takes days for Google to compute a ngywhich it does every month.

Practice Problem

1. Consider the Markov chain dii, 2, 3} with transition matrix

/2 0 1/2
P=11/2 1/2 0
0 1/2 1/2
a. Show that” is a regular matrix.
b. Find the steady-state vector for this Markov chain.
c. What fraction of the time does this chain spend in state 2? Explain your answer.
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10.2 Exercises

In Exercises 1 and 2, consider a Markov chain /2.0 1/3 0
on {1,2} with the given transition matri®. In _ |0 2/ 0 37
each exercise, use two methods to find the prob- /2 0 2/30
ability that, in the long run, the chain is in state 0 3/5 0 4/7

1. First, raiseP to a high power. Then directly

9. Consider a pair of Ehrenfest urns with a
compute the steady-state vector.

total of 8 molecules divided between them.
1 p— [ 2 4 ]
8 .6 a. Find the transition matrix for the Mar-
05 05 kov chain which models the number
2. P=| "~ ' of molecules in Urr4, and show that
.05 .95 . -
this matrix is not regular.
In Exercises 3 and 4, consider a Markov chain b. Assuming that the steady-state vec-
on {1, 2,3} with the given transition matrix’. tor may be interpreted as occupation
In each exercise, use two methods to find the times for this Markov chain, in what
probability that, in the long run, the chain is in state will this chain spend the most
state 1. First, raisé’ to a high power. Then steps?

directly compute the steady-state vector. ' . .
10. Consider a pair of Ehrenfest urns with a

[1/3 1/4 0 total of 7 molecules divided between them.
3. P=|1/3 1/2 1 _ - _
1/3 1/4 0 a. Find the transition matrix for the Mar-

kov chain which models the number
of molecules in Urm4, and show that
this matrix is not regular.

N

Y

Il
D =
IS IR )
W k= W

L - O - b. Assuming that the steady-state vec-
tor may be interpreted as occupation
times for this Markov chain, in what
state will this chain spend the most
steps?

In Exercises 5 and 6, find the matrix to which
P converges as increases.

5_]3:{1/4 2/3]

3/4 1/3 11. Consider unbiased random walk with re-

flecting boundaries ofil, 2, 3,4, 5,6}.

1/4 3/5 0
6. P=|1/4 0 1/3 a. Find the transition matrix for the Mar-
1/2 2/5 2/3 kov chain and show that this matrix

, . . is not regular.
In Exercises 7 and 8, determine whether the given g

matrix is regular. Explain your answer. b. Assuming that the steady-state vec-
tor may be interpreted as occupation

1/3 0 1/2 times for this Markov chain, in what
7.P=|1/3 1/2 1/2 state will this chain spend the most

1/3 1/2 0 steps?
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12. Consider biased random walk with reflect-15.
ing boundaries of11,2,3,4,5,6} withp = 1 2
2/3.

a. Find the transition matrix for the Mar-
kov chain and show that this matrix
is not regular.

b. Assuming that the steady-state vec- 3 4
tor may be interpreted as occupation
times for this Markov chain, in what 16.
state will this chain spend the most 1 4
steps?

In Exercises 13 and 14, consider a simple ran-
dom walk on the graph given. In the long run, 2 5
what fraction of the time is the walk at the vari-

ous states? 17. Consider the mouse in the following maze

from Section 1, Exercise 17.

13.
1 2 |
1 A 2
-3 >
5
4 Y 5
4 3 I
14. The mouse must move into a different
1 2 room at each time step, and is equally
likely to leave the room through any of the
available doorways. If you go away from
the maze for a while, what is the probabil-
4 3 ity that the mouse is in room 3 when you
return?
18. Consider the mouse in the following maze
from Section 1, Exercise 18.
In Exercises 15 and 16, consider a simple ran- 1 o T 3
dom walk on the directed graph given. In the _L_I_J_
long run, what fraction of the time is the walk at 4 | S

the various states?
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What fraction of time does it spend in 21. a. Every stochastic matrix has a steady-
room 3? state vector.

b. Ifits transition matrix is regular, then
the steady-state vector gives informa-
tion on long-run probabilities of the
Markov chain.

19. Consider the mouse in the following maze
that includes “one-way” doors from Sec-
tion 1, Exercise 19.

I I c. If A = 1is an eigenvalue of a matrix
1 2 3 P, thenP is regular.
N\ /—I— ‘k\ /] 22. a. Every stochastic matrix is regular.
4 | S ( 6 b. If P is a regular stochastic matrix,

then P" approaches a matrix with
equal columns as increases.

Show that _ c. If lim x,, = q, then the entries in

n—oo

q may be interpreted as occupation
times.

23. Suppose that the weather in Charlotte is
modeled using the Markov chain in Sec-

L1 tion 1, Exercise 17. Over the course of a

is a steady-state vector for the associated ~Yyear, about how many days in Charlotte

Markov chain, and interpret this resultin ~ are sunny, cloudy, and rainy according to

terms of the mouse’s travels through the  the model?

maze.

S OO OO

24. Suppose that the weather in Charlotte is

20. Consider the mouse in the following maze ~ modeled using the Markov chain in Sec-

that includes “one-way” doors. tion 1, Exercise 18. Over the course of a

year, about how many days in Charlotte
are rainy according to the model?

N
1 2 In Exercises 25 and 26, consider a set of web-
pages hyperlinked by the given directed graph.
— 3 — Find the Google matrix for each graph and com-
Y pute the PageRank of each page in the set.
> 25,
h 1 2 5
What fraction of time does it spend in each
of the rooms in the maze?
In Exercises 21 and 22, mark each statement 3 4

True or False. Justify each answer.



26.

27.

28.

10.2
1 4
3
2 5 6
A genetic trait is often governed by a pair

of genes, one inherited from each parent.
The genes may be of two types, often la-
belled A and a. An individual then may 29
have three different pairs: AA, Aa (which

is the same as aA), or aa. In many cases
the AA and Aa individuals cannot be oth-
erwise distinguished — in these cases gene
A is dominantand gene a igecessive
Likewise an AA individual is calledlom-
inantand an aa individual is calle@ces-
sive An Aa individual is called dybrid.

a. Show that if a dominant individual
is mated with a hybrid, the proba-
bility of an offspring being dominant
is 1/2 and the probability of an off-
spring being a hybrid i$/2.

b. Show that if a recessive individual is
mated with a hybrid, the probability
of an offspring being recessivelig2
and the probability of an offspring
being a hybrid il /2.

c. Show that if a hybrid individual is 30
mated with a hybrid, the probabil-
ity of an offspring being dominant is
1/4, the probability of an offspring
being recessive is/4, and the prob-
ability of an offspring being a hybrid
is1/2.

Consider beginning with an individual of
known type and mating it with a hybrid,
then mating an offspring of this mating
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with a hybrid, and so on. At each step
an offspring is mated with a hybrid. The
type of the offspring can be modelled by a
Markov chain with states AA, Aa, and aa.

a. Find the transition matrix for this Mar-
kov chain.

b. If the mating process of the previous
Exercise is continued for a extended
period of time, what percent of the
offspring are of each type?

Consider the variation of the Ehrenfest urn
model of diffusion studied in Section 1,
Exercise 29, where one of tBé molecules

is chosen at random and is then moved be-
tween the urns with a fixed probability

a. Letk = 3 and suppose thagi =
1/2. Show that the transition ma-
trix for the Markov chain that mod-
els the number of molecules in Urn
A'is regular.

b. Letk = 3 and suppose that= 1/2.
In what state will this chain spend
the most steps, and what fraction of
the steps will the chain spend at this
state?

c. Does the answer to part b. change if
a different value op with0 < p < 1
is used?

Consider the Bernoulli-Laplace of diffu-
sion studied in Section 1, Exercise 30.

a. Letk = 5 and show that the transi-
tion matrix for the Markov chain that
models the number of Type I molecules
in Urn A is regular.

b. Letk = 5. In what state will this
chain spend the most steps, and what
fraction of the steps will the chain
spend at this state?



a. For what values of andg is P a
regular stochastic matrix?

b. GiventhatP is regular, find a steady-
state vector forP.

34 CHAPTER 10 Finite-State Markov Chains
q
0
31. Let0 < ¢ < 1. Show that 0 is
0
1—gq

a steady-state vector for the Markov chaingg

in Example 3.
32. Consider the Markov chain in Example 4.

1/8

1/4

1/4

1/4

1/8
vector for this Markov chain.

b. Compute the average of the entries
in P2° and P?! given in Example 4.

a. Show that is a steady-state

What do you find?
4/11 0
3/11 0
33. Show that| 4/11 | and 0 are
0 9/17
0 8/17

steady-state vectors for the Markov chain

in Example 5. If the chain is equally likely

to begin in each of the states, what is thegg
probability of being in state 1 after many
steps?

34. Let0 < p,q < 1, and define

[
l—-p ¢
. Show that andp + ¢ — 1 are eigen-

values ofP.

b. By Theorem 1, for what values pf
andq will P fail to be regular?

c. Find a steady-state vector fbr

35. Let0 < p,q <1, and define

P q I1-p—gq
P= q l-p—gq P
I1—-p—q D q

37.

39.

Let A be anm x m non-negative matrix,
x be inR™, andy = Ax. Show that

[yl + - fym| < o] 4 A [

with equality holding if and only if all of
the nonzero entries ixwhave the same sign.

Show that every stochastic matrix has a
steady-state vector using the following
steps.

a. LetP be a stochastic matrix. By Ex-
ercise 30 in Section 4.9, = 1 is an
eigenvalue forP. Letv be an eigen-
vector of P associated with\ = 1.
Use Exercise 36 to conclude that the
nonzero entries irv must have the
same sign.

b. Show how to produce a steady-state
vector for P fromv.

. Consider simple random walk on a finite

connected graph. (A graph is connected if
it is possible to move from any vertex of
the graph to any other along the edges of
the graph).

a. Explain why this Markov chain must
have a regular transition matrix.

b. Use the results of Exercises 13 and
14 to hypothesize a formula for the
steady-state vector for such a Markov
chain.

By Theorem 1 (e) all eigenvaluesof a
regular matrix other thah have the prop-
erty that|\| < 1; that is, the eigenvalue
1 is astrictly dominant eigenvalueSup-
pose thatP is ann x n regular matrix with
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eigenvalues\; = 1, ..., A, ordered so
Suppose that, is a linear combination of
eigenvectors of.

a. Use Equation (2) in Section 5.8 to
derive an expression for, = PFx,.

b. Use the result of part (a) to derive
an expression fox;, — q, and ex-
plain how the value of)\,| effects
the speed with whickix, } converges

toq.
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Solutions to Practice Problem

1.

a. Since

1/4 1/4 1/2
P =|1/2 1/4 1/4
1/4 1/2 1/4

P is regular by the definition with = 2.

. Solve the equatioRq = ¢, which may be re-written as” — /)q = 0. Since

~1/2 0 1/2
P-I=1| 1/2 -1/2 0
0 1/2 —1/2

Row reducing the augmented matrix gives

~1/2 0 1/2 0 10 -10
/2 —-1/2 0 0|~|01 -1 0
0 /2 —-1/2 0 00 0 0
1
so the general solution igg | 1 |. Sinceq must be a probability vector, set =
1
1/(14+1+1) =1/3 and compute that
L[t 1/3
1 1/3

. The chain will spend /3 of its time in state 2 since the entry éncorresponding to

state 2 isl /3, and we can interpret the entries as occupation times.
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10.3 Communication Classes

Section 10.2 showed that if the transition matrix for a Markov chain is regularxheonverges
to a unique steady-state vector for any choice of initial probability vector. Thainsx, = q,

whereq is the unique steady-state vector for the Markov chain. Examples 3,”I,°§nd 5 of Section
10.2 illustrated that, even though every Markov chain has a steady-state vector, not every Markov
chain has the property thdim x,, = q. The goal of the next two sections is to study these

examples further, and to show that Examples 3, 4, and 5 of Section 10.2 describe all the ways in
which Markov chains fail to converge to a steady-state vector. The first step is to study which states
of the Markov chain can be reached from other states of the chain.

Communicating States

Suppose that stateand state are two states of a Markov chain. If the stagtean be reached
from the state in a finite number of steps and the statan be reached from the staten a finite
number of steps, then the stateand: are said tacommunicate If P is the transition matrix for
the chain, then the entries ¥ give the probabilities of going from one state to anothet steps:

From:
1 m To:
: 1
Pk = l

and powers ofP can be used to make the following definition.

DEFINITION Let: andj be two states of a Markov chain with transition matfix Then state
communicateswith statej if there exist nonnegative integersandn such that thej, i) entry of
P™ and the(z, j) entry of P are both strictly positive. That is, stateommunicates with statg
if it is possible to go from stateto state; in m steps and from statgto statei in n steps.

This definition implies three properties that will allow the states of a Markov chain to be placed
into groups calledommunication classesFirst, the definition allows the integers andn to be
zero, in which case th@, i) entry of P° = [ is 1, which is positive. This insures that every state
communicates with itself. Because bdthj) and(j, i) are included in the definition, it follows
that if state; communicates with statethen statey communicates with state Finally, you will
show in Exercise 36 that if stateommunicates with stateand state communicates with state
then staté communicates with state These three properties are called respectivelydfiexive,
symmetric, andtransitive properties:

(a) (Reflexive Property) Each state communicates with itself.

(b) (Symmetric Property) If statecommunicates with statg then statg communicates with
states.
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(c) (Transitive Property) If staté communicates with statg and statej communicates with
statek, then stateé communicates with state

A relation with these three properties is calledegjuivalence relation The communication rela-
tion is an equivalence relation on the state space for the Markov chain. Using the properties listed
above simplifies determining which states communicate.

EXAMPLE 1 Consider an unbiased random walk with absorbing boundarieslah3,4,5}.
Find which states communicate.

Solution The transition matrix is given below along with the transition diagram for this Markov
chain:

1 2 3 4 5
112 0 0 0]
0 0 1/2 0 02
P=|0 1/2 0 1/2 0]|s
0 0 1/2 0 04
0 0 0 1/2 1|s

Figure 1: Unbiased random walk with absorbing boundaries.

First note by the reflexive property each state communicates with itself. It is clear from the diagram
that state®, 3 and4 communicate with each other. The same conclusion may be reached using the
definition by finding that thé2, 3), (3,2), (3,4), and(4, 3) entries inP are positive, thus stat&s

and3 communicate, as do statdsand4. States2 and4 must also communicate by the transitive
property. Now consider staieand staté. If the chain starts in statk it cannot move to any state
other than itself. Thus it is not possible to go from stiate any other state in any number of steps,
and statel does not communicate with any other state. Likewise statees not communicate

with any other state. In summary,

Statel communicates with state
State2 communicates with state state3, and statdl.
State3 communicates with state state3, and state.
State4 communicates with state state3, and statel.
State5 communicates with state
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Notice that even though the stateand5 do not communicate with stat@s3 and4, it is possible
to gofrom these states either stater state5 in a finite number of steps: this is clear from the
diagram, or by confirming that the appropriate entrie®jiP?, or P? are positive. [ |

In Example 1 the state spage, 2, 3,4, 5} can now be divided into the classg€s}, {2, 3,4},
and{5}. The states in each of these classes communicate only with the other members of their
class. This division of the state space occurs because the communication relation is an equivalence
relation. The communication relatigartitions the state space inttmmmunication classesEach
state in a Markov chain communicates only with the members of its communication class. For the
Markov chain in Example 1, the communication classes aje{2, 3,4}, and{5}.

EXAMPLE 2 Consider an unbiased random walk with reflecting boundarie$lo®, 3,4,5}.
Find the communication classes for this Markov chain.

Solution The transition matrixP for this chain, as well a®?, P3, andP*, are shown below.

1 2 3 4 5 1 2 3 4 5
0 1/2 0 0 0]1 [(1/2 0 1/4 0 0|1
1 0 1/2 0 0]z 0 3/4 0 1/4 0 |2
P=|0 1/2 0 1/2 0|s,P*=|1/2 0 1/2 0 1/2|s
0 0 1/2 0 1|4 0 1/4 0 3/4 0 |4
0O 0 0 1/2 0|s 0 0 1/4 0 1/2|s
1 2 3 4 5 1 2 3 4 5
0 3/8 0 1/8 0|1 3/8 0 1/4 0 1/8]1
3/4 0 1/2 0 1/4|2 0 5/8 0 3/8 02
PP=/0 1/2 0 1/2 0 |s,P*=|1/2 0 1/2 0 1/2|s
1/4 0 1/2 0 3/4|4 0 3/8 0 5/8 0|4
0 1/8 0 3/8 0 s 1/8 0 1/4 0 3/8s

The transition diagram for this Markov chain is given in Figure 2.

Notice that the(i, j) entry in at least one of these matrices is positive for any choideaofl ;.
Thus every state is reachable from any other statesteps or fewer, and every state communicates

Figure 2: Unbiased random walk with reflecting boundaries.

with every state. There is only one communication clg$s2, 3,4, 5}.
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EXAMPLE 3 Consider the Markov chain given in Example 5 of Section 10.2. Find the commu-
nication classes for this Markov chain.

Solution The transition matrix for this Markov chain is

1 2 3 4 5
(/4 1/3 1/2 0 0|
1/4 1/3 1/4 0 0
P=[1/2 1/3 1/4 0 0
o 0 0 1/3 3/4
0o 0 0 2/3 1/4

a A~ W N

and a transition diagram is

Figure 3: Transition diagram for Example 3.

It is impossible to move from any of the state®, or 3 to either of the statesor 5, so these states
must be in separate communication classes. In addition, Istatate2, and stat&$ communicate;
state4 and stateh also communicate. Thus the communication classes for this Markov chain are
{1,2,3} and{4, 5}. |

The Markov chains in Examples 1 and 3 have more than one communication class, while
the Markov chain in Example 2 has only one communication class. This distinction leads to the
following definitions.

DEFINITION A Markov chain with only one communication classiieeducible. A Markov
chain with more than one communication clasgeigucible.
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Thus the Markov chains in Examples 1 and 3 are reducible, while the Markov chain in Example
2 is irreducible. Irreducible Markov chains and regular transition matrices are connected by the
following theorem.

THEOREM 2 If a Markov chain has a regular transition matrix, then it is irreducible.

Proof Suppose thaP is a regular transition matrix for a Markov chain. Then by definition, there

is ak such thatP* is a positive matrix. That is, for any stateandj, the(i, j) and(j, ) elements

in P* are strictly positive. Thus there is a positive probability of moving frota j and fromj

to i in exactlyk steps, and soand;j communicate with each other. Sincand; are any states

and must be in the same communication class, there can be only one communication class for the
chain, so the Markov chain must be irreducible. [

Example 2 shows that the converse of Theorem 2 is not true, because the Markov chain in this
example is irreducible, but its transition matrix is not regular.

EXAMPLE 4 Consider the Markov chain whose transition diagram is given in Figure 4. Deter-
mine whether this Markov chain is reducible or irreducible.

Figure 4: Transition diagram for Example 4.

Solution The diagram shows that statesind2 communicate, as do statésand5. Notice that
statesl and2 cannot communicate with stat8s4, or 5 since the probability of moving from
state2 to state3 is 0. Likewise statest and5 cannot communicate with statés2, or 3 since
the probability of moving from staté to state3 is 0. Finally, state3 cannot communicate with
any state other than itself since it is impossible to return to statem any other state. Thus the
communication classes for this Markov chain &te2}, {3}, and{4, 5}. Since there is more than
one communication class, this Markov chain is reducible. [
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Mean Return Times

Let q be the steady-state vector for an irreducible Markov chain. It can be shown using advanced
methods in probability theory that the entriesgimay be interpreted as occupation times; that is,
q; is the fraction of time steps that the chain will spend at stak®r example, consider a Markov
2
chain on{1, 2, 3} with steady-state vectef = | .5 |. Inthe long run the chain will spend about
3
half of its steps in state. If the chain is currently at statg it should take about = 1/.5 steps
to return to stat@. Likewise since the chain spends abdyi of its time in statel, it should visit
statel once every; steps.

Given a Markov chain and statésndj, a quantity of considerable interest is the number of
stepsn,; that it will take for the system to first visit staiegiven that it is started in state The
value ofn,; cannot be known — it could be any positive integer depending on how the Markov
chain evolves. Such a quantity is known asaadom variable. Sincen;; is unknowable, the
expected valueof n;; is studied instead. The expected value of a random variable functions as a
type of average value of the random variable. The following definition will be used in subsequent
sections.

DEFINITION Theexpected value of a random variableX which takes on the values, z,, . . .
is

E[X]=21P(X =21) + 22P(X =2) + - = »_ 5 P(X = ) (1)
k=1

whereP (X = z;,) denotes the probability that the random variaklequals the valuey.

Now lett;; = E[n;;| be the expected value of;, which is the expected number of steps it will
take for the system to return to statgiven that it starts in state Unfortunately, Equation 1 will
not be helpful at this point. Instead proceeding intuitively, the system should $pstad at state
1 for eacht;; steps on average. It seems reasonable to say that the system will, over the long run,
spend about /¢;; of the time at stateé. But that quantity isy;, So the expected time steps needed
to return, orMmean return time to a state, is the reciprocal of;. This informal argument may be
made rigorous using methods from probability theory; see Appendix 2 for a complete proof.

THEOREM 3 Consider an irreducible Markov chain with a finite state space,, Jdte the num-
ber of steps until the chain first visits statgiven that the chain starts in stagteand lett;;, = E[n;].
Then

tis = — (2)
whereg; is the entry in the steady-state vectpcorresponding to state
The above example matches Equation2:= 1/.2 = 5, tos = 1/.5 = 2, andtz3 = 1/.3 = 10/3.

Recall that the mean return time is a expected value, so the fae¢tihsnot an integer ought not
be troubling. Section 10.5 will include a discussiort gf= E[n,;] wherei # j.
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Practice Problem

1. Consider the Markov chain df1, 2, 3, 4} with transition matrix

1/4 1/3 1/2 0
0 1/3 0 1/3
3/4 0 1/2 1/3
0 1/3 0 1/3

P =

Determine the communication classes for this chain.

43
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10.3 Exercises

In Exercises 1-6, consider a Markov chain with 7. Consider the mouse in the following maze
state space withl, 2, ..., n} and the given tran- from Section 1, Exercise 19.
sition matrix. Find the communication classes

for each Markov chain, and state whether the I I

Markov chain is reducible or irreducible. 1 2 3
[ 1/4 0 1/3 — /—I— ‘k\ /7]
1. [1/2 1 0 4 5 6
| 1/4 0 1/3 |
[ 1/4 1/2 1/3 Find the communication classes for the
2. | 1/2 1/2 0 Markov chain that models the mouse’s trav-
| 1/4 0 1/3 els through this maze. Is this Markov chain
reducible or irreducible?
(1 1/2 1/2
310 1/2 0 , , _
0 0 1/2 8. Consider the mouse in the following maze
- from Section 1, Exercise 20.
0 0 0 1 1] C
1/3 0 0 0 0 1 )
4.12/3 0 0 0 0
0 1/4 2/3 0 0
0 3/4 1/3 0 0 — 3 ]
(0 0 4 0.8 0] 4 \( 5
0O 0 0 .7 0 .5
5 3 0 0 0 2 0
0.1 00 0.5 Find the communication classes for the
7 06 0 00 Markov chain that models the mouse’s trav-
| 0.9 0.3 0 0] els through this maze. Is this Markov chain
reducible or irreducible?
0 1/3 0 2/31/2 0 0 ]
1/2 0 1/2 0 0 1/3 0
0 2/3 0 1/3 0 0 2/5|InExercises 9 and 10, consider the set of web-
6. {1/2 0 1/2 0 0 0 0 |pages hyperlinked by the given directed graph.
0 0 0 0 0 0 3/5]Findthe communication classes for the Markov
0 0 0 0 1/2 0 0 |chain that models a random surfers prog-
| 0 0 0 0 0 2/3 0 |]ressthrough this setof webpages.
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9 14. L )
1 2 5
4 3
3 4
10. In Exercises 15 and 16, consider a simple ran-
1 4 dom walk on the directed graph given. Show

that the Markov chain is irreducible and calcu-
late the mean return times for each state.

2 5 6 15.

11. Consider unbiased random walk with
reflecting boundaries ofil,2,3,4,5,6}.
Find the communication classes for this
Markov chain and determine whether it is
reducible or irreducible.

12. Consider unbiased random walk with 16
absorbing boundaries of1,2,3,4,5,6}. " 4
Find the communication classes for this
Markov chain and determine whether it is
reducible or irreducible. 3

In Exercises 13 and 14, consider a simple ran- 2 5

El/lomkwalkhop the.gra:jph.g;ven. dShOIW lthtat ttEel?. Consider the mouse in the following maze
arkov chain is irreducible and calculate the™ ¢\ o tion 1. Exercise 17.

mean return times for each state.

: 4 1*2
_{3>__
° 4\(5

13.
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If the mouse starts in room 3, how long on b.

average will it take the mouse to return to

room 3?
. . , C.
18. Consider the mouse in the following maze
from Section 1, Exercise 18.
I I 22. a.
11213
4 T 5
| b.
If the mouse starts in room 2, how long on
average will it take the mouse to return to C.

room 27?

In Exercises 19 and 20, consider the mouse in
the following maze from Section 2, Exercise 20.

1
.
D

If a Markov chain is reducible, then
it cannot have a regular transition ma-
trix.

The entries in the steady-state vector
are the mean return times for each
state.

An irreducible Markov chain must
have a regular transition matrix.

If the (i,7) and (4,i) entries inP*
are positive for someg, then the states
1 andj communicate with each other.

If state:i communicates with statg
and stategg communicates with state
k, then staté communicates with state
k.

23. Suppose that the weather in Charlotte is
modeled using the Markov chain in Sec-
tion 1, Exercise 23. About how many days
elapse in Charlotte between rainy days?

C
2
3 ] 24. Suppose that the weather in Charlotte is
modeled using the Markov chain in Sec-
5

tion 1, Exercise 24. About how many days
elapse in Charlotte between consecutive
rainy days?

25. The following set of web pages hyperlinked
by the directed graph was studied in Sec-

19. If the mouse starts in room 1, how long on
average will it take the mouse to return to
room 1?

20. If the mouse starts in room 4, how long on
average will it take the mouse to return to
room 47?

In Exercises 21 and 22, mark each statement
True or False. Justify each answer.

tion 2, Exercise 25.

1 2 5

3 4

Consider randomly surfing on this set of

web pages using the Google matrix as the

21. a. If it is possible to go from state
to statej in n steps, wherer > 0,

transition matrix.

then statesand; communicate with a. Show that this Markov chain is irre-

each other.

ducible.



26. The following set of web pages hyperlinke&z'

27.

28.

29.

30.

10.3

Communication Classes 47

b. Suppose the surfer starts at page 131. A Markov chain model for scoring a ten-

How many mouse clicks on average
must the surfer make to get back to
page 1?

by the directed graph that was studied in
Section 2, Exercise 26.

nis game was studied in Section 1, Ex-
ercise 31. What are the communication
classes for this Markov chain?

A Markov chain model for the rally point
method for scoring a volleyball game was
studied in Section 1, Exercise 32. What
are the communication classes for this Mar-

1 4 kov chain?
In Exercises 33 and 34, consider the Markov
3 chain on{1, 2, 3, 4, 5} with transition matrix
2 5 6

Repeat Exercise 25 for this set of web pages.

Consider the pair of Ehrenfest urns stud-
ied in Section 2, Exercise 9. Suppose that
there are now 4 molecules in Urh How
many steps on average will be needed un-
til there are again 4 molecules in UaAf

Consider the pair of Ehrenfest urns stud-
ied in Section 2, Exercise 10. Suppose

that UrnA is now empty. How many steps 35.

on average will be needed until Urh is
again empty?

A variation of the Ehrenfest model of dif-
fusion studied in Section 2, Exercise 29.
Consider this model withk = 3 andp =

1/2 and suppose that there are now 3 mole-
cules in UrnA. How many draws on av-
erage will be needed until there are again
3 molecules in UrmM?

Consider the Bernoulli-Laplace model of
diffusion studied in Section 2, Exercise 30.
Let £k = 5. Suppose that all of the Type |
molecules are now in Urd. How many
draws on average will be needed until all
of the Type | molecules are again in Urn
A?

34.

0 0 0 1/2
1/3 0 0 0
2/3 0 0 0
0 2/5 1/5 1/2
0 3/5 4/5 0

P—

SO OO

33. Show that this Markov chainisirreducible.

Suppose the chain starts in stahte/NVhat
is the expected number of steps until it is
in statel again?

How does the presence of dangling nodes
in a set of hyperlinked webpages affect the

communication classes of the associated
Markov chain?

6. Show that the communication relation is

transitive.Hint : Show that thei, k)-entry

of P"*™ must be greater than or equal to
the product of thei, j)-entry of P and
the (4, k)-entry of P,
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Solution to Practice Problem

1. First note that statelsand3 communicate with each other, as do sta&tesd4. However,
there is no way to proceed from eithkeor 3 to either2 or 4, so the communication classes
are{1,3} and{2,4}.
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10.4 Classification of States and Periodicity

The communication classes of a Markov chain have important properties which help determine
whether the state vectors converge to a unique steady-state vector. These properties are studied in
this section, and it will be shown that Examples 3, 4 and 5 in Section 10.2 are examples of all the
ways that the state vectors of a Markov chain can fail to converge to a unique steady-state vector.

Recurrent and Transient States

One way to describe the communication classes is to determine whether it is possible for the
Markov chain to leave the class once it has entered it.

DEFINITION LetC be a communication class of states for a Markov chain, anddeta state in
C. If there is a staté not in C andk > 0 such that théi, j) entry in P* is positive, then the class
C'is called aransient class and each state i@’ is atransient state If a communication class is
not transient, it is called securrent classand each state in the class isegurrent state.

Suppose that’ is a transient class. Notice that once the system moves ¢fdma another
communication clas®, the system can never return@ This is true becausP cannot contain
a statei from which it is possible to move to a statedh If D did contain such a statethen the
transitive property of the communication relation would imply that every stateadommunicates
with every state inD. This is impossible.

EXAMPLE 1 Consider the Markov chain of1, 2, 3,4, 5} studied in Example 4 of Section 10.3.
Its transition diagram is given in Figure 1. Determine whether each of the communication classes
is transient or recurrent.

Figure 1: Transition diagram for Example 1.

Solution The communication classes were found to{be2}, {3}, and{4, 5}. First consider the
class{3}. There is a positive probability of a transition from statéo state2, so applying the
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definition withk = 1 shows thaf 3} is a transient class. Now considgr, 2}. The probability of

a one-step transition from either stdter 2 to any of states, 4, or 5 is zero, and this is also true

for any number of steps. If the system starts in stabe 2, it will always stay in staté or 2. The

class{1, 2} is thus a recurrent class. A similar argument shows{hzi} is also a recurrent class.
[

EXAMPLE 2 Consider the random walk with reflecting boundaries studied in Example 2 in Sec-
tion 10.3. Determine whether each of the communication classes is transient or recurrent.

Solution This Markov chain is irreducible: the single communication class for this chdin i5
3,4,5}. By the definition, this class cannot be transient. Thus the communication class must be
recurrent. [ |

The result of the preceding example may be generalized to any irreducible Markov chain.
REMARK All states of an irreducible Markov chain are recurrent.

Suppose that a reducible Markov chain has two transient cldagsasdC; and no recurrent
classes. Sincé€) is transient, there must be a state&’lhwhich can be reached from a state(in
Since(, is transient, there must be a statelinwhich can be reached frof,. Thus all states
in C7 andC, communicate, which is impossible. Thus the Markov chain must have at least one
recurrent class. This argument can be generalized to refer to any reducible Markov chain with any
number of transient classes, which along the previous remark proves the following.

REMARK Every Markov chain must have at least one recurrent class.
EXAMPLE 3 Consider the Markov chain studied in Example 3 of Section 10.3. Determine
whether each of the communication classes is transient or recurrent.

Solution The transition matrix for this Markov chain is

kl 2 3 4 5A
1/4 1/3 1/2 0 0
1/4 1/3 1/4 0 0

P=1/2 1/3 1/4 0 0
0 0 0 1/3 3/4
0 0 0 2/3 1/4]

ga A W N B

and the two communication classes &te2, 3} and{4,5}. The matrix” may be written as the

" o | A O
partitioned matrixP = o Pl where
1 2 3

1/4 1/3 1/2]1 A

1/3 3/44
P =[1/4 1/3 1/4|:2 dp, =
1§2 1§3 1?4. 3 " {2/3 1/4}5
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andO is an appropriately sized zero matrix. Using block multiplication,

e [P O
P‘{OPQ'C

for all £ > 0. Thus if statej is in one class and statés in the other, thé:, j) and(j, i) entries of
PF are zero for alk > 0. Thus both classes of this Markov chain must be recurrent. [ |

EXAMPLE 4 Consider altering the previous example slightly to get a Markov chain with transi-
tion matrix

kl 2 3 4 5A
1/4 1/3 1/2 0 0
1/4 1/3 1/4 0 0

P=|1/2 1/3 1/4 0 1/4
0 0 0 1/3 1/2
0 0 0 2/3 1/4]

a A W N

and transition diagram given in Figure 2. Determine whether each of the communication classes is
transient or recurrent.

Figure 2: Transition diagram for Example 4.

Solution The communication classes are still 2, 3} and{4, 5}. Now the(5, 3) entry is not zero,
so{4,5} is a transient class. By the above remark the chain must have at least one recurrent class,
so{1, 2, 3} must be that recurrent class. This result may also be proven using partitioned matrices.
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LetP = { ];1 g 1,whereP1 is as in the previous example,
4 5 ‘o0

0 0|1

Q —Eg %ﬂ : andS=|0 0 |2

0 1/4|3

The submatrix?; is a transition matrix in its own right: it describes transitions within the recurrent
class{1,2,3}. The matrixS records the probabilities of transitions from the transient c{ds§}

into the recurrent clasfl, 2, 3}. The matrix@ records the probabilities of transitions within the
transient clas$4, 5}. Block multiplication (see Section 2.4) now gives

v | Pf Sk
P—[o o

for some non-zero matri%,. Since the lower left block i© for all matricesP*, it is impossible
to leave the clas§l, 2, 3} after entering it, and1, 2, 3} is a recurrent class. [

In Examples 3 and 4, the states were ordered so that the members of each class were grouped
together. In Example 4, the recurrent classes were listed first followed by the transient classes.
This ordering was convenient, as it allowed for the use of partitioned matrices to determine the
recurrent and transient classes. It is also possible to use block multiplication to compute powers
of the transition matrixP if the states are reordered in the manner done in Examples 3 and 4:
the states in each communication class are consecutive, and if there are any transient classes, the
recurrent classes are listed first, followed by the transient classes. A transition matrix with its states
thus reordered is be said to bedanonical form. To see how this reordering works, consider the
following example.

EXAMPLE 5 The Markov chain in Example 1 has transition matrix

1 2 3 4 5
(8 1 0 0 0]1
2 0 3 0 0]z

P=|0 0 6 0 0s

0 0 .1 0 4|a

0 0 0 1 .6|s

and its communication classes dre 2}, {3}, and{4,5}. To place the matrix in canonical form,
reorder the class€d, 2}, {4, 5}, and{3}; that is, rearrange the states in the ortlet, 4, 5, 3. To
perform this rearrangement, first rearrange the columns, which produces the matrix

rearrange
_
columns

N e R
O OO DO N
O o WO w
— O O O O
o N = e R e N
a A W N P

O OO o e
oo o N
_ o O O O s
SO OO n»
a A~ W N P

3
01
3
.6
1
0
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Now rearranging the rows produces the transition matrix in canonical form:

1 2 4 5 3 1 2 4 5 3
(8 1.0 0 0]z (8 1.0 0 0]z
2 0 0 0 3|2 rarmange |2 0 0 0 3|2
0O 0 0 O .6|3 rows 0O 0 0 4 .1|a
0O 0 0 4 1|4 0 01 6 O0|s
001 6 0]s 00 0 0 .63
The transition matrix may be divided as follows:
kl 2 4 5 3a
g 110 0 0]z
2 010 0 32
P={0 0|0 4 1|4 = {21 g]
0O 0|1 6 O0s
0 0/0 0 6]s

In general, suppose thatis the transition matrix for a reducible Markov chain withecurrent
classes and one or more transient classes. A canonical fofmsof

P - O

Here P, is the transition matrix for thé" recurrent class) is an appropriately sized zero matrix,
@ records transitions within the transient classes, grmbntains the probabilities of transitions
from the transient classes to the recurrent classes. $irise partitioned matrix, it is relatively
easy to take powers of it using block multiplication:

plk . 0

O ... Pk

r

O QF

for some matrixS,. The matrices), S, and S, help to answer questions about the long-term
behavior of the Markov chain which are addressed in Section 10.5.

Periodicity

A final way of classifying states is to examine at what times it is possible for the system to return
to the state in which it begins. Consider the following simple example.
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EXAMPLE 6 A Markov chain on{1, 2,3} has transition matrix

1 2 3

0 0 1|1
P=1 0 0]z

0 1 03

The transition diagram is quite straightforward:
1
1 2
1 1

3
Figure 3: Transition diagram for Example 6.

The system must return to its starting point in three steps and every time the number of steps is a
multiple of three.

EXAMPLE 7 A Markov chain on{1, 2, 3,4} has transition matrix

1 2 3 4
0 0 1 0f1
1 0 0 0]2
P= 0 1/2 0 113
0 1/2 0 0]4
and transition diagram
1
1 > 2
1 1
1 — —_
2 2
3 - 4

Figure 4. Transition diagram for Example 7.

If the system starts in statds 2, or 3, the system may return to its starting point in three steps
or in four steps, and may return every time the number of steps-is4b for some non-negative
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integersa andb. It can be shown that every positive integer greater tharay be written in that

form, so if the system starts in state2, or 3, it may also return to its starting point at any number

of steps greater thah If the system starts in statie the system may return to its starting point in

four steps or in seven steps, and a similar argument shows that the system may also return to its
starting point at any number of steps greater than

EXAMPLE 8 The unbiased random walk dnii, 2, 3,4, 5} with reflecting boundaries has transi-
tion diagram

1 1 1
1 2 2 2
L A DA > >
1 1 1 1
2 2 2

Figure 5. Unbiased random walk with reflecting boundaries.

From this diagram, one can see that it will always take an even number of steps for the system to
return to the state in which it started.

In Examples 6 and 8, the time steps at which the system may return to its initial site may be are
multiples of a numbed: d = 3 for Example 6, whilel = 2 for Example 8. This numbetis called
the periodof the state, and is defined as follows.

DEFINITION Theperiod d of a statei of a Markov chain is the greatest common divisor of all
time steps: such that the probability that the Markov chain started asits ¢ at time step is
strictly positive.

Using a careful analysis of the set of states visited by the Markov chain, it may be shown that
the period of each state in a given communication class is the same, so the period is a property
of communication classes. See Appendix 2 for a proof of this fact, which leads to the following
definition.

DEFINITION The period of a communication clas€’ is the period of each state ifi. If a
Markov chain is irreducible, then the period of the chain is the period of its single communication
class. If the period of every communication class (and thus every state} is then the Markov
chain isaperiodic.

The reason that the greatest common divisor appears in the definition is to allow a period to
be assigned to all states of all Markov chains. In Example 7, the system may return to its starting
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state after any sufficiently large number of steps, so the period of each sfate is That is, the
Markov chain in Example 7 is aperiodic. Notice that this chain does not exhibit periodic behavior,
so the term aperiodic is quite apt. Using the definition confirms that the period of the Markov chain
in Example 6 isd = 3, while the period of the Markov chain in Example 8dis= 2. The next
theorem describes the transition matrix of an irreducible and aperiodic Markov chain.

THEOREM 4 Let P be the transition matrix for an irreducible, aperiodic Markov chain. TRen
is a regular matrix.

Proof Let P be ann x n transition matrix for an irreducible, aperiodic Markov chain. To show
that P is regular, find a poweP* of P must be found for which every entry is strictly positive. Let
1 < i,j < n. Since the Markov chain is irreducible, there must be a nuralvgnich depends on

i andj such that théi, j)-element inP“ is strictly positive. Since the Markov chain is aperiodic,
there is a numbel which depends om such that the:, i)-element inP™ is strictly positive for
all m > b. Now note that sincé*t™ = P2P™, the(i, j)-element inP**™ must be greater than
the product of thei, j)-element inP* and the(, :)-element inP™. Thus the(i, j)-element in
P*t™ must be strictly positive for abn > b. Now letk be the maximum over all paics, j) of the
quantitya + b. This maximum exists because the state space is finite, arid heslement ofP*
must be strictly positive for all pairg, j). Thus every entry of’* is strictly positive, and’ is a
regular matrix. |

So, if P is the transition matrix for an irreducible, aperiodic Markov chain, tffemust be
regular and Theorem 1 must applyfo Thus there is a steady-state veajdor which

lim P"xy =q
for any choice of initial probability vectat,. What can be said about the steady-state vagibr
an irreducible Markov chain has peridd> 1? The following result is proven in more advanced
texts in probability theory.

THEOREM 5 Let P be the transition matrix for an irreducible Markov chain with period 1,
and letq be the steady-state vector for the Markov chain. Then for any initial probability vector

X0

lim ~ (P 4+ PP ) xg = g

n—oo d

Theorem 5 says that in the case of an irreducible Markov chain with péried1, the vector
q is the limit of the average of the probability vectafs'x,, P"*%xy, ..., P"t%%,. When a
Markov chain is irreducible with period > 1, the vectorq may still be interpreted as a vector of
occupation times.



EXAMPLE 9 The period of the irreducible Markov chain in Example &is- 2, so the Markov
chain has period > 1. Letn be an even integer. Taking high powers of the transition matrix

shows that
-~ 1 2 3 4 5 . 2 3 4 5 ~
/4 0 1/4 0 1/4]1 /4 0 1/4 0 ]2
0 1/2 0 1/2 0|2 /2 0 1/2 0 1/2|2
P"—1/2 0 1/2 0 1/2|3 andP""! — /2 0 1/2 0 |s
0 1/2 0 1/2 0 |4 /2 0 1/2 0 1/2|a
/4 0 1/4 0 1/4]s I 1/4 0 1/4 0 |s
So for any initial probability vectok,,
1/8 1/8 1/8 1/8 1/8 1/8
] 1/4 1/4 1/4 1/4 1/4 1/4
lim = (P"+ P )xo= | 1/4 1/4 1/4 1/4 1/4 | xo= | 1/4
R 1/4 1/4 1/4 1/4 1/4 1/4
1/8 1/8 1/8 1/8 1/8 1/8

10.4

Classification of States and Periodicity

But this vector was the steady-state vector for this Markov chain calculated in Exercise 32 of
Section 10.2. Theorem 5 is thus confirmed in this case.

The steady-state vector forraducible Markov chain will be discussed in detail in the next
section.

Practice Problem
1. Consider the Markov chain g, 2, 3, 4} with transition matrix

1/4 1/3 1/2 0

p_| 0 13 0 13
“3/4 0 1/2 1/3
0 1/3 0 1/3

Identify the communication classes of the chain as either recurrent or transient, and reorder
the states to produce a matrix in canonical form.
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10.4 Exercises

In Exercises 1-6, consider a Markov chain with 7.

state space withll, 2, ..
sition matrix. ldentify the communication classes
for each Markov chain as recurrent or transient,
and find the period of each communication class.

1.

[ 1/4
1/2
| 1/4

[ 1/4
1/2
| 1/4

0

0

1/3

2/3
0
0

o~No wo o

1/2

0
/
0
1/2
0
0
0

oo, OO O

0

2/3

0 1/3
1 0
0 1/3

1/2 1/3
12 0
0 1/3

[ 1 1/2 1/2
0 1/2 0

1/2
0
0
0

1/4
3/4

DO

wWooo o ——Looo
w w

—_

oo oo

1/3
0 1/2

0
/
0
0 1/2
0
0
0

o O O

oot o ™
co vio oo

Finite-State Markov Chains

S OO O
S OO O

2/3
0
1/3
0

0
0
0

1/2
0
0
0
0

1/2
0

.,n} and the given tran-

10.

11.

12.

In Exercises 7-10, consider a simple random walk

on the given directed graph. Identify the com-
munication classes as of this Markov chain asl3.

recurrent or transient, and find the period of each
communication class.

2
4 3
1 4
3
2 5
1 2 5
3 4
1 4
3
2 5 6

Reorder the states in the Markov chain in
Exercise 1 to produce a transition matrix
in canonical form.

Reorder the states in the Markov chain in
Exercise 2 to produce a transition matrix
in canonical form.

Reorder the states in the Markov chain in
Exercise 3 to produce a transition matrix
in canonical form.



14.

15.

16.

17.

18.

19.

20.
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Reorder the states in the Markov chain in
Exercise 4 to produce a transition matrix
in canonical form.

Reorder the states in the Markov chain in
Exercise 5 to produce a transition matrix
in canonical form.

Reorder the states in the Markov chain in
Exercise 6 to produce a transition matrix
in canonical form.

Find the transition matrix for the Markov
chain in Exercise 9 and reorder the states
to produce a transition matrix in canonical
form.

Find the transition matrix for the Markov
chain in Exercise 10 and reorder the states
to produce a transition matrix in canonical
form.

Consider the mouse in the following maze
from Section 1, Exercise 19.

a. Identify the communication classes
of this Markov chain as recurrent or
transient.

b. Find the period of each communica-
tion class.

c. Findthe transition matrix for the Mar-
kov chain and reorder the states to
produce a transition matrix in canon-
ical form.

In Exercises 21-22, mark each statement True or

False. Justify each answer.

a. ldentify the communication classes
. } 22
of this Markov chain as recurrent or
transient.

b. Find the period of each communica-
tion class.

c. Find the transition matrix for the Mar-
kov chain and reorder the states to
produce a transition matrix in canon-
ical form.

23.

Consider the mouse in the following maze
from Section 1, Exercise 20.

| | 21.

a. If two stateg andj are both recur-
rent, then they must belong to the
same communication class.

b. All of the states in an irreducible Mar-
kov chain are recurrent.

c. Every Markov chain must have at least
one transient class.

a. If state is recurrent and statecom-
municates with statg, then statg is
also recurrent.

b. If two states of a Markov chain have
different periods, then the Markov
chain is reducible.

c. Every Markov chain must have ex-
actly one recurrent class.

Confirm Theorem 5 for the Markov chain
in Exercise 7 by taking powers of the tran-
sition matrix (see Example 9).
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24. Confirm Theorem 5 for the Markov chain Consider the matri¥” in Example 5 and
in Exercise 8 by taking high powers of the the matrix
transition matrix (see Example 9).

1 0000
: : : 01000
25. Consider the Markov chain dn, 2, 3} with g-looo01o0
transition matrix 0000 1
0 1/2 0 001 00O

p=1 101 Notice that the rows of’ are the rows of

0 1/20 the identity matrix in the order 1,2,4,5,3.

a. Explain why this Markov chain is ir- a. ComputeE'P and explain what has
reducible and has periat happened to the matrik.

b. Find a steady-state vectqrfor this b. ComputePE” and explain what has
Markov chain. happened to the matrik.

c. Find an invertible matrixA and a c. ComputeEPET and explain what

diagonal matrixD such thatP = has happened to the matix

-1 .
ADA™. (See Section 5.3.) 29. Let A be ann x n matrix and lett’ be a
d. Use the result from part (c) to show 1, x n matrix resulting from permuting the

that " may be written as rows ofI,,, then x n identity matrix. The
1/4 1/4 1/4 matrix E is called apermutation matrix .
1/2 1/2 1/2 _ _ _
1/4 1/4 1/4 a. 'Show thatr' A is the matrix A with
14 —1/4 1/4 its rows permuted in exactly the same
H(=1)m | —1/2 12 —1/2 order that the rows _ofn were per-
1/4 —1/4 1/4 muted to formE. Hint: Any per-

mutation of rows can be written as a
sequence of swaps of pairs of rows.

b. Apply the result of part a. tel” to

e. Use the result from d. to confirm
Theorem 5 forP.

26. Follow the plan of Exercise 25 to confirm show thatA ™ is the matrixA with
Theorem 5 for the Markov chain with tran- its columns permuted in exactly the
sition matrix same order that the rows éf were

permuted to forme.
0 p 0 c. Explain whyEAET is the matrixA
p=1 0 1 with its rows and columns permuted
0 1-p 0 in exactly the same order that the rows
where0 < p < 1. of I,, were permuted to fornk.
d. In the process of finding the canoni-

27. Confirm Theorem 5 for the Markov chain cal form of a transition matrix, does
in Example 6. it matter whether the rows of the ma-

trix or the columns of the matrix are

28. Matrix multiplication can be used to find permuted first? Why or why not?

the canonical form of a transition matrix.
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Solution to Practice Problem

1. First note that statelsand3 communicate with each other, as do statesd4. However,
there is no way to proceed from eithkeor 3 to either2 or 4, so the communication classes
are{1,3} and{2,4}. Since the chain stays in the class 3} after it enters this class, the
class{1, 3} is recurrent. Likewise, there is a positive probability of leaving the djass} at
any time, so the clas®, 4} is transient. One ordering of the states that produces a canonical
formis 1,3,2,4: the corresponding transition matrix is

1 3 2 4 1 3 2 4
(A2 130 1/4 1/2 1/3 0

Pﬁ 0 0 1/3 1/3)2 MG 13/4 1/2 0 1/3

3/4 1/2 0 1/3|s 0 0 1/3 1/3

o 0 1/3 1/3 0 0 1/3 1/3

N N
A N W P
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10.5 The Fundamental Matrix

The return time for a state in an irreducible Markov chain was defined in Section 10.3 to be the
expected number of steps needed for the system to return its starting state. This section studies
the expected number of steps needed for a system to pass from one state to another state, which is
called a transit time. Another quantity of interest is the probability that the system visits one state
before it visits another. It is perhaps surprising that discussing these issues for irreducible Markov
chains begins by working with reducible Markov chains, particularly those with transient states.

The Fundamental Matrix and Transient States

The first goal is to compute the expected number of visits the system makes toiagstatethat
the system starts in stajewherej is a transient state. Suppose that a Markov chain has at least
one transient state. Its transition matrix may be written in canonical form as

R|S
P=
1]
Since at least one state is transiefithas at least one non-zero entry. In order foto be a

stochastic matrix at least one of the columng ofmust sum to less than one. The maitf)xis
called asubstochastic matrix It can be shown that

Jim @ =0

for any substochastic matri@. This fact implies that if the system is started in a transient class, it
must eventually make a transition to a recurrent class and never visit any state outside that recurrent
class again. The system is thus eventuabgorbedby some recurrent class.

Now let ;7 and: be transient states, and suppose that the Markov chain starts at dtate);;
be the number of visits the system makes to stagfore the absorption into a recurrent class. The
goal is to calculateZ|v;;], which is the expected value of;. To do so a special kind of random
variable called anndicator random variable is useful. Anindicator random variable I is a
random variable which i if an event happens and(sf the event does not happen. Symbolically,

j 0 if the event does not happen
~ | 1 ifthe event happens

The expected value of an indicator random variable may be easily calculated:
E[I]=0-P(I=0)+1-P(I =1)= P(I =1) = P(event happens (1)

Returning to the discussion of the number of visits to statarting at statg, let 7, be the indicator
random variable for the event “the system visits statestepk.” Then

UU:]()+11+]2+:Z]]€
k=0
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since a visit to statéat a particular time will causeto be added to the running total of visits kept
in v;;. Using Equation 1, the expected valuevgfis

Z[k] ZEIk :iP I,=1) :iP (visit to i at stepk)
k=0 k=0

=0

UU

But P(visit to s at stepk) is just the(i, j) entry in the matrixQ*, so
Elvy] =) (@");
k=0

Thus the expected number of times that the system visitsistédeting at statg is the (i, j)-entry
in the matrix

I+Q+Q*+Q +...=> Q"
k=
Using the argument given in Section 2.6 (p.154-155),
[+Q+Q+Q+..=(I-Q)"

The matrix(I — Q)~! is called thefundamental matrix of the Markov chain and is denoted by
M. The interpretation of the entries M is given in the following theorem.

THEOREM 6 Let j andi be transient states of a Markov chain, andiebe that portion of the
transition matrix which governs movement between transient states.

a. When the chain starts at a transient sfatke (7, j) entry of M = (I — Q)~! is the expected
number of visits to the transient statbefore absorption into a recurrent class.

b. When the chain starts at a transient stgtéhe sum of the entries in columphof M =
(I — Q) ! is the expected number of time steps until absorption.

An alternative proof of Theorem 6 is given in Appendix 2.

EXAMPLE 1 Consider an unbiased random walk{n 2, 3,4, 5} with absorbing boundaries. If
the system starts in stase ind the expected number of visits to statbefore absorption. Also
find the expected number of steps until absorption starting at the 8taesnd4.

Solution Placing the states in the ordkr5, 2, 3, 4 produces a transition matrix in canonical form:

12 3 4 5 1 5 2 3 4
1 1/2 0 0 0]z 1 0 1/2 0 0]

0 0 /2 0 0|2 rearange |0 O O 1/2 0 |2 rearrange
0 1/2 0 1/2 0|3 columns 0 O 1/2 0 1/2 3 rows |
0O 0 1/2 0 04 0 0 0 1/2 0 |4

0 0 0 1/2 1]s 0 1 0 0 1/2|s
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1 5 2 3 4

1 0]1/2 0 0]
0 1] 0 0 1/2]s
0 0[] 0 1/2 0|2
0 0[1/2 0 1/2|3
0 0| 0 1/2 0 |a

The matrix@ and the fundamental matrix = (I — Q) are

2 3 4 2 3 4

0 1/2 0 ]2 3/2 1 1/2]2
Q=[1/2 0 1/2|s andM=|1 2 1 |3

0 1/2 0 |a 1/2 1 3/2|4

Starting at state}, the expected number of visits to st&tauntil absorption is the entry ol/
whose row corresponds to st&teand whose column corresponds to stat&his value isl, so the
chain will visit state2 once on the average before being absorbed. The sum of the columns of
corresponding to stat@sand4 is three, so the expected number of steps until absorption is three if
starting at either stateor stated. Likewise the expected number of steps until absorption starting
at states is four. |

Transit Times

Consider the problem of calculating the expected number of gjepseded to travel from stage

to state; in an irreducible Markov chain. If the statéand; are the same state, the valygis the
expected return time to stajdound in Section 10.4. The valug will be called thetransit time

(or mean first passage timgfrom state; to statei. Surprisingly, the insight into transient states
provided by Theorem 6 is exactly what is needed to calculate

Finding the transit time of a Markov chain from sttt statei begins by changing the transi-
tion matrix P for the chain. First reorder the states so that statames first. The new matrix has

the form
Dii | S
X|Q
for some matrices, X, and@. Next change the first column of the matrix fro[rrﬁ? } to { (1) }

whereO is a zero vector of appropriate size. In terms of probabilities, it is now impossible to leave
statei after entering it. Statéis now an absorbing state for the Markov chain, and the transition
matrix now has the form
118
ole]

The expected number of steps that it takes to reach stateafter starting at stat¢ may be
calculated using Theorem 6(b): it will be the sum of the columiMo€orresponding to statg



10.5 The Fundamental Matrix 65

EXAMPLE 2 Consider an unbiased random walk ¢h 2, 3,4,5} with reflecting boundaries.
Find the expected number of stegg required to get to staté starting at any statg # 4 of the
chain.

Solution The transition matrix for this Markov chain is

012 0 0
0 1/2 0
1/2 0 1/2
0 1/2 0
0 0 1/2

S O O
SO = O O O

First reorder the states to list statérst, then convert statéto an absorbing state.

) 1 2 3 4 5 . ) 4 1 2 3 5ﬁ
0 1/2 0 0 01 0 0 1/2 0 O0]z2
1 0 1/2 0 012 _re_aﬁrﬁe> 0 1 0 1/2 012 rearrange
0 1/2 0 1/2 0|3 columns 1/2 0 1/2 0 0fs rows
0 0 1/2 0 1|4 0 0 0 1/2 1]|a
00 0 1/2 0s /2 0 0 0 0]s
-~ 4 1 2 3 5A ) 4 1 2 3 5 .
0O 0 0 1/2 1|4 110 0 1/2 1|4
0 0 1/2 0 0|1 comwer |00 1/2 0 0|1
0O 1 0 1/2 0|2 staesa (0|1 0 1/2 0]2
/2 0 1/2 0 O0]3 0(0 1/2 0 O0fs
/2 0 0 0 0fs 100 0 0 0]s
The matrix@ and the fundamental matri! = (I — Q)~! are
1 2 3 5 1 2 3 5
0 1/2 0 01 3 21 01
|1 0 1/2 0]2 |4 4 2 02
@=ly 12 0 ols M=y 5 5 o,
0 0 0 O0]s 0 0 0 1fs
Summing the columns a¥/ givest;y = 9, toy = 8, t34 = 5, andtsy = 1. [ |

Absorption Probabilities

Suppose that a Markov chain has more than one recurrent class and at least one transjent state
If the chain starts at statg then the chain will eventually be absorbed into one of the recurrent
classes; the probability that the chain is absorbed into a particular recurrent class is called the
absorption probability for that recurrent class. The fundamental matrix is used in calculating the
absorption probabilities.



66 CHAPTER 10 Finite-State Markov Chains

To calculate the absorption probabilities, begin by changing the transition matrix for the Markov
chain. First write all recurrent classes as single statsh p;; = 1; that is, each recurrent class
coalesces into an absorbing state. (Exercises 37 and 38 explore the information that the absorption
probabilities give for recurrent classes with more than one state.) A canonical form for this altered

transition matrix is
IS
"= [0 Q}

where the identity matrix describes the lack of movement between the absorbing states.

Let ;7 be a transient state andbe an absorbing state for the changed Markov chain; to find the
probability that the chain starting atis eventually absorbed by consider thei, j) entry in the
matrix P*. This entry is the probability that a system which starts at staseat statei after k
steps. Since is an absorbing state, in order for the system to be at stéhe system must have
been absorbed by statat some step at or before the step. Thus the probability that the system
has been absorbed by statat or before the:'" step is just thei, j)-entry in the matrixP*, and
the probability that the chain starting ais eventually absorbed hyis the (i, j) entry in]}ij& Pk,

ComputingP* using rules for multiplying partitioned matrices (see Section 2.4) gives

| T S+SQ B I\S+SQ+SQ2
P2_{O % :|’P3_|:O o 7

and it may be proved by induction (Exercise 28) that

PF = { (I) g’; ] , whereS, = S+5Q+5Q°+...+5Q" ' =5 (I+Q+ Q> +...+ Q")
Sincej is a transient state ands an absorbing state, only the entriesSihneed be considered.
The probability that the chain starting atis eventually absorbed bymay thus be found by
investigating the matrix

A:klim Sk:klim SI+Q+Q*+...+Qh = lim SIT+Q+Q*+...)=SM
where M is the fundamental matrix for the Markov chain with coalesced recurrent classes. The
(7,7) entry in A is the probability that the chain starting ais eventually absorbed by The
following Theorem summarizes these ideas; an alternative proof is given in Appendix 2.

THEOREM 7 Suppose that the recurrent classes of a Markov chain are all absorbing states. Let
j be a transient state andbe an absorbing state of this chain. Then the probability that the
Markov chain starting at staeis eventually absorbed by states the (7, j)-element of the matrix

A = SM, whereM is the fundamental matrix of the Markov chain afids that portion of the
transition matrix that governs movement from transient states to absorbing states.

EXAMPLE 3 Consider the unbiased random walk oh 2,3, 4,5} with absorbing boundaries
studied in Example 1. Find the probability that the chain is absorbed intoIstziten that the
chain starts at state
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Solution: Placing the states in the ordét, 5,2, 3,4}, gives the canonical form of the transition
matrix:

1 5 2 3 4

1 0[1/2 0 01
0 1] 0 0 1/2]s
0 0[ 0 1/2 0 |2
0 0[1/2 0 1/2|s
0 0] 0 1/2 0 |4

The matrix@ and the fundamental matrix = (I — Q) are

SO

2 3 4 2
0 1/2 0]z 3/2
Q=[1/2 0 1/2|s andM =| 1
0 1/2 0 |a 1/2
[ 3/2 1 1/2
A:SM:[lf 81%} 12 1 | =
| 1/2 1 3/2

|

2

3/4 1/2 1/4
1/4 1/2 3/4

3

4

|

1
5

The columns ofA correspond to the transient statgs3, and4 in that order, while the rows
correspond to the absorbing statesnd5. The probability the chain started at stdts absorbed
at statel is 1/4.

Absorption probabilities may be used to compute the probability that a system modeled by an

irreducible Markov chain visits one state before another.

EXAMPLE 4 Consider a simple random walk on the graph in Figure 1. What is the probability

that a walker starting at statevisits statet before visiting stat&?

Solution Changing staté and state to absorbing states and then computing the absorption prob-

abilities starting at staté will answer this question. Begin by reordering the states as1, 2, 3,
5, 6 and rewrite state$ and7 as absorbing states:

1
)
1/2
1/2

0

0
0
0

2
1/3
0
1/3
0
1/3
0
0

3
1/4
1/4

0
1/4

0
1/4

0

5 6 7
0 0 0]1
1/2 0 02
0 1/3 0|3
0 0 0a
0 1/3 0s
0 0 1ls

0|7

4 7 1 2
0 0 0 1/3
0 0 1/2 0
rearrange | 1 0 1/2 1/3
coumns |0 O O 0
o 0 0 1/3
0O 1 0 0
0O 0 0 0

3
1/4
1/4

0
1/4
0
1/4
0

1/2

o O O

1/2

rearrange
— 9
rows

[a]
N o g A~ W N e
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1
3
2 ' Vil
5 6
)
7
Figure 1: The graph for Example 4.
k4 7 1 2 3 5 GA k4 7 1 2 3
0 0 O 0 1/4 0 0|4 1 0 O 0 1/4
0 0 O 0 0 1/2 1/3|7 0 1 0 0 0
0O 0 0 1/3 1/4 0 012 cowvet |O O O 1/3 1/4
0 0 1/2 0 1/4 1/2 0 2 states4and7| 0 0 1/2 0 1/4
1 0 1/2 1/3 0 0 1/3|3 0 0 1/2 1/3 0
o 0 0 1/3 0 0 1/3|s o 0 0 1/3 0
01 0 0 1/4 0 0 s 00 0 0 1/4
. " L I|S .
The resulting transition matrix i 00 , With
-~ 1 2 3 5
L s s . ] 0o 1/3 1/4 0
0 0 1/4 0 0|4 /2.0 1/4 1/2
S—{O 0 0 12 1/3}7 and@ =|1/2 1/3 0 0
0 1/3 0 0
1 0 0 1/4 0
SO
) 1 2 3 5 6 )
12/5  8/5 6/5 6/5 4/5 |1
12/5 31/10 17/10 11/5 13/10] 2
M=(I-Q)'=|12/5 34/15 38/15 28/15 22/15| 3
6/5 22/15 14/15 34/15 16/15|s
1 6/5 13/10 11/10 8/5 19/10] e

(&)]

—_
(]

6

0

0
1/3
1/3

0;

[\

o O W N

o O W N PN D
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and
1 2 3 5 6

3/5 17/30 19/30 7/15 11/30] 4
2/5 13/30 11/30 8/15 19/30] 7

Since the first column oft corresponds to statieand the rows correspond 4cand7 respectively,
the probability of visitingl before visiting7 is 3/5. [ |

A=5M =

A mathematical model that uses Theorems 6 and 7 appears in Section 10.6.
Practice Problems

1. Consider a Markov chain of1, 2, 3, 4} with transition matrix
1/2 0
1/6 1/2

1/3 1/6
0 1/3

S O O =
— o O O

a. If the Markov chain starts at statefind the expected number of steps before the chain
Is absorbed.

b. If the Markov chain starts at sta®e find the probability that the chain is absorbed at
statel.

2. Consider a Markov chain of1, 2, 3,4} with transition matrix

2/3 1/2 0 0
1/3 1/6 1/2 0
0 1/3 1/6 1/2
0 0 1/3 1/2

pP—

a. Ifthe Markov chain starts at statgfind the expected number of steps required to reach
stated.

b. If the Markov chain starts at sta2efind the probability that staté is reached before
stated.
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10.5 Exercises

In Exercises 1-3, find the fundamental matrix of
the Markov chain with the given transition ma-
trix. Assume that the state space in each caseb.

is{1,2,...,n}. If reordering of states in neces-
sary, list the order in which the states have been
reordered.
1 0 1/6 0
1 01 0 1/3
10 0 1/3 2/3
| 00 1/2 0
(1.0 0 1/4 1/5
01 0 1/8 1/10
2.0 0 1 1/8 1/5
0 0 0 1/4 3/10
| 00 0 1/4 1/5
[ 1/5 0 1/10 0 1/5
/51 1/5 0 1/5
3.11/5 0 1/5 0 1/4
1/5 0 1/4 1 1/10
| 1/5 0 1/4 0 1/4

In Exercises 4-6, find the matrix = lim,, . S,,
for the Markov chain with the given transition

10.

matrix. Assume that the state space in each case

is{1,2,...,n}. If reordering of states in neces-
sary, list the order in which the states have been1.

reordered.

1.0 1/6 0

4 01 0 1/3

10 0 1/3 2/3
|00 1/2 0
(1.0 0 1/4 1/5
010 1/8 1/10

5100 1 1/8 1/5
000 1/4 3/10
000 1/4 1/5

12.

13.

Finite-State Markov Chains

1/5 0 1/10 0 1/5
1/5 1 1/5 0 1/5
1/5 0 1/5 0 1/4
1/5 0 1/4 1 1/10
1/5 0 1/4 0 1/4

Suppose that the Markov chain in Exer-
cise 1 starts at state How many visits
will the chain make to staté on the aver-
age before absorption?

Suppose that the Markov chain in Exer-
cise 2 starts at statt How many steps
will the chain take on the average before
absorption?

. Suppose that the Markov chain in Exer-

cise 3 starts at state  How many steps
will the chain take on the average before
absorption?

Suppose that the Markov chain in Exer-
cise 4 starts at state What is the prob-

ability that the chain is absorbed at state
1?

Suppose that the Markov chain in Exer-
cise 5 starts at state Find the probabil-
ities that the chain is absorbed at states
2, and3.

Suppose that the Markov chain in Exer-
cise 6 starts at state Find the probabil-
ities that the chain is absorbed at states
and4.

Consider simple random walk on the fol-
lowing graph.
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1 2 that the walker reaches statbefore
reaching stateé?

15. Consider simple random walk on the fol-

5 lowing directed graph. Suppose that the
walker starts at state 1.
1 2
4 3

a. Suppose that the walker begins in
stateb. What is the expected number
of visits to state2 before the walker
visits statel?

b. Suppose again that the walker begins
in stateb. What is the expected num-

ber of steps until the walker reaches 3 4
statel?

c. Now suppose that the walker starts a. How many visits does the walker ex-
in statel. What is the probability pect to make to state 2 before visit-
that the walker reaches sta@tbefore ing state 3?

reaching state?
g b. How many steps does the walker ex-

14. Consider simple random walk on the fol- pect to take before visiting state 3?
lowing graph.
1

16. Consider simple random walk on the fol-
lowing directed graph. Suppose that the
walker starts at state 4.

4 3 1 4
3

a. Suppose that the walker begins in 2 5

state3. What is the expected number

of visits to state2 before the walker a. How many visits does the walker ex-

visits statel? pect to make to state 3 before visit-
b. Suppose again that the walker begins Ing state 27

in state3. What is the expected num- b. How many steps does the walker ex-

ber of steps until the walker reaches pect to take before visiting state 2?

statel?

c. Now suppose that the walker starts17. Consider the mouse in the following maze
in statel. What is the probability from Section 1, Exercise 17.
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T —
_<3>__ - 3 —
4\|(5

If the mouse starts in room 1, how many
steps on the average will it take the mouse
to get to room 5?

If the mouse starts in room 2, what is the
probability that the mouse visits room 3
before visiting room 4?

In Exercises 21-22, mark each statement True or
18. Consider the mouse in the following mazealse. Justify each answer.

from Section 1, Exercise 18. 21. a. The(i, j)-element in the fundamen-

19.

20.

If the mouse starts in room 1, what is the
probability that the mouse visits room 3
before visiting room 4?

Consider the mouse in the following maze
from Section 1, Exercise 19.

22.

If the mouse starts in room 1, how many
steps on the average will it take the mouse
to get to room 6?

Consider the mouse in the following maze
from Section 1, Exercise 20.

tal matrix M is the expected number
of visits to the transient stateprior

to absorption, starting at the transient
states.

. The(j,7)-element in the fundamen-

tal matrix gives the expected number
of visits to state starting at state
prior to absorption.

. The probability that the Markov

chain starting at stateis eventually
absorbed by statg is the (j,7)-ele-
ment of the matrixA = SM, where
M is the fundamental matrix of the

1 | ) | 3 Markov chain andS is that portion
of the transition matrix that governs
R /—I_ Ak\ a movement from transient states to ab-
4 S 6 sorbing
| ( states.

. The sum of the columjof the fun-

damental matrix)/ is the expected
number of time steps until absorp-
tion.

. Transit times may be computed di-

rectly from the entries in the transi-
tion matrix.



23.

24.

25.

26.
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c. If Aisam xm substochastic matrix, tually become stuck on page 1, which is a
then the entries inl™ approach) as dangling node?
n increases.

Exercises 27-30 concern the Markov chain model
Suppose that the weather in Charlotte figy scoring a tennis match described in Section
modeled using the Markov chain in Sect, Exercise 31. Suppose that Player A and player
tion 1, Exercise 23. If it is sunny todayP are playing a tennis match, that the probabil-

what is the probability that the weather igy that player A wins any point i = .6, and
cloudy before it is rainy? that the game is currently at “deuce.”

Suppose that the weather in Charlotte i7. How many more points will the tennis game
modeled using the Markov chain in Sec-  be expected to last?

tion 1, Exercise 24. If it rained yesterday . - .
and today, how many days on the average28' Find the probability that player A wins the

will it take before there are two consecu- game.

tive days with no rain? 29. Repeat Exercise 27 if the game is
Consider a set of webpages hyperlinked a. currently at “advantage A’.
by the given directed graph that was stud- b. currently at “advantage B”.

ied in Section 2, Exercise 25.
30. Repeat Exercise 28 if the game is

1 2 5
a. currently at “advantage A’.
‘ b. currently at “advantage B”.
Exercises 31-36 concern the two Markov chain
3 A models for scoring volleyball games described

in Section 1, Exercise 32. Suppose that teams
A and player B are playing a 15-point volley-
If a random surfer starts on page 1, hoya|| game which is tied 15-15 with team A serv-
many mouse clicks on the average will thg. Suppose that the probabilipthat team A
surfer make before becoming stuck at\gins any rally for which it serves is = .7, and
dangling node? the probabilityq that team B wins any rally for

' - ich i ig = .6.
Consider a set of webpages hyperhnk(\aNcP'C itserves iy = .6

by the given directed graph that was stud-31. Suppose that rally point scoring is being
ied in Section 2, Exercise 26. used. How many more rallies will the vol-
1 4 leyball game be expected to last?

32. Suppose that rally point scoring is being
used. Find the probability that team A
wins the game.

2 5 6
33. Suppose that side out scoring is being used.

If a random surfer starts on page 3, what  How many more rallies will the volleyball
is the probability that the surfer will even- game be expected to last?
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34. Suppose that side out scoring is being used. with transition matrix

Find the probability that team A wins the
game.

35. Rally point scoring was introduced to
make volleyball matches take less time.
Considering the results of Exercises 31 and
33, does using rally point scoring really
lead to fewer rallies being played?

36. Sincep = .7 andg = .6, it seems that
team A is the dominant team. Does it re-
ally matter which scoring system is cho-
sen? Should the manager of each team
have a preference?

37. Consider a Markov chaindn, 2, 3,4, 5}
with transition matrix

1/4 1/2 1/3 0 1/4

3/4 1/2 0 1/3 1/4
P=| 0 0 0 1/3 0
0 0 1/3 0 0

0 0 1/3 1/3 1/2

Find lim P" by the following steps.

n—oo

a. What are the recurrent and transient
classes for this chain?

b. Find the limiting matrix for each re-
current class.

c. Determine the long range probabil-
ities for the Markov chain starting
from each transient state.

d. Use the results of (b) and (c) to find
lim P".

e. Confirm your answer in (d) by tak-
ing P to a high power.

38. Consider aMarkov chaindn, 2,3,4,5,6}

[1/3 1/2 0 0 1/2 0
2/3 1/2 0 0 0 0

p_| 0 0 1423 0 1/2
|l 0o o0 3413 0 0
0O 0 0 0 1/4 1/4
0 0 0 0 1/4 1/4 ]

Find lim P" by the following steps.

n—oo

a. What are the recurrent and transient
classes for this chain?

b. Find the limiting matrix for each re-
current class.

c. Find the absorption probabilities from
each transient state into each recur-
rent class.

d. Use the results of (b) and (c) to find
lim P".

e. Confirm your answer in (d) by tak-
ing P to a high power.

. IS _
39. Show that ifP = [ﬂv],then]? =

IS5, B 5
{ oro },WhereSn = S+5Q+5SQ°+

SO =S (T +Q+Q*+ ...+ QM.
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Solutions to Practice Problems

1.

a. Sincel and4 are absorbing states, reordering the state§la$, 2,3} produces the

canonical form

1 4 2 3

10 1/2 071

p_|0 1 0 1/3]s

1o 0 1/6 1722

0 0 1/3 1/6]3

So
2 3 2 3

/6 1/2] 2 [30/19 18/19] 2
Q{1/3 1/6]3 an0”\4{12/19 30/19] 3

The expected number of steps needed starting atstagéore the chain is absorbed is
the sum of the entries in the column &f corrsponding to state, which is

30+12742
19 19 19

. Using the canonical form of the transition matrix, we see that

2 3 2 3
2 07 ey [15/19 971971
S{ 0 1/3} s andA= SM_{4/19 10/19} 4

The probability that the chain is absorbed at staggven that the Markov chain starts
at state2 is the entry inA whose row corresponds to statand whose column corre-
sponds to stat®; this entry is15/19.

. Reorder the states@s 1, 2, 3} and make statéinto an absorbing state and to produce

the canonical form
4 1 2 3

1 0 0 1/3]4
0 2/3 1/2 0 |1

P=lo 13 16 1/2] 4
0 0 1/3 1/6|3
So
1 2 3 1 2 3
2/3 1/2 0|1 14.25 11.25 6.75|1
Q=1/3 1/6 1/2|2 andM =|7.50 750 4.50| 2
0 1/3 1/6|s 3.00 3.00 3.00]s

The expected number of steps required to regddtarting at state, is the sum of the
entries in the column a#/ corrsponding to state, which is

11.25 + 7.50 4 3.00 = 21.75
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b. Make state$ and4 into absorbing states and reorder the statds as 2, 3} to produce
the canonical form

1 4 2 3
10 1/2 071
p_ [0 1 0 13
0 0 1/6 1/2|2
0 0 1/3 1/6s
So
2 3 2 3
o_[U6 12z [30/19 18/19] -
“l3 1/6) s T 12719 30/19) 8
2 3 2 3
2 07 oy [15/19 91971
S{o 1/3}4a”dA_SM{4/19 10/19}4

Thus the probability that, starting at st@testatel is reached before statas the entry
in A whose row corresponds to stat@and whose column corresponds to sttéhis
entry is15/19.
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10.6 Markov Chains and Baseball Statistics

Markov chains are used to model a wide variety of systems. The examples and exercises in this
chapter have shown how Markov chains may be used to model situations in topic one, topic two,
and topic three. The final example to be explored is a model for how runners proceed around the
bases in baseball. This model leads to useful measures of expected run production both for a team
and for individual players.

Baseball Modeled by a Markov Chain

Many baseball fans carefully study the statistics of their favorite teams. The teams themselves use
baseball statistics for individual players to determine strategy during games, and to make hiring
decisiong' This section shows how a Markov chain is used to predict the number of earned runs a
team will score and to compare the offensive abilities of different players. Some exercises suggest
how to use Markov chains to investigate matters of baseball strategy, such as deciding whether to
attempt a sacrifice or a steal.

The Markov chain in this section provides a way to analyze how runs are scored during half of
one inning of a baseball game. The states of the chain are the various configurations of runners on
base and the number of outs. See Table 10.1.

The first state in the left column of Table 10.1 (“no bases occupied, 0 outs”) is the initial state
of the chain, when the baseball half-inning begins (that is, when one team becomes the team “at
bat”). The four states in the right column describe the various ways the half-inning can end (when
the third out occurs and the teams trade places). Physically, the half-inning is completed when
the third out occurs. Mathematically, the Markov chain continues in one of the four “final” states.
(The model only applies to a game in which each half-inning is completed.) So, each of these four
states is an absorbing state of the chain. The other 24 states are transient states, because whenever
an out is made, the states with fewer outs can never occur again.

The Markov chain moves from state to state because of the actions of the batters. The transition
probabilities of the chain are the probabilities of possible outcomes of a batter’s action. For a
Markov chain, the transition probabilities must remain the same from batter to batter, so the model
does not allow for variations between batters. This assumption means that each batter for a team
hits as an “average batter” for the team.

The model also assumes that only the batter determines how the runners move around the
bases. This means that stolen bases, wild pitches, and passed balls are not considered. Also, errors
by the players in the field are not allowed, so the model only calculates earned runs — runs that
are scored without the benefit of fielding errors. Finally, the model considers only seven possible
outcomes at the plate: a single (arriving safely at first base and stopping there), a double (arriving
safely at second base), a triple (arriving safely at third base), a home run, a walk (advancing to first

“The use of statistical analysis in baseball is calls&bermetrics as a tribute to SABR,
the Society for American Baseball Research. An overview of sabermetrics can be found at
http://en.wikipedia.org/wiki/Sabermetrics

5This unrealistic assumption can be overcome by using a more complicated model which uses different transition
matrices for each batter. Nevertheless, the model presented here can lead to useful information about the team. Later
in the section, the model will be used to evaluate individual players.
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Bases Occupied Outs| State Left on Base| Outs | State
None 0 0:0 0 3 0:3
First 0 1:0 1 3 1:3
Second 0 2:0 2 3 2:3
Third 0 3:0 3 3 3:3
First and Second 0 12:0
First and Third 0 13:0
Second and Third 0 23:.0
First, Second, and Third 0 123:0
None 1 0:1
First 1 1:1
Second 1 2:1
Third 1 3:1
First and Second 1 12:1
First and Third 1 13:1
Second and Third 1 23:1
First, Second, and Third 1 | 123:1
None 2 0:2
First 2 1:2
Second 2 2:2
Third 2 3:2
First and Second 2 12:2
First and Third 2 13:2
Second and Third 2 23:2
First, Second, and Third 2 123:2

Table 10.1: Thes8 States of a Baseball Markov Chain

base without hitting the ball), a hit batsman (a pitched ball hits the batter, and the batter advances
to first base), and an “out.” Thus, the model allows no double or triple plays, no sacrifices, and
no sacrifice flies. However, Markov chain models can be constructed that include some of these
excluded event$.

Constructing the Transition Matrix

The28 x 28 transition matrix for the Markov chain has the canonical form
LS
P16 0] ‘1)

where I, is the4 x 4 identity matrix (because the only recurrent states are the four absorbing
states, one of which is entered when the third out occiri a4 x 24 matrix, and@ is a24 x 24

60Other models use “play-by-play” data. The numbers of transitions between states are counted and scaled to
produce a transition matrix. For these models it does not ntadigthe runners advance, merely that they do.
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substochastic matrix. The columns gfand () correspond to the transient states, in the order
shown in Table 10.1. The entries fhdescribe the transitions from tlzd transient states (with

0, 1, or 2 outs) to the absorbing states (wilouts). Note that the only way to enter an absorbing
state is to come from a state witlouts. Letp, denote the probability that the batter makes an out.
ThenS may be written in block form, with threé x 8 blocks, as

02 12 22 32 122 132 232 1232
po 0 0 0 O 0 0 0 |os3
0 Po Po DPo 0 0 0 0 13
0 0O 0 O po po Dpo 0 |23
0 0O 0 0 O 0 0 po | 33

S=[0 O X ], where X = (2)

The matrixX describes the transitions from the transient states 2uvithts to the absorbing states
with 3 outs. (For example, columris 3, and4 of X list the probabilities that the batter makes
the third out when one runner is on one of the three bases. The substochasticGniaaisxthe
following block form, with8 x 8 blocks,

2
0
0 3)
A

N » O

The labels on the rows and columns(@ftepresent the number of outs. The four zero blockg in
reflect the facts that the number of outs cannot go ftaim0, from 2 to 0 or 1, or from0 directly

to 2 in one step. The matrid describes how the various base configurations change when the
number of outs does not change.

The entries inA and B depend on how the batter’s action at the plate affects any runners that
may already be on base. The Markov chain model presented here makes the assumptions shown
in Table 10.2. The exercises consider some alternate assumptions.

The entries in th& x 8 matricesA and B are constructed from the probabilities of the six
batting events in Table 10.2. Denote these probabilitiegbyp:, p2, p3, pr, andpo, respectively.

The notatiorpy, was introduced earlier during the construction of the mattix

The 8 x 8 matrix B involves the change of state when the number of outs increases. In this

case, the configuration of runners on the bases does not change (see Table 10.2). So

B:pol

where | is thes x 8 identity matrix’

The matrix A concerns the situations in which the batter does not make an out and either
succeeds in reaching one of the bases or hits a home run. The constructida discussed in
Example 1 below and in the exercises. The labels on the rows and columnsoofespond to the
states in Table 10.2. Hefeis the fixed number of outs: eithér1 or 2.

A batter can make an out in three ways — by striking out, by hitting a fly ball that is caught, or by hitting a ground
ball that is thrown to first base before the batter arrives. When the second or third case occurs, a runner on a base
sometimes can advance one base, but may also make an out and be removed from the bases. Table 10.2 excludes these
possibilities. However, see Exercise xx.
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Batting Event Outcome

Walk or Hit Batsman| The batter advances to first base.

A runner on first base advances to second base.
A runner on second base advances to third base only if|first
base was also occupied.
A runner on third base scores only if first base and segond
base were also occupied.

Single The batter advances to first base.

A runner on first base advances to second base.
A runner on third base scores.

A runner on second advances to third base half of the t
and scores half of the time.

Double The batter advances to second base.

A runner on first base advances to third base.
A runner on second base scores.

A runner on third base scores.

Triple The batter advances to third base.

A runner on first base scores.

A runner on second base scores.

A runner on third base scores.

Home Run The batter scores.

A runner on first base scores.

A runner on second base scores.

A runner on third base scores.

Out No runners advance.

The number of outs increases by one.

me

Table 10.2: Assumptions about Advancing Runners

0:k 1:k 2:k 3k 12:k 13:k 23:k 123:k
bH bH P PH PH PH PH PH Ok
Pw + P1 0 Op1 Pr 0 0 .5; 0 1k
D2 0 P2 Do 0 0 Do 0 2:k
A — b3 b3 ps P3 D3 b3 D3 D3 3k
0 pw+pt pw O Op1 pr 0 Op1 12k
0 0 Op1 Pw 0 0 .5y 0 13k
0 P2 0 0 P2 p2 0 P2 23k
| 0 0 0 0 pw+.9071 pw pPw  Pw + .5p1# 123:k

The analysis in Example 1 below requires two facts from probability theory. If an event can
occur in two mutually exclusive ways, with probabilitigsandp,, then the probability of the event
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is p1 + p2. The probability that two independent events both occur is the product of the separate
probabilities for each event.

EXAMPLE 1
a. Justify the transition probabilities for the initial state “no bases occupied.”

b. Justify the transition probabilities for the initial state “second base occupied.”

Solution a. For the first column ofA, either the batter advances to one of the bases or hits a
home run. So the probability that the bases remain unoccupiggd.isThe batter advances to

first base when the batter either walks (or is hit by a pitch), or hits a single. Since the desired
outcome can be reached in two different ways, the probability of success is the sum of the two
probabilities, namelypy, + p;. The probabilities of the batter advancing to second base or third
base are, respectively; andps. All other outcomes are impossible, because there can be at most
one runner on base after one batter when the starting state has no runners on base.

b. This concerns the third column of. The initial state is 2:k (a runner on second base, k outs).
For entry(1, 3) of A, the probability of a transition “to state 0:k” is required. Suppose that only
second base is occupied and the batter does not make an out. Only a home run will empty the
bases, so thél, 3)-entry ispy.

Entry (2,3): (“to state 1:k”) To leave a player only on first base, the batter must get to first
base and the player on second base must reach home plate succ&sEfolty. Table 10.2, the
probability of reaching home plate successfully from second bage iNow, assume that these
two events are independent, because only the actions of the batter (and Table 10.2) influence the
outcome. In this case, the probability of both events happening at the same time is the product of
these two probabilities, so th{e, 3)-entry is.5p;.

Entry (3, 3): (“to state 2:k”) To leave only one player on second base, the batter must reach sec-
ond base (a “double”) and the runner on second base must score. The second condition, however,
is automatically satisfied because of the assumption in Table 10.2. So the probability of success in
this case ig,. This is the(3, 3)-entry.

Entry (4,3): (“to state 3:k”) An argument similar to that for thg, 3)-entry gives that the
(4, 3)-entry isps.

Entry (5, 3): (“to state 12:k”) To leave players on first base and second base, the batter must
get to first base and the player on second base must remain there. However, from Table 10.2, if the
batter hits a single, the runner on second base will at least get to third base. So, the only way for
the desired outcome to occur is for the batter to get a walk or be hit by a pitchl5Theentry is
thuspyy .

Entry (6,3): (“to state 13:k”) This concerns the batter getting to first base and the runner
on second base advancing to third base. That can happen only if the batter hits a single, with
probability p;, and the runner on second base stops at third base, which happens with probability
.5 (by Table 10.2). Since both events are required6h8)-entry is the productpl.

8The only other way to make the player on second “disappear” would be for the player to be tagged “out”, but the
model does not permit outs for runners on the bases.
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Entry (7,3): (“to state 23:k”) To leave players on second base and third base, the batter must
hit a double and the runner on second base must advance only to base 3. Table 10.2 rules this out
— when the batter hits a double, the runner on second base scores. Tusikentry is zero.

Entry (8,3): The starting state has just one runner on base. The next state cannot have three
runners on base, so tlig, 3)-entry is zero. |

EXAMPLE 2 Batting statistics are often displayed as in Table 10.3. Use the data from Table 10.3
to obtain the transition probabilities for the 2002 Atlanta Braves.

Walks | Hit Batsmen| Singles| Doubles| Triples | Home Runs| Outs
558 54 959 280 25 164 4067

Table 10.3: Atlanta Braves Batting Statistics — 2002 Season

Solution The sum of the entries in Table 10.36807. This is the total number of Atlanta Braves
players who came to bat during the 2002 baseball season. From the first two columns, there are
612 walks or hit batsmen. Spy, = 612/6107 = .1002. Of the 6107 times a player came to bat, a
player hit a single 959 times, $0 = 959/6107 = .1570. Similar calculations providg, = .0458,

p3 = .0041, pg = .0269, andpo, = .660. These values are placed in the matrices shown above to
produce the transition matrix for the Markov chdin. [ |

Applying the Model

Now that the data for the stochastic matrix is available, Theorems 5 and 6 from Section 10.5
can provide information about how many earned runs to expect from the Atlanta Braves during a
typical game. The goal is to calculate how many earned runs the Braves will score on average in
each half-inning. First, observe that since three batters must make an out to finish one half-inning,
the number of runs scored in that half-inning is given by

[#0f rung = [#of batter$ — [#of runners left on bage- 3 4)

If Risthe number of runs scored in the half-innidg)is the number of batters, ardds the number
left on base, Equation (4) becomes
R=B-L-3 (5)

The quantity of interest i&'| R], the expected number of earned runs scored. Properties of expected
value give that
E[R| = E[B]— E[L] -3 (6)

Each batter moves the Markov chain ahead one step. So, the expected number of batters in a half-
inning £[B] is the expected number of steps to absorption (at the third out) when the chain begins

9The 28 x 28 transition matrix is available atww.laylinalgebra.com
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at the initial state “0 bases occupied, 0 outs”. This initial state corresponds to the fifth column of
the transition matrix
SEx]

0 Q

In baseball terms, Theorem 5 shows that:

The expected number of players that bat in one half-inning is
the sum of the entries in columnof the fundamental matri
M=(1-Q)"

X

Thus E[B] may be computed. The other quantity needed in (6) abovg i, the expected
number of batters left on base in a typical half-inning. This is given by the following sum:

E[L]=0-P(L=0)+1-P(L=1)+2-P(L=2)+3-P(L=3) 7)

Theorem 6 can provide this information because the recurrent classes for the chain are just the four
absorbing states (at the end of the half-inning). The probabilities needed in (7) are the probabilities
of absorption into the four final states of the half-inning given that the initial state of the system is
“0 bases occupied, 0 outs”. So the desired probabilities are in colunhthe matrixS M, where

M is the fundamental matrix of the chain afd= [ O 0 X ] as in (2). The probabilities can

be used to calculate[L] using (7), and thus to find'[R].

EXAMPLE 3 When the Atlanta Braves data from Example 2 is used to construct the transition
matrix (not shown here), it turns out that the sum of the first column of the fundamental mh&atrix
is 4.5048, and the first column of the matriX)/ is

3520
3309
2365
.0805

Compute the number of earned runs the Braves can expect to score per inning based on their
performance in 2002. How many earned runs does the model predict for the entire season, if the
Braves playl443 2/3 innings, as they did in 20027

Solution The first column ofS M shows that, for example, the probability that the Braves left no
runners on base i8520. The expected number of runners left on base is

E[L] = 0(.3520) 4 1(.3309) + 2(.2365) + 3(.0805) = 1.0454

The expected number of batters i8B] = 4.5048, the sum of the first column af#/. From
equation (6), the expected number of earned 3] is

E[R] = E[B] — E[L] — 3 = 4.5048 — 1.0454 — 3 = .4594
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The Markov chain model predicts that the Braves should aver&ge earned runs per inning. In
1443 2/3 innings, the total number of earned runs expected is

4594 x 1443.67 = 663.22

The actual number of earned runs for the Braves in 2002686sso the model’s error i87.22
runs, or about.3%. [ ]

Mathematical models are used by some major league teams to compare the offensive profiles
of single players. To analyze a player using the Markov chain model, use the player’s batting
statistics instead of a team’s statistics. Compute the expected number of earned runs that a team of
such players would score in an inning. This number is generally multiplied by 9 to give what has
been termed an “offensive earned run average.”

EXAMPLE 4 Table 10.4 shows the career batting statistics for Jose Oquendo, who played for the
New York Mets and St. Louis Cardinals in the 1980’s and 1990’s. Compute his offensive earned
run average.

Walks | Hit Batsmen| Singles| Doubles| Triples | Home Runs| Outs
448 5 679 104 24 14 2381

Table 10.4: Jose Oquendo Batting Statistics

Solution Construct the transition matrix from this data as described in Example 2, and then com-
pute M andS M. The sum of the first column ad¥/ is 4.6052, so a team entirely composed of Jose
Oquendos would come to bat an average.6652 times per inning. That isiZ[B] = 4.6052. The

first column ofSM is
.2844

3161
2725
1270

so the expected number of runners left on base is
E[L] = 0(.2844) + 1(.3161) + 2(.2725) + 3(.1270) = 1.2421
From equation (6), the expected number of earned runs is
E[R] = E[B] — E[L] — 3 = 4.6052 — 1.2421 — 3 = .3631

The offensive earned run average for Jose Oquendi®dd x 9 = 3.2679. This compares to an
offensive earned run average of abaQtfor teams composed of the greatest hitters in baseball
history. See the Exercises. [ |

Practice Problems
1. Let A be the matrix just before Example 1. Explain why en3y6) is zero.
2. Explain why entry(6, 3) of Ais .5p;.
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10.6 Exercises

In Exercises 1-6, justify the transition probabili- 11. Batting statistics for three of the greatest
ties for the given initial states. See Example 1.

1.
2.

o 0~ W

10.

first base occupied

third base occupied

12.
first and second bases occupied

first and third bases occupied
second and third bases occupied
first, second, and third bases occupied

Major League batting statistics for the 13
2006 season are shown in Table 10.5. Com-
pute the transition probabilities for this data
as was done in Example 2, and find the
matrix A for this data.

Find the complete transition matrix for the
model using the Major League data in Ta-
ble 10.5.

It can be shown that the sum of the first
column of M for the 2006 Major League
data is4.53933, and that the first column
of SM for the 2006 Major League data is

Markov Chains and Baseball Statistics

85

batters in Major League history are shown
in Table 10.6. Compute the transition prob-
abilities for this data for each player.

The sums of the first columns of for

the player data in Table 10.6 and the first
columns ofSM for the player data in Ta-
ble 10.6 is given in Table 10.7. Find and
compare the offensive earned run averages
of these players. Which batter does the
model say was the best of these three?

Consider the second columns of the matri-
cesM andSM, which correspond to the
“Runner on first, none out” state.

a. What information does the sum of
the second column af/ give?

b. What value can you calculate using
the second column & M ?

c. What would the calculation of ex-
pected runs scored using the data
from the second columns mean?

Exercises 14-18 show how the model for run

34973
33414
23820
07793

Find the expected number of earned rung4.
perinning in a Major League game in 2006.

The number of innings batted in the Major
Leagues in the 2006 season was 43,257,
and the number of earned runs scored was
21,722. What s the total number of earned
runs scored for the season predicted by the
model, and how does it compare with the
actual number of earned runs scored?

production in the text can be used to determine
baseball strategy. Suppose that you are manag-
ing a baseball team and have access to the ma-
tricesM andS M for your team.

The sum of the column df/ correspond-
ing to the “Runner on first, none out” state
is 4.53933, and the column o5 M cor-
responding to the “Runner on first, none
out” state is

.06107
35881
41638
16374
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15.

16.

17.
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Your team now has a runner on first and18. In the previous Exercise, lgebe the prob-

no outs. How many earned runs do you
expect your team to score this inning?

The sum of the column df/ correspond-
ing to the “Runner on second, none out”
state is4.53933, and the column oM
corresponding to the “Runner on second,
none out” state is

06107
47084
34791
12018

How many earned runs do you expect your
team to score if there is a runner on second
and no outs?

The sum of the column d# correspond-
ing to the “Bases empty, one out” state
is 3.02622, and the column o5 M cor-
responding to the “Bases empty, one out”

state is
48513

31279
.16060
04148

How many earned runs do you expect your
team to score if the bases are empty and
one out?

Suppose that a runner for your team is on
first base with no outs. You have to de-
cide whether to tell the baserunner to at-
tempt to steal second base. If the steal is
successful, there will be a runner on sec-
ond base and no outs. If the runner is
caught stealing, the bases will be empty
and there will be one out. Suppose fur-
ther that the baserunner has a probability
of p = .8 of stealing successfully. Does
attempting a steal in this circumstance in-
crease or decrease the number of earned
runs your team will score this innning?

ability that the baserunner steals second
successfully. For which values pfwould
you as manager call for an attempted steal?



Table 10.5: Major League Batting Statistics — 2006 Season

10.6 Markov Chains and Baseball Statistics
Walks | Hit Batsmen| Singles| Doubles| Triples | Home Runs| Outs
15847 1817 29600| 9135 952 5386 122268

’ Name \ Walks\ Hit Batsmen\ Singles\ Doubles\ Triples\ Home Runs\ Outs ‘
Barry Bondd | 2426 103 1443 587 77 734 6666
Babe Ruth 2062 43 1517 506 136 714 5526
Ted Williams | 2021 39 1537 525 71 521 5052

Table 10.6: Batting Statistics for Leading Batters

| Sum of First Column of\/ \ First Column ofS M \

Barry Bonds

5.41674

283348
294212
258310
164131

Babe

Ruth

5.70250

.268150
.295908
268120
167822

Ted Williams

5.79929

233655
276714
.290207
199425

10Barry Bonds’ statistics are complete through the 2006 season.

Table 10.7: Model Information for Batting Statistics

87
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Appendix 1: Proof of Theorem 1

Here is a restatement of Theorem 1, which will be proven in this appendix:

THEOREM 1 If Pis aregulam xm transition matrix withm > 2, then the following statements
are all true.

(a) There is a stochastic matiiksuch thatlim P" = II.

n—oo

(b) Each column ofl is the same probability vecter.
(c) For any initial probability vectok,y, lim P"xy = q.

(d) The vectorq is the unique probability vector which is an eigenvectorfoassociated with
the eigenvalué.

(e) All eigenvalues\ of P other thanl have|)\| < 1.

The proof of Theorem 1 requires creating an order relation for vectors, and begins with the
consideration of matrices whose entries are strictly positive or non-negative.

DEFINITION If x andy are inR™, then

ax>yifx, >y fori=1,2,...,m.

b. x<yifx; <y, fori=1,2,...,m.

c.x>ylifx; >y fori=1,2,...,m.

d x<yifzx; <y fort=1,2,...,m.
DEFINITION Anm x n matrix A is positive if all its entries are positive. Am x n matrix A is
non-negativeif it has no negative entries.

Notice that all stochastic matrices are non-negative. Exercise 27 in Section 10.2 shows that
multiplication of vectors by a positive matrix preserves order.

If A is a positive matrix andk >y, then Ax > Ay. (2)
If A is a positive matrix andk >y, then Ax > Ay. (2)

In addition, multiplication by non-negative matrices “almost” preserves order in the following
sense.

If A is a non-negative matrix and >y, then Ax > Ay. (3)

The first step toward proving Theorem 1 is a lemma which shows how the transpose of a
stochastic matrix acts on a vector.
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LEMMA 1 Let P be anm x m stochastic matrix, and letbe the smallest entry iff. Leta be in
R™; let M, be the largest entry ia and letm, be the smallest entry ia. Likewise letb = PTa,
M, be the largest entry ib andm,, be the smallest entry ih. Thenm, < m;, < M, < M, and

My —my, < (1 —2¢)(M, —my)

Proof Create a new vectarfrom a by replacing every entry af by M, except for one occurrence
of m,. Suppose that this single, entry lies in thei** row of c. Thenc > a. If the columns of
PT are labeledy,, qs, . . .,q,,, We have

m

PTC = chqk

k=1

= > Maq — Magi + maq;
k=1

SinceP is a stochastic matrix, each row Bf sumsto 1. If we let1 be the vector ifR™ consisting

of all 1’s, thenz M,q. = M, Z aqx = M,u, and
k=1 k=1

Z Man - Maqi +mqq; = Mau - (Ma - ma)Qi
k=1

Since each entry i (and thusP?) is greater than or equal t9q; > eu, and
M — (M, —my)q; < Myu— (M, —mg)u= (M, — e(M, —m,))u
So
PTe < (M, — e(M, —m,))u
But sincea > ¢ and P” is positive, Equation 2 gives
b= Pla< Plc < (M, — (M, —m,))u
Thus each entry ib is less than or equal td/, — ¢(M, — m,,). In particular,
M, < M, —e(M, —m,) 4)

SoM, < M,. If we now examine the vectora, we find that the largest entry ia is —m,, the
smallest is- M,, and similar results hold forb = PT(—a). Applying Equation 4 to this situation
gives

—my < —my, — €(—mg, + M,) (5)

somy, > m,. Adding Equations 4 and 5 together gives

My—my < M, —mg—2¢(M, —m,)

— (1-26)(M, —m,)
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Proof of Theorem 1First assume that the transition matfxis a positive stochastic matrix. As
above, lete > 0 be the smallest entry ii?. Consider the vectag; wherel < j < m. Let M,
andm,, be the largest and smallest entries in the veckdr)"e;. Since(P")"e; = PT(PT)" e,
Theorem 2 gives

M, —m, < (1 —2€)(M,_1 —my,_1) (6)

Hence by induction it may be shown that
M, —m, < (1 —2¢)"(My—mg) = (1 —2¢)"

Sincem > 2,0 < e < 1/2. Thus0 < 1 —2¢ < 1, and lim M,, —m,, = 0. Therefore the entries

n—oo

in the vector{ P*)"e; approach the same value, sgyasn increases. Notice that since the entries

in PT are between and1, the entries i P7)"e; must also be betweehand1, and sog; must

also lie betweer and1. Now (PT)"e; is thej'" column of (PT)", which is the;j™" row of Pm.
ThereforeP™ approaches a matrix all of whose rows are constant vectors, which is another way of
saying the columns aP™ approach the same vecigr

@1 g - q1
q q ) q
im P"=Tl=[q q --- q]=1| . ~ .

So Theorem 1(a) is true I is a positive matrix. Suppose nakvis regular but not positive; since
P is regular, there is a powdt* of P that is positive. We need to show thktn M, —m,, = 0;

n—0o0

the remainder of the proof follows exactly as above. No matter the valug thiere is always a
multiple of k, sayrk, with rk < n < r(k + 1). By the proof abovelim M, — m,, = 0. But

r—00

Equation 6 applies equally well to non-negative matrices) s0 M,, — m,, < M, — m,;, and
lim M, —m, = 0, proving part (a) of Theorem 1.

To prove part (b), it suffices to show thatis a probability vector. To see this note that since
(PT)™ has row sums equal tofor anyn, (PT)"u = u. Since lim (P*)" = 117, it must be the

case thafI”u = u. Thus the rows ofI”, and so also the columns Bf must sum td andq is a
probability vector.

The proof of part (c) follows from the definition of matrix multiplication and the fact tHat
approachesl by part (a). Letxy be any probability vector. Then

lim P'xg = lim P"(z1e1+ ...+ Tnen)

n—o0o n—oo

= x1(lim P"e) + ...+ x,(lim Pey)

n—oo

= xi(lley) + ...+ zp(lley,) =219+ ... + 29
= (m1+...+zn)d=q
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sincex, is a probability vector.

To show part (d), we calculatBIl. First note thatlim P"™' = II. But sinceP™*! = PP",

n—oo

and lim P" = TI, lim P = PII. ThusPII = II, and any column of this matrix equation

n—oo

givesPq = q. Thu3q is a probability vector that is also an eigenvector foassociated with the
eigenvalue\ = 1. To show that this vector is unique, tetbe any eigenvector foP associated
with the eigenvalue = 1, which is also a probability vector. Théfv = v, andP"v = v for any

n. But by part (c), hm P"v = q, which can only happen ¥ = q. Thusq is unique. Note that

this part of the proof has also shown that the eigenspace associated with the eigénvalues
dimensionl (Exercise 29).

To prove part (e), let # 1 be an eigenvalue aP, and letw be an associated elgenvector.

Assume tha’E wy, # 0. Without loss of generality, we may additionally assume bEltwk =1

(as Exercise 30 proves). Thétw = Aw, so P"w = \"w for anyn. By part (c), lim P"w =q.
Thus
lim \"w =q (7)

n—oo

Notice that Equation 6 can be true only\f= 1. If |[\| > 1 and\ # 1, the left side of Equation
6 diverges; if|]\| < 1, the left side of Equation 7 must convergetc# q. This contradicts our

assumption, so it must be the case thatw, = 0. By part (a), lim P"w = IIw. Since
k=1

HW P |: q q DY q ] W
= wiq+ weq+ -+ wpq
= (w +wy+ -+ wn)qg=0q=0
then lim P"w = 0. SinceP"w = \"w andw # 0, hm A" =0, and|\| < 1. |

n—~o0
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Appendix 2: Probability

The purpose of this appendix is to provide some information from probability theory that can be
used to develop a formal definition of a Markov chain and to prove some results from Chapter 10.

Probability

DEFINITION For each evenk of the sample spac€, theprobability of £ (denotedP(F)) is a
number that has the following three properties:

a)0<P(E)<1
b) P(S)=1
c) For any sequence of mutually exclusive eveitsEs, . . .
P <G En> = N P(E,)
n=1 n=1

Properties of Probability

1. P(§) =0

2. P(E°)=1— P(F)

3. P(EUF)=P(E)+ P(F)—- P(ENF)

4. If E andF are mutually exclusive event®(E U F') = P(E) + P(F)

DEFINITION Theconditional probability of E givenF' (denotedP(E|F) is the probability that
E occurs given that’ has occurred is

P(ENF)

P(E|F) = 50

Law of Total Probability Let Fi, Fy, ... be a sequence of mutually exclusive events for which
UF.=s
n=1

Then for any evenkE in the sample space,

P(E) =Y P(E|F,)P(F,)
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Random Variables and Expectation

DEFINITION A random variable is a real-valued function defined on the sample shakelis-
crete random variable is a random variable that takes on at most a countable number of possible
values.

Only discrete random variables will be considered in this text; random variables that take on an
uncountably infinite set of values are considered in advanced courses in probability theory. In
Section 10.3 the expected value of a discrete random variable was defined. The expected value of a
discrete random variable may also be defined using a function call@ddbability mass function

DEFINITION Theprobability mass function p of a discrete random variabl€ is the real-valued
function defined by(a) = P(X = a).

DEFINITION Theexpected valueof a discrete random variable is
=> ap(x)

where the sum is taken over allwith p(z) > 0.

Notice that if the random variable takes on the valugs:, . . . with positive probability, then the
expected value of the random variable is

pr =0 P(X =21) + 22 P(X =29) + ...

which matches the definition of expected value given in Section 10.3. Using the definition above
it is straightforward to show that expected value has the following properties.

Properties of Expected ValueFor any real constarit and any discrete random variabl&sand
Y,

1. E[kX] = kE[X]
2. B[ X +kl=E[X]|+k
3. E[X+Y]|=FE[X]|+E[Y]

4. If f is a real-valued function, thefi(X) is a discrete random variable, aig/f(X)] =
>, f(z)p(z), where the sum is taken over allwith p(z) > 0.

Just as probabilities can be affected by whether an event occurs, so can expected values.

DEFINITION Let X be a discrete random variable and #¢be an event in the sample spate
Then theconditional expected valueof X given F' is

E[X|F] = ZxP = z|F)



94 CHAPTER 10 Finite-State Markov Chains

where the sum is taken over allwith p(z) > 0.

There is a law of total probability for expected value that will be used to prove a result from Chapter
10. Its statement and its proof follow.

Law of Total Probability for Expected Value Let F}, F5, ... be a sequence of mutually exclusive
events for which .

Then for any discrete random variab"(e

= ZE[X|FH]P(FH)

Proof Let F, F5, ... be a sequence of mutually exclusive events for whigh , F,, = S, and let
X be a discrete random variable. Then using the definition of expected value and the law of total
probability,

E[X] = ) ap(x)
= ZxP(X:

- Z ZP = z|F,)P(F,)
= ZP(Fn)ZxP(X:x|Fn)
= ZE[X’FH]P(F,L)

Markov chains

In Section 4.9, a Markov chain was defined as sequence of vectors. In order to understand Markov
chains from a probabilistic standpoint, it is better to define a Markov chain as a sequence of ran-
dom variables. To begin, consider any collection of random variables. This is called a stochastic
process.

DEFINITION A stochastic procesg X,, : n € T'} is a collection of random variables.

NOTES:

1. The sefl’ is called thandex setfor the stochastic process. The only $ethat need be con-
sidered for this appendix 6 = {0, 1, 2, 3, ...}, so the stochastic process can be described as
the sequence of random variableX,, X;, X»,...}. WhenT = {0,1,2,3,...}, the index
is often identified with time and the stochastic process is called a discrete-time stochastic
process. The random variablg, is understood to be the stochastic process at time
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2. Itis assumed that the random variables in a stochastic process have a common range. This
range is called thetate spacdor the stochastic process. The state spaces in Chapter 10 are
all finite, so the random variable's,, are all discrete random variables. X, = ¢, we will
say that is thestate of the process at timk, or that the process is in statat time (or step)

k.

3. Notice that a stochastic process can be used to model movement between the states in the
state space. For some elemenin the sample spacg, the sequencéX,(w), X;(w),...}
will be a sequence of states in the state space — a sequence that will potentially be different
for each element irb. Usually the dependence on the sample space is ignored and the
stochastic process is treated as a sequence of states, and the process is said to move (or
transition) between those states as time proceeds.

4. Since a stochastic process is a sequence of random variables, the actual state that the process
occupies at any given time cannot be known. The goal therefore is to find the probability that
the process is in a particular state at a particular time. This amounts to finding the probability
mass function of each random variablg in the sequence that is the stochastic process.

5. When a discrete-time stochastic process and the state space is finite, the probability mass
function of each random variabl¥, can be expressed as a probability vectpr These
probability vectors were used to define a Markov chain in Section 4.9.

In order for a discrete-time stochastic procéss, X, Xs, ...} to be a Markov chain, the state of
the process at time + 1 can depend only on the state of the process at tiniEhis is in contrast
with a more general stochastic process, whose state abtooald depend on the entire history of
the process. In terms of conditional probability, this property is

P(Xp1 =i[Xo = jo, X1 = j1,..., Xn = j) = P(Xp1 = 1| Xy, = )

The probability on the right side of this equation is called the transition probability from state
statei. In general, this transition probability can change depending on thertiméis is not the

case for Markov chains considered in this chapter: the transition probabilities do not change with
time, so the transition probability from stat¢o state; is

A Markov chain with constant transition probabilities is calledime-homogeneousMarkov
chain. Its definition is thus

DEFINITION A time-homogeneouMarkov chain is a discrete-time stochastic process whose
transition probabilities satisfy

P(Xp1 =1i|Xo = jo, X1 = J1,...,. X = j} = P{Xoy1 = 1| X, = j} = py
for all timesn and for all states and.

Using this definition it is clear that, if the number of states is finite, then a transition matrix can be
constructed that has the properties assumed in Section 10.1.
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Proofs of Theorems
Mean Return Times

Theorem 3 in Section 10.3 connected the steady-state vector for a Markov chain with the mean
return time to a state of the chain. Here is a statement of this Theorem and a proof that relies on
the law of total probability for expected value.

THEOREM 3 Let X,,,n =1,2,...be anirreducible Markov chain with finite state spacd._et
n;; be the number of steps until the chain first visits stajiwen that the chain starts in stgteand

whereg; is the entry in the steady-state vectpcorresponding to state

Proof To find an expression far;, first produce an equation involvirtg; by considering the first
step of the chainX;. There are two possibilities: eithéf; = i or X; = k #i. If X; =4, then it
took exactly one step to visit statand

If X, = k # i then the chain will take one step to reach statnd then the expected number of
steps the chain will make to first visit statevill be E[n;;| = t;;. Thus

By the law of total probability for expected value

tij = Elng]
keS
= Elngl|X; =i]P(X1 =)+ Y E[n;| X, = |P(X; = k)
ki
= Lopij+ > (1+tw)psy
ki
= piy Tt Zpkj + Z tikDr;
ki ki

= 1+ Ztikpkj

ki
= 1+ Z tikPrj — LiiDij

keS

Let 7" be the matrix whoséi, j)-element ist;; and letD be the diagonal matrix whose diagonal
entries are;;. Then the final equality above may be written as
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If U is an appropriately sized matrix of ones, (1) can be written in matrix form as
T=U+TP—-DP=U+ (T - D)P 2
Multiplying each side of (2) by the steady-state veej@nd recalling thaPq = q gives

Tq=Uq+ (T — D)Pq=Uq+ (I'—D)q=Uq+ Tq— Dq

SO
Uq = Dq 3)
Consider the entries in each of the vectors in (3). Slriée a matrix of all ones,
11 --- 1 q1 Zzzl qk 1
11 --- 1 Q2 ZL qk 1
Ugq=| . . . . .| = . =1 .
11 -+ 1 Gn Y he Gk 1
sinceq is a probability vector. Likewise
tu 0 -+ 0 ¢ g
Dq = 0 t2'2 : 0 (]'2 _ t22'Q2

Equating corresponding entriesliiq and Dq givest;;q; = 1, or

Periodicity as a Class Property

In Section 10.4 it was stated that if two states belong to the same communication class then their
periods must be equal. A proof of this result follows.

THEOREM Leti andj be two states of a Markov chain that are in the same communication
class. Then the periods 6&nd; are equal.

Proof Suppose that andj are in the same communication class for the Markov chgjrthat
state: has period; and that statg has periodd;. To simplify the exposition of the proof, the
notation(a”);; will be used to refer to théi, j) entry in the matrixA”. Since: andj are in the
same communication class, there exist positive integeendn such that thep™);, > 0 and
(p")i; > 0. Letk be a positive integer such th@t*);; > 0. In fact, (p'*);; > 0 for all integers

[ > 1. Now (p"t+m). > (p™);;(p'*);;(p™); > 0 for all integersl > 1, since a loop from state

1 to state: in n + [k + m steps may be created in many ways, but one way is to proceed from
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statei to statej in n steps, then to loop from stageto statej [ times using a loop of steps
each time, and then to return to state m steps. Sincd; is the period of staté d; must divide
n + lk + m for all integersl > 1. Sod; dividesn + k + m andn + 2k + m, and so divides
(n+2k+m) — (n+ k+m) = k. Thusd; is a common divisor of the set of all time stepsuch
that (p*);; > 0. Sinced; is thegreatesttcommon divisor of the set of all time stepssuch that
(p*);; > 0, d; < d;. A similar argument shows thdf > d;, sod; = d;. R

The Fundamental Matrix

In Section 10.5, the number of visits; to a transient statethat a Markov chain makes starting

at the transient statewas studied. Specifically, the expected valile;;] was computed, and the
fundamental matrix was defined as the matrix whosg)-element isn;; = E[v;;]. The following
theorem restates Theorem 6 from Section 10.5 in an equivalent form and provides a proof that
relies on the law of total probability for expected value.

THEOREM 6 Let j and: be transient states of a Markov chain, {g¢tbe that portion of the
transition matrix which governs movement between transient statesy;Lbé the number of
visits that the chain will make to statgiven that the chain starts in stateand letm;; = Ev;;].
Then the matrix\/ whose(i, j)-element isn;; satisfies the equation

M= (1-Q)

Proof We produce an equation involving,; by conditioning on the first step of the chaif. We
consider two cases:# j and: = j. First assume that+# j and suppose that; = k. Then we
see that

Elvij| X1 = k] = Elvy] 4)

if 7 # j. Now assume that= j. Then the previous analysis is valid, but we must add one visit to
1 since the chain was at statat time0. Thus

We may combine equations (4) and (5) by introducing the following symbol, callertreecker
delta
5o 1 ifi=
Y0 ifi#£y
Notice thaty;; is the(z, j)-element in the identity matriX. We can write equations (4) and (5) as
E[’Uij’Xl = k] = 61’]’ + E[Ulk]
Thus by the law of total probability for expected value

mij = Elv]

= Y Elv;| X = KP(X; = k)
keS
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= Z(éij + Elva] ) P(Xy = k)

kesS
= 0y ZP(X1 =k)+ ZE[vik]P(Xl =k)
keS kesS
= 0+ Y _ Elvg]P(X; = k)
kesS

Now note that ifk is a recurrent state, thefiv;,] = 0. We thus only need to sum over transient
states of the chain:

ktransient
0ij + Z Mikqk;
ktransient
sincej andk are transient states axgis defined in the statement of the Theorem. We may write
the final equality above as
mi; = L+ (MQ)y
or in matrix form as
M=I+MQ (6)

We may rewrite (6) as
M-MQ=MI-Q)=1

so(I — Q) is invertible by the Invertible Matrix Theorem, aid = (I — Q)~'. B

Absorption Probabilities

In Section 10.5, the probability that the chain was absorbed into a particular absorbing state was
studied. The Markov chain was assumed to have only transient and absorbing ssedsansient

state and is an absorbing state of the chain. The probabiljtythat the chain is absorbed at state

given that the chain starts at state/as calculated, and it was shown that the matrixhose(:, j)-
element isq;; satisfiesA = SM, where) is the fundamental matrix angl is that portion of the
transition matrix that governs movement from transient states to absorbing states. The following
theorem restates this result, which was Theorem 7 in Section 10.5. An alternative proof of this
result is given that relies on the law of total probability.

THEOREM 7 Consider a Markov chain with finite state space whose states are either absorbing
or transient. Suppose thabe a transient state and thas an absorbing state of the chain, and let

a;; be the probability that chain is absorbed at stagen that the chain starts in stgtelLet A be

the matrix whoséi, j)-element isy;;. ThenA = SM, whereS andM are defined above.

Proof We again consider on the first step of the ch&in Let X; = k. There are three possibilities:
k could be a transient staté,could bei, or k could be an absorbing state unequat.tdf & is
transient, then

P{absorption at| X; = k} = a;
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If & =1, then
P{absorption at| X; =k} =1

while if £ is absorbing state other than
P{absorption at| X; =k} =0
By the law of total probability,

a;; = P{absorption at}
= ) P{absorption af| X; = k} P{X; = k}
k

= 1-P{X;=i}+ ) P{absorptionat|X; = k} P{X; = k}
k transient

= pijt Z @ik Pkj

k transient

Sincej is transient and is absorbingp;; = s;;. Since in the final suni andk are both transient,
Prj = qrj- Thus the final equality may be written as

ajj = Sij+ E @ik Gk;

k transient

= sij + (AQ)y

or in matrix form as
A=5S+ AQ

This equation may be solved fer find thatA = SM. R



