FINANCIAL FORMULAS
 MATH 151

- Simple Interest: $I=P r t$
- Future or Maturity Value for Simple Interest: $A=P(1+r t)$
- Present Value for Simple Interest: $P=\frac{A}{1+r t}$
- Discount on Simple Discount Note: $D=\operatorname{Prt}$ (r is discount rate)
- Future Value for Compound Interest: $A=P(1+i)^{n}=P\left(1+\frac{r}{m}\right)^{m t}$
- Present Value for Compound Interest: $P=\frac{A}{(1+i)^{n}}=A(1+i)^{-n}=A\left(1+\frac{r}{m}\right)^{-m t}$
- Effective Rate (Annual Percentage Yield) for Compound Interest: $r_{E}=\left(1+\frac{r}{m}\right)^{m}-1$
- Future Value of an Ordinary Annuity: $S=R\left[\frac{(1+i)^{n}-1}{i}\right]$
- Future Value of an Annuity Due: $S=R\left[\frac{(1+i)^{n+1}-1}{i}\right]-R$
- Present Value of an Ordinary Annuity: $P=R\left[\frac{1-(1+i)^{-n}}{i}\right]$
- Amortization Payment: $R=\frac{P}{\left[\frac{1-(1+i)^{-n}}{i}\right]}=\frac{P i}{1-(1+i)^{-n}}$

