
Chapter 15

Proofs in Linear Algebra

A topic you may very well have studied in geometry, calculus, or physics is vectors. You
might recall vectors both in the plane R2 = R × R and in 3-space R3 = R × R × R.
Often one thinks of a vector as a directed line segment from the origin to some other point.
Examples of these (both in the plane and in 3-space) are shown in Figure 15.1.
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Figure 15.1: Vectors in the plane and 3-space

The vector u in the plane (it is customary to print vectors in bold) shown in Fig-
ure 15.1(a) can be expressed as u = (4, 3); while the vector v in 3-space shown in Fig-
ure 15.1(b) can be expressed as v = (2, 3, 4). The vectors i = (1, 0) and j = (0, 1) in the
plane and i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) in 3-space will be of special interest to
us.

15.1 Properties of Vectors in 3-Space

One important feature of vectors is that they can be added (to produce another vector);
while another is that a vector can be multiplied by an element of some set, usually a
real number (again to produce another vector). In this context, these elements are called
scalars. Let’s focus on vectors in 3-space for the present. Let u = (a1, b1, c1) and v =
(a2, b2, c2), where ai, bi, ci (i = 1, 2) are real numbers. The sum of u and v is defined by

u+ v = (a1 + a2, b1 + b2, c1 + c2)
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and the scalar multiple of u by a scalar (real number) α is defined by

αu = (αa1, αb1, αc1).

From this definition, it follows that

u = (a1, b1, c1) = (a1, 0, 0) + (0, b1, 0) + (0, 0, c1)
= a1(1, 0, 0) + b1(0, 1, 0) + c1(0, 0, 1) = a1i+ b1j+ c1k.

That is, it is possible to express a vector u in 3-space in terms of (and to be called a
linear combination of) the vectors i, j, and k in 3-space. Listed below are eight simple,
yet fundamental, properties that follow from these definitions of vector addition and scalar
multiplication in R3:

1. u+ v = v + u for all u,v ∈ R3.

2. (u+ v) +w = u+ (v +w) for all u,v,w ∈ R3.

3. For z = (0, 0, 0), u+ z = u for all u ∈ R3.

4. For each u ∈ R3, there exists a vector in R3 which we denote by −u such that
u+ (−u) = z = (0, 0, 0).

5. α(u+ v) = αu+ αv for all α ∈ R and all u,v ∈ R3.

6. (α+ β)u = αu+ βu for all α, β ∈ R and all u ∈ R3.

7. (αβ)u = α(βu) for all α, β ∈ R and all u ∈ R3.

8. 1u = u for all u ∈ R3.

These properties are rather straightforward to verify, as we illustrate with properties 1,
4, and 6. To verify property 1, observe that

u+ v = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)
= (b1 + a1, b2 + a2, b3 + a3) = v + u.

Here, we used only the definition of addition of vectors in R3 and the fact that addition of
real numbers is commutative.

To verify property 4, we begin with a vector v = (b1, b2, b3) ∈ R3 and show that there
is some vector in R3, which we denote by −v, such that v + (−v) = z = (0, 0, 0). There is
an obvious choice for −v, however, namely (−b1,−b2,−b3). Observe that

v + (−b1,−b2,−b3) = (b1, b2, b3) + (−b1,−b2,−b3)
= (b1 + (−b1), b2 + (−b2), b3 + (−b3)) = (0, 0, 0).

Hence, −v = (−b1,−b2,−b3) has the desired property. We note also that, according to the
definition of scalar multiplication in R3,

(−1)v = ((−1)b1, (−1)b2, (−1)b3) = (−b1,−b2,−b3) = −v.

We will revisit this observation later.
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To establish property 6, observe that

(α+ β)u = (α+ β)(a1, b1, c1)
= ((α+ β)a1, (α+ β)b1, (α+ β)c1))
= (αa1 + βa1, αb1 + βb1, αc1 + βc1)
= (αa1, αb1, αc1) + (βa1, βb1, βc1)
= α(a1, b1, c1) + β(a1, b1, c1)
= αu+ βu.

Thus, showing that (α + β)u = αu + βu also depends only on some familiar properties
of addition and multiplication of real numbers. Vectors in the plane can be added and
multiplied by scalars in the expected manner and, in fact, satisfy properties 1-8 as well.

15.2 Vector Spaces

In addition to vectors in the plane and 3-space, there are other mathematical objects
that can be added and multiplied by scalars so that properties 1-8 are satisfied. Indeed,
these objects provide a generalization of vectors in the plane and 3-space. For this reason,
we will refer to these more abstract objects as vectors as well. The study of vectors is a
major topic in the area of mathematics called linear algebra.

A nonempty set V , every two elements of which can be added (that is, if u,v ∈ V , then
u + v is a unique vector of V ) and each element of which can be multiplied by any real
number (that is, if α ∈ R and v ∈ V , then αv is a unique element in V ) is called a vector
space (in fact, a vector space over R) if it satisfies the following eight properties:

1. u+ v = v + u for all u,v ∈ V . (Commutative Property)

2. (u+ v) +w = u+ (v +w) for all u,v,w ∈ V . (Associative Property)

3. There exists an element z ∈ V such that v + z = v for all v ∈ V .

4. For each v ∈ V , there exists an element −v ∈ V such that v + (−v) = z.

5. α(u+ v) = αu+ αv for all α ∈ R and all u,v ∈ V .

6. (α+ β)v = αv + βv for all α, β ∈ R and all v ∈ V .

7. (αβ)v = α(βv) for α, β ∈ R and all v ∈ V .

8. 1v = v for all v ∈ V .

The elements of V are called vectors and the real numbers in this definition are called
scalars. Hence if u,v ∈ V and α, β ∈ R, then both αu and βv belong to V . Therefore,
αu+βv ∈ V . The vector αu+βv is called a linear combination of u and v. We can also
discuss linear combinations of more than two vectors. Let u, v, w be three vectors in V
and let α, β, γ be three scalars (real numbers). Therefore, αu, βv, and γw are three vectors
in V and αu+ βv + γw is a linear combination of u, v, and w. We’ve now encountered a
familiar situation in mathematics. Since addition in V is only defined for two vectors, what
exactly is meant by αu+βv+γw? There are two obvious interpretations of αu+βv+γw,
namely, (αu+ βv) + γw (where αu and βv are added first, producing the vector αu+ βv,
which is then added to γw) and αu+(βv+ γw). However, property 2 (the associative law
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of addition of vectors) guarantees that both interpretations give us the same vector and
consequently, there is nothing ambiguous about writing αu+βv+γw without parentheses.
In fact, if v1,v2, . . . ,vn ∈ V and α1, α2, . . . , αn ∈ R, then α1v1 + α2v2 + . . . + αnvn is a
linear combination of the vectors v1,v2, . . . ,vn.

The element z ∈ V described in property 3 (and used in property 4) is called a zero
vector and an element −v in property 4 is called a negative of v. By the commutative
property, we also know that z+ v = v and (−v) + v = z for every vector v ∈ V . Since V
satisfies properties 1–4, the set V forms an abelian group under addition (see Chapter 13).

Although we have only defined a vector space over the set R of real numbers (and this
is all we will deal with), it is not always required that the scalars be real numbers. Indeed,
there are certain situations when complex numbers are not only suitable scalars but in fact,
the preferred scalars. Other possibilities exist as well.

Of course, we have seen two examples of vector spaces, namely,R2 andR3 (with addition
and scalar multiplication defined above). More generally, n-space Rn = R × R × . . . × R
(n factors) is a vector space where addition of two vectors u = (a1, a2, . . . , an) and v =
(b1, b2, . . . , bn) is defined by

u+ v = (a1 + b1, a2 + b2, . . . , an + bn)

and scalar multiplication αu, where α ∈ R, is defined by

αu = (αa1, αa2, . . . , αan).

We now describe two vector spaces of a very different nature. Recall that FR is the set
of all functions from R to R, that is,

FR = {f : f : R → R}.

Therefore, the well-known trigonometric function f1 : R → R defined by f1(x) = sinx for
all x ∈ R belongs to FR. The function f2 : R → R defined by f2(x) = 3x+ x/(x2 + 1) for
all x ∈ R also belongs to FR.

For f, g ∈ FR and a scalar (real number) α, addition and scalar multiplication are
defined by

(f + g)(x) = f(x) + g(x) for all x ∈ R,
(αf)(x) = α(f(x)) for all x ∈ R.

For the functions f1 and f2 defined above,

(f1 + f2)(x) = sinx+ 3x+
x

x2 + 1
and (5f2)(x) = 15x+

5x
x2 + 1

.

Under these definitions of addition and scalar multiplication, FR is a vector space, the
verification of which depends only on ordinary addition and multiplication of real numbers.
As an illustration, we verify that FR satisfies properties 2-5 of a vector space.

First we verify property 2. Let f, g, h ∈ FR. Then

((f + g) + h)(x) = (f + g)(x) + h(x) = (f(x) + g(x)) + h(x)
= f(x) + (g(x) + h(x)) = f(x) + (g + h)(x)
= (f + (g + h))(x)
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for all x ∈ R. Therefore, (f + g) + h = f + (g + h).
Second we show that FR satisfies property 3 of a vector space. Define the (constant)

function f0 : R → R by f0(x) = 0 for all x ∈ R. We show that f0 is a zero vector for FR.
For f ∈ FR,

(f + f0)(x) = f(x) + f0(x) = f(x) + 0 = f(x)

for all x ∈ R. Therefore, f + f0 = f . The function f0 is called the zero function in FR.
Next we show that FR satisfies property 4 of a vector space. For each function f ∈ FR,

define the function −f : R → R by (−f)(x) = −(f(x)) for all x ∈ R. Since

(f + (−f))(x) = f(x) + (−f)(x) = f(x) + (−f(x)) = 0 = f0(x)

for all x ∈ R, it follows that f + (−f) = f0 and so −f is a negative of f .
Finally, we show that FR satisfies property 5 of a vector space. Let f, g ∈ FR and

α ∈ R. Then, for each x ∈ R,

(α(f + g))(x) = α ((f + g)(x)) = α (f(x) + g(x))
= αf(x) + αg(x) = (αf)(x) + (αg)(x) = (αf + αg)(x)

and so α(f + g) = αf + αg.
We now consider a special class of real-valued functions defined on R. These functions

are important in many areas of mathematics, not only linear algebra. A function p : R → R
is called a polynomial function (actually a polynomial function over R) if

p(x) = a0 + a1x+ . . .+ anx
n

for all x ∈ R, where n is a nonnegative integer and a0, a1, . . . , an are real numbers. The
expression p(x) itself is called a polynomial in x. You may recall that if an �= 0, then n is
the degree of p(x). The zero function f0 is a polynomial function. It is assigned no degree,
however. We denote the set of all polynomial functions over R by R[x]. Hence R[x] ⊆ FR.

Let f, g ∈ R[x] and let α ∈ R. Then

f(x) = a0 + a1x+ . . .+ anx
n and g(x) = b0 + b1x+ . . .+ bmxm,

where n and m are nonnegative integers and ai, bj ∈ R for 0 ≤ i ≤ n and 0 ≤ j ≤ m. If we
assume, say, that m ≥ n, then the sum f + g is the polynomial function defined by

(f + g)(x) = f(x) + g(x)
= (a0 + b0) + (a1 + b1)x+ . . .+ (an + bn)xn + bn+1x

n+1 + . . .+ bmxm;

while the scalar multiple αf of f by α is the polynomial function defined by

(αf)(x) = α(f(x)) = (αa0) + (αa1)x+ . . .+ (αan)xn.

These definitions are, of course, exactly the same as the sum of two elements of FR and the
scalar product of an element of FR by a real number.

Actually, R[x] is itself a vector space overR under the addition and scalar multiplication
we have just defined. For example, let f, g ∈ R[x]. Since R[x] ⊆ FR and addition in R[x]
is defined exactly the same as in FR, it follows that f + g = g + f ; that is, property 1 of a
vector space is satisfied. By the same reasoning, property 2 and properties 5-8 are satisfied
as well. The zero function f0 is in R[x] and we know that f + f0 = f for all f ∈ FR.
Hence p + f0 = p for all p ∈ R[x]. So f0 is a zero vector for R[x]. For f ∈ R[x] defined
by f(x) = a0 + a1x + . . . + anx

n, we know that −f is given by (−f)(x) = −(f(x)) =
(−a0)+ (−a1)x+ . . .+(−an)xn. Thus −f ∈ R[x] is a negative of f . Thus properties 3 and
4 are satisfied as well, and so R[x] is a vector space over R.
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15.3 Matrices

Among the best known and most important examples of vector spaces are those con-
cerning matrices. A rectangular array of real numbers is called a matrix. The plural of
“matrix” is “matrices”. (In general, a matrix need not be an array of real numbers — it can
be a rectangular array of elements from any prescribed set. However, we will deal only with
real numbers.) Thus a matrix has m rows and n columns for some pair m, n of positive
integers and contains mn real numbers, each of which is located in some row i and column
j for integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. A matrix with m rows and n columns
is said to have size m×n and is called an m×n matrix (read as “m by n matrix”). Hence

B =

[
1

√
2 −3/2

0 −.8 4

]

is a 2 × 3 matrix, while

C =


 4 1 9

0 3 2
7 −1 1




is a 3 × 3 matrix. A general m × n matrix A is commonly written as

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn


 .

Therefore, aij represents the element located in row i and column j of A. This is referred
to as the (i, j)-entry of A. In fact, it is convenient shorthand notation to represent the
matrix A by [aij ] and to write A = [aij ]. The ith row of A is [ai1ai2 . . . ain] and the jth
column is 


a1j

a2j
...
amj


 .

For two matrices to be equal, they must have the same size. Furthermore, two m × n
matrices A = [aij ] and B = [bij ] are equal, written as A = B, if aij = bij for all integers i
and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. That is, A = B if A and B have the same size and
corresponding entries are equal. Hence, in order for

A =

[
2 x −3

1/2 4 0

]
and B =

[
2 4/5 −3
y 4 0

]

to be equal, we must have x = 4/5 and y = 1/2.
For positive integers m and n, let Mmn[R] denote the set of all m × n matrices whose

entries are real numbers. If m = n, then the matrices are called square matrices. The set
of all m × m (square) matrices whose entries are real numbers is also denoted by Mm[R].

We now define addition and scalar multiplication in Mmn[R]. Let A,B ∈ Mmn[R],
where A = [aij ] and B = [bij ]. The sum A+B of A and B is defined as that m×n matrix
[cij ], where cij = aij + bij for all integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. For α ∈ R,
the scalar multiple αA of A by α is defined as αA = [dij ], where dij = αaij for all integers
i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. For example, if
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A =

[
2 −1 −3
0 4 0

]
and B =

[
3 −9 2

−2 5 0

]
,

then

A+B =

[
5 −10 −1

−2 9 0

]
and (−2)A =

[
−4 2 6
0 −8 0

]
.

Under this addition and scalar multiplication, Mmn[R] is a vector space. As an illustration,
we verify that properties 1 and 3-5 of a vector space are satisfied in M2[R]. Let α ∈ R and
let

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.

Then

A+B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]

=

[
b11 + a11 b12 + a12
b21 + a21 b22 + a22

]
=

[
b11 b12
b21 b22

]
+

[
a11 a12
a21 a22

]
= B +A.

This verifies property 1 of a vector space. We see here that verifying property 1 depended
only on the definition of addition of matrices and the fact that real numbers are commutative
under addition.

Let Z =

[
0 0
0 0

]
, often called the 2 × 2 zero matrix. Then

A+ Z =

[
a11 a12
a21 a22

]
+

[
0 0
0 0

]
=

[
a11 + 0 a12 + 0
a21 + 0 a22 + 0

]

=

[
a11 a12
a21 a22

]
= A

and so Z is a zero element of M2[R], thereby verifying property 3.

Next, let −A =

[
−a11 −a12
−a21 −a22

]
. Consequently,

A+ (−A) =

[
a11 a12
a21 a22

]
+

[
−a11 −a12
−a21 −a22

]
=

[
0 0
0 0

]
= Z,

and so −A is a negative of A. Therefore, property 4 is satisfied. We note also that if A is
multiplied by the scalar −1, then we obtain

(−1)A = (−1)

[
a11 a12
a21 a22

]
=

[
−a11 −a12
−a21 −a22

]
= −A.

Finally,

α(A+B) = α

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
=

[
α(a11 + b11) α(a12 + b12)
α(a21 + b21) α(a22 + b22)

]
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=

[
αa11 + αb11 αa12 + αb12
αa21 + αb21 αa22 + αb22

]
=

[
αa11 αa12
αa21 αa22

]
+

[
αb11 αb12
αb21 αb22

]

= α

[
a11 a12
a21 a22

]
+ α

[
b11 b12
b21 b22

]
= αA+ αB.

Under the right set of circumstances, matrices can also be multiplied — although this
is, of course, not a requirement for a vector space.

Let A = [aij ] be an m × n matrix and B = [bij ] be an n × r matrix, that is, let A and
B be two matrices, where the number of columns in A equals the number of rows in B. In
this case, we define the product AB of A and B as that m × r matrix [cij ], where

cij = ai1b1j + ai2b2j + . . .+ ainbnj =
n∑

k=1

aikbkj (15.1)

for all integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ r. Hence the (i, j)-entry of AB is
obtained from the ith row of A and jth column of B, that is,

[ai1 ai2 . . . ain] and




b1j

b2j
...
bnj




by multiplying corresponding terms of this row and column and then adding all n products.
The expression (15.1) is referred to as the inner product of the ith row of A and the jth
column of B. For example, let

A =

[
1 −3 5 0

−1 0 6 2

]
and B =




1 −6 5
2 0 1
3 3 2

−6 9 0


 .

Since A is a 2 × 4 matrix and B is a 4 × 3 matrix, the product AB is defined and, in fact,
AB = [cij ] is the 2 × 3 matrix, where the six inner products are

c11 = 1 · 1 + (−3) · 2 + 5 · 3 + 0 · (−6) = 10
c12 = 1 · (−6) + (−3) · 0 + 5 · 3 + 0 · 9 = 9
c13 = 1 · 5 + (−3) · 1 + 5 · 2 + 0 · 0 = 12
c21 = (−1) · 1 + 0 · 2 + 6 · 3 + 2 · (−6) = 5
c22 = (−1) · (−6) + 0 · 0 + 6 · 3 + 2 · 9 = 42
c23 = (−1) · 5 + 0 · 1 + 6 · 2 + 2 · 0 = 7.

Hence

AB =

[
10 9 12
5 42 7

]
.

On the other hand, since the matrix B above is a 4 × 3 matrix and A is a 2 × 4 matrix,
the product BA is not defined. Certainly, however, if A and B are any two square matrices
of the same size, then AB and BA are both defined though they need not be equal. For
example, if
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A =

[
1 2
1 2

]
and B =

[
0 1
1 0

]
,

then

AB =

[
2 1
2 1

]
, while BA =

[
1 2
1 2

]
.

15.4 Some Properties of Vector Spaces

Although we have now seen several different vector spaces, there are a number of proper-
ties that these vector spaces have in common (in addition to the eight defining properties).
Indeed, there are a number of additional properties that all vector spaces have in common.
Since vector spaces are defined by eight properties, one might expect, and rightfully so, that
any other properties they have in common are consequences of these eight properties.

According to property 3, every vector space contains at least one zero vector and by
property 4, every vector has at least one negative. We show that “at least one” can be
replaced by “exactly one” in both instances. Actually, these are consequences of the fact
that every vector space is a group under addition (Chapter 13). We verify these nevertheless.

Theorem 15.1 Every vector space has a unique zero vector.

Proof. Let V be a vector space and assume that z and z′ are both zero vectors in V . Since
z is a zero vector, z′ + z = z′. Moreover, since z′ is a zero vector, z + z′ = z. Therefore,
z = z+ z′ = z′ + z = z′.

As a consequence of Theorem 15.1, we now know that a vector space V possesses only
one zero vector z that satisfies property 3 of a vector space. Hence we can now refer to z
as the zero vector of V .

Theorem 15.2 Let V be a vector space. Then every vector in V has a unique negative.

Proof. Let v ∈ V and assume that v1 and v2 are both negatives of v. Thus v + v1 = z
and v + v2 = z. Hence

v1 = v1 + z = v1 + (v + v2) = (v1 + v) + v2 = z+ v2 = v2.

Proof Analysis Let’s revisit the proof of Theorem 15.2. We wanted to show that each
vector v has only one negative. We assumed that there were two negatives of v, namely v1
and v2. Our goal then was to show that v1 = v2. We started with v1. Our idea was to
add z to v1, as this sum is the vector v1 again. Since z can also be expressed as v+v2, we
made this substitution, bringing the vector v2 into the discussion. Eventually, we showed
that this expression for v1 was also equal to v2. There is another approach we could have
tried.

Since v1 and v2 are both negatives of v, it follows that v+v1 = z and v+v2 = z, that
is, v+ v1 = v+ v2. If we add the same vector to both v+ v1 and v+ v2, we obtain equal
vectors (since v+v1 = v+v2). A good choice of a vector to add to both v+v1 and v+v2
is a negative of v (either one!). This gives us the following list of equalities:

v1 + (v + v1) = v1 + (v + v2)
(v1 + v) + v1 = (v1 + v) + v2

z+ v1 = z+ v2

v1 = v2.
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Although this string of equalities results in v1 = v2, this is not a particularly well-written
proof. However, since our goal is to show that v1 = v2, this suggests a way to arrive at
our goal. We start with v1 (at the bottom of the left column), proceed upward, then to the
right, and downward, producing

v1 = z+ v1 = (v1 + v) + v1 = v1 + (v + v1)
= v1 + (v + v2) = (v1 + v) + v2 = z+ v2 = v2,

which is similar to the proof given in Theorem 15.2 (though a bit longer). ♦
As a consequence of Theorem 15.2, we can now refer to −v as the negative of v. Of

course, the zero vector z has the property that z+z = z. However, no other vector has this
property.

Theorem 15.3 Let V be a vector space. If v is a vector such that v+v = v, then v = z.

Proof. Since v + (−v) = z, it follows that

z = v + (−v) = (v + v) + (−v) = v + (v + (−v)) = v + z = v.

A proof like that given for Theorem 15.3 can be obtained by adding −v to the equal
vectors v + v and v and proceeding as we did in the discussion following the proof of
Theorem 15.2. Also, see Exercise 15.6(b).

We now describe two other properties concerning the zero vector that are consequences
of Theorem 15.3.

Corollary 15.4 Let V be a vector space. Then

(i) 0v = z for every vector v in V and

(ii) αz = z for every scalar α ∈ R.

Proof. First, we prove (i). Observe that

0v = (0 + 0)v = 0v + 0v.

By Theorem 15.3, 0v = z.
Next we verify (ii). Observe that

αz = α(z+ z) = αz+ αz.

Again, by Theorem 15.3, αz = z.

Hence, by Corollary 15.4, 0v = z for every vector v in a vector space and αz = z for
every scalar α. That is, if either α = 0 or v = z, then αv = z. We now show that the
converse of this statement is true as well.

Theorem 15.5 Let V be a vector space. If αv = z, then either α = 0 or v = z.
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Proof. If α = 0, then, of course, the statement is true. So we may assume that α �= 0. In
this case,

v = 1v =
(
1
α

α

)
v =

(
1
α

)
(αv) =

(
1
α

)
z = z.

Another useful property is that the scalar multiple of a vector by −1 is the negative of
that vector. Actually, we have observed this earlier with two particular vector spaces but
this is true in general.

Theorem to Prove If v is a vector in a vector space, then (−1)v = −v.
Proof Strategy Since v has a unique negative, to show that (−1)v = −v, we need only
verify that the sum of v and (−1)v is z. ♦

Theorem 15.6 If v is a vector in a vector space, then (−1)v = −v.
Proof. Observe that

v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = z.

Hence (−1)v = −v.

15.5 Subspaces

Earlier we saw that FR = {f : f : R → R} is a vector space (under function addition
and scalar multiplication). Since the set R[x] of all polynomial functions over R is a subset
of FR and the addition and scalar multiplication defined in R[x] are exactly the same as
those defined in FR, it was considerably easier to show that R[x] is a vector space. This
idea can be made more general.

For a vector space V , a subset W of V is called a subspace of V if W is vector space
under the same addition and scalar multiplication defined on V . Hence if W is a subspace
of a known vector space V , then W itself is a vector space. Since every subspace contains
a zero vector, W must be nonempty.

As we study vector spaces further, we will see that certain subspaces appear regularly
and consequently it is beneficial to have an understanding of subspaces. Furthermore, some
sets having an addition and scalar multiplication defined on them are subsets of known
vector spaces and can be shown to be vector spaces more easily by verifying that they are
subspaces.

What is required to show that a subset W of a vector space V is a subspace of V ? Of
course, W must satisfy the eight properties required of all vector spaces. In addition, if
u,v ∈ W , then u + v must belong to W . This property is expressed by saying that W
is closed under addition. Also, if α is a scalar (a real number) and v ∈ W , then αv
must belong to W . We express this property by saying that W is closed under scalar
multiplication.

Property 1 (the commutative property) requires that u+v = v+u for every two vectors
u and v inW . However, V is a vector space and satisfies property 1. Thus u+v = v+u and
W satisfies property 1. By the same reasoning, property 2 and properties 5-8 are satisfied
by W . These properties of W are said to be inherited from V . Hence for a nonempty
subset W of a vector space V to be a subspace of V , it is necessary that W be closed under
addition and scalar multiplication. Perhaps surprisingly, these requirements are sufficient
as well for a nonempty subset W of V to be subspace of V .
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Theorem 15.7 (The Subspace Test) A nonempty subset W of a vector space V is a
subspace of V if and only if W is closed under addition and scalar multiplication.

Proof. First, let W be a subspace of V . Certainly, W is closed under addition and scalar
multiplication. For the converse, let W be a nonempty subset of V that is closed under
addition and scalar multiplication. As we noted earlier, W inherits properties 1, 2 and 5-8
of a vector space from V . Since W is nonempty and is closed under addition and scalar
multiplication, only properties 3 and 4 remain to be verified. Since W �= ∅, there is some
vector v in W . Since W is closed under scalar multiplication, it follows by Corollary 15.4(i)
that 0v = z ∈ W . Hence W contains a zero vector (namely the zero vector of V ) and
property 3 is satisfied. Now let w be any vector of W . Again, (−1)w ∈ W . However, by
Theorem 15.6, (−1)w = −w ∈ W , and so w has a negative in W (namely the negative of
w in V ). Thus property 4 is satisfied in W as well.

The proof of Theorem 15.7 brought out two important facts. Namely, if W is a subspace
of a vector space V , then W contains a zero vector (namely, the zero vector of V ) and for
every vector w ∈ W , its negative −w belongs to W as well.

Every vector space V (containing at least two elements) always contains two subspaces,
namely V itself and the subspace consisting only of the zero vector of V . We now present
several examples to illustrate how the Subspace Test (Theorem 15.7) can be applied to show
that certain subsets of a vector space are (or are not) subspaces of that vector space. The
first two examples concern the vector space R3.

Result 15.8 The set
W = {(a, b, 2a − b) : a, b ∈ R}

is a subspace of R3.

First observe that W contains all vectors of R3 whose 3rd coordinate is twice the first
coordinate minus the second coordinate. So for example, W contains (3, 2, 4), taking a = 3
and b = 2, and (0, 0, 0), taking a = b = 0. Of course, if W is to be a subspace of R3, then
it is essential that W contains the zero vector of R3.

Proof of Result 15.8. Since W contains the zero vector of R3, it follows that W �= ∅.
To show that W is a subspace of V , we need only show that W is closed under addition
(that is, if u,v ∈ W , then u+v ∈ W ) and that W is closed under scalar multiplication (that
is, if u ∈ W and α ∈ R, then αu ∈ W ). Let u,v ∈ W and α ∈ R. Then u = (a, b, 2a − b)
and v = (c, d, 2c − d), where a, b, c, d ∈ R. Then

u+ v = (a+ c, b+ d, 2(a+ c) − (b+ d)) ∈ W and
αu = (αa, αb, 2(αa) − (αb)) ∈ W.

By the Subspace Test, W is a subspace of R3.

Example 15.9 Determine whether

W = {(a, b, a2 + b) : a, b ∈ R}

is a subspace of R3.
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Solution. Taking a = b = 1, we see that u = (1, 1, 2) ∈ W . Then 2u = (2, 2, 4). Since
4 �= 22 + 2, it follows that 2u /∈ W . Since W is not closed under scalar multiplication,
W is not a subspace of R3. (The subset W of R is not closed under addition either since
u+ u /∈ W .) ♦

We next consider the vector space FR. We have already mentioned that R[x] is a
subspace of FR. Also, the set CR = {f ∈ FR : f is continuous} is a subspace of FR.
Indeed, R[x] is a subspace of CR as well.

Result 15.10 Let F0 = {f ∈ FR : f(1) = 0}. Then F0 is a subspace of FR.

Hence the function f1 : R → R defined by f1(x) = x− 1 belongs to F0, as does the zero
function f0 : R → R defined by f0(x) = 0 for all x.

Proof of Result 15.10. Since F0 contains the zero function, F0 �= ∅. Let f, g ∈ F0 and
α ∈ R. Then

(f + g)(1) = f(1) + g(1) = 0 + 0 = 0 and (αf)(1) = αf(1) = α · 0 = 0.

Thus f + g ∈ F0 and αf ∈ F0. By the Subspace Test, F0 is a subspace of FR.

Example 15.11 Determine whether

F1 = {f ∈ FR : f(0) = 1}
is a subspace of FR.

Solution. Observe that the functions g, h ∈ FR defined by g(x) = x+1 and h(x) = x2+1
belong to F1. However, (g+h)(x) = g(x)+h(x) = x2+x+2 and (g+h)(0) = 2, so g+h /∈ F1.
Therefore, F1 is not a subspace of FR. ♦

The next example concerns the vector space M2(R) of 2× 2 matrices with real entries.

Result 15.12 The set

W =

{[
a 0
b c

]
: a, b, c ∈ R

}

is a subspace of M2(R).

Hence W consists of all these 2 × 2 matrices whose (1, 2)-entry is 0. Thus the zero
matrix, all of whose entries are 0, belongs to W .

Proof of Result 15.12. Since W contains the zero matrix, W �= ∅. Let A,B ∈ W and
α ∈ R. So

A =

[
a 0
b c

]
and B =

[
d 0
e f

]
,

where a, b, c, d, e, f ∈ R. Then

A+B =

[
a+ d 0
b+ e c+ f

]
and αA =

[
αa 0
αb αc

]
.

Therefore, A + B and αA belong to W and by the Subspace Test, W is a subspace of
M2(R).
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15.6 Spans of Vectors

In Result 15.12 we showed that the set

W =

{[
a 0
b c

]
: a, b, c ∈ R

}

is a subspace of M2(R). Thus if A ∈ W , then A =

[
a 0
b c

]
for some a, b, c ∈ R. Observe,

also, that

A =

[
a 0
b c

]
=

[
a 0
0 0

]
+

[
0 0
b 0

]
+

[
0 0
0 c

]

= a

[
1 0
0 0

]
+ b

[
0 0
1 0

]
+ c

[
0 0
0 1

]
.

In other words, A (and, consequently, every matrix in W ) is a linear combination of[
1 0
0 0

]
,

[
0 0
1 0

]
, and

[
0 0
0 1

]
. Therefore, W is the set of all linear combinations of

these three matrices. This observation illustrates a more general situation.
Recall that if V is a vector space, v1,v2, . . . ,vn ∈ V , and α1, α2, . . . , αn ∈ R, then

every vector of the form α1v1 +α2v2 + . . .+αnvn is a linear combination of the vectors
v1,v2, . . . ,vn. Thus, by taking α1 = α2 = . . . = αn = 0, we see that the zero vector is a
linear combination of v1,v2, . . . ,vn. Also, by taking αi = 1 for a fixed integer i (1 ≤ i ≤ n)
and all other scalars 0, we see that each vector vi is a linear combination of v1,v2, . . . ,vn.
We have noted that every linear combination of vectors in V is a vector in V and, of course,
the set of all such linear combinations is a subset of V . In fact, more can be said of this
subset.

Theorem 15.13 Let V be a vector space containing the vectors v1,v2, . . . ,vn. Then the
set W of all linear combinations of v1,v2, . . . ,vn is a subspace of V .

Proof. Since W contains the zero vector of V , it follows that W �= ∅. Let u,w ∈ W and
let α ∈ R. Then u = α1v1 + α2v2 + . . .+ αnvn and w = β1v1 + β2v2 + . . .+ βnvn, where
αi, βi ∈ R for 1 ≤ i ≤ n. Then

u+w = (α1 + β1)v1 + (α2 + β2)v2 + . . .+ (αn + βn)vn and
αu = (αα1)v1 + (αα2)v2 + . . .+ (ααn)vn.

So both u + w and αu are linear combinations of v1,v2, . . . ,vn and hence belong to W .
Thus by the Subspace Test, W is a subspace of V .

For vectors v1,v2, . . . ,vn in a vector space V , the subspace W of V consisting of all
linear combinations of v1,v2, . . . ,vn is called the span of v1,v2, . . . ,vn and is denoted by
〈v1,v2, . . . ,vn〉. Also, W is referred to as the subspace of V spanned by v1,v2, . . . ,vn.

By Result 15.12,

W =

{[
a 0
b c

]
: a, b, c ∈ R

}
=

〈[
1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]〉
.
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We saw in Result 15.8 that W = {(a, b, 2a − b) : a, b ∈ R} is a subspace of of R3. Since
(a, b, 2a − b) = a(1, 0, 2) + b(0, 1,−1), it follows that W is spanned by the vectors (1, 0, 2)
and (0, 1,−1), that is, W = 〈(1, 0, 2), (0, 1,−1)〉.

We consider another illustration of spans of vectors.

Result 15.14 Let f1, f2, f3, g2 and g3 be five functions in R[x] defined by f1(x) = 1,
f2(x) = 1 + x2, f3(x) = 1 + x2 + x4, g2(x) = x2, and g3(x) = x4 for all x ∈ R, and let
W = 〈f1, f2, f3〉 and W ′ = 〈f1, g2, g3〉. Then W = W ′.

Since W and W ′ are sets of vectors (polynomial functions) and our goal is to show that
W = W ′, we proceed in the standard manner by showing that each of W and W ′ is a subset
of the other.

Proof of Result 15.14. First, we show that W ⊆ W ′. Let f ∈ W . Then f =
af1 + bf2 + cf3 for some a, b, c ∈ R. Hence, for each x ∈ R,

f(x) = a · 1 + b ·
(
1 + x2

)
+ c ·

(
1 + x2 + x4

)
= (a+ b+ c) + (b+ c) · x2 + c · x4.

Thus, f is also a linear combination of f1, g2, and g3. Consequently, W ⊆ W ′. It remains
to show that W ′ ⊆ W . Let g ∈ W ′. Then

g = af1 + bg2 + cg3 for some a, b, c ∈ R.

So, for each x ∈ R,

g(x) = a · 1 + b · x2 + c · x4 = (a − b) · 1 + b ·
(
1 + x2

)
+ c · x4

= (a − b) · 1 + (b − c) ·
(
1 + x2

)
+ c ·

(
1 + x2 + x4

)
.

Hence g is also a linear combination of f1, f2, f3 as well and so W ′ ⊆ W .

From what we have seen, if V is a vector space containing the vectors v1,v2, . . . ,vn,
then W = 〈v1,v2, . . . ,vn〉 is a subspace of V (that contains v1,v2, . . . ,vn). Quite possibly
other subspaces of V contain v1,v2, . . . ,vn as well. Of course, V itself is a subspace of
V containing v1,v2, . . . ,vn. In a certain sense though, W is the smallest subspace of V
containing v1,v2, . . . ,vn.

Theorem 15.15 Let V be a vector space containing the vectors v1, v2, . . ., vn and let
W = 〈v1,v2, . . . ,vn〉. If W ′ is a subspace of V containing v1, v2, . . ., vn, then W is a
subspace of W ′.

Proof. Since W and W ′ are subspaces of V , we need only show that W ⊆ W ′. Let
v ∈ W . Thus v = α1v1 + α2v2 + . . . + αnvn, where αi ∈ R for 1 ≤ i ≤ n. Since vi ∈ W ′

for 1 ≤ i ≤ n and W ′ is a subspace of V , it follows that v ∈ W ′. Hence W ⊆ W ′.

There is a consequence of Theorem 15.15 that is especially useful.

Corollary 15.16 Let V be a vector space spanned by the vectors v1, v2, . . ., vn. If W
is a subspace of V containing v1, v2, . . ., vn, then W = V .
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Proof. Since W is a subspace of V , certainly W ⊆ V . By Theorem 15.15, V ⊆ W . Thus
W = V .

To illustrate a number of the concepts and results introduced thus far, we consider an
example concerning 3-space.

Result 15.17

(i) For the vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1), R3 = 〈i, j,k〉.
(ii) If w1 = (1, 1, 0), w2 = (0, 1, 1), and w3 = (1, 1, 1), then R3 = 〈w1,w2,w3〉.
(iii) Let u1 = (1, 1, 1), u2 = (1, 1, 0), and u3 = (0, 0, 1). Then 〈u1,u2,u3〉 = 〈u1,u2〉.

Proof. Let W1 = 〈i, j,k〉. Since W1 is a subspace of R3, it follows that W1 ⊆ R3.
We now show that R3 ⊆ W1. Let v ∈ R3. So v = (a, b, c), where a, b, c ∈ R. Then
v = (a, 0, 0) + (0, b, 0) + (0, 0, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai + bj + ck. Hence v
is a linear combination of i, j, and k, and so v ∈ W1. Hence R3 ⊆ W1. This implies that
R3 = 〈i, j,k〉 and (i) is verified.

Next, we verify (ii). Let W2 = 〈w1,w2,w3〉. To verify that R3 = W2, it suffices to show
by Corollary 15.16 and part (i) of this result that each of the vectors i, j, and k belongs to
W2. To show that i, j, and k belong toW2, we are then required to show that each of i, j, and
k is a linear combination of w1, w2, and w3. Since i = (1, 0, 0) = (1, 1, 1) + (−1)(0, 1, 1), it
follows that i = 0 ·w1+(−1)w2+1 ·w3. Now j = (0, 1, 0) = (1, 1, 0)+(0, 1, 1)+(−1)(1, 1, 1);
so j = 1 · w1 + 1 · w2 + (−1)w3. Finally, k = (0, 0, 1) = (1, 1, 1) + (−1)(1, 1, 0) and so
k = (−1)w1 + 0 ·w2 + 1 ·w3. Hence R3 = W2 and (ii) is established.

Finally, we verify (iii). Let W = 〈u1,u2〉 and W ′ = 〈u1,u2,u3〉. Since W ′ contains the
vectors u1 and u2, it follows by Theorem 15.15 that W ⊆ W ′.

By Corollary 15.16, to prove that W ′ ⊆ W , we need only show that each of the vectors
u1, u2, and u3 belongs to W , that is, each of these three vectors is a linear combination of
u1 and u2. This is obvious for u1 and u2 as u1 = 1 · u1 + 0 · u2 and u2 = 0 · u1 + 1 · u2.
Thus it remains only to show that u3 is a linear combination of u1 and u2. However,
u3 = (0, 0, 1) = (1, 1, 1) + (−1)(1, 1, 0) = 1 · u1 + (−1)u2, completing the proof.

15.7 Linear Dependence and Independence

For the vectors u1 = (1, 1, 0) and u2 = (0, 1, 1) in R3, the vector u3 = (−1, 1, 2) ∈ R3 is
a linear combination of u1 and u2 since

u3 = (−1, 1, 2) = (−1) · u1 + 2 · u2 = (−1) · (1, 1, 0) + 2 · (0, 1, 1).
Therefore, in a certain sense, the vector u3 depends on u1 and u2 in a linear manner. This
linear dependence can be restated as

(−1) · u1 + 2 · u2 + (−1) · u3 = (0, 0, 0).

This kind of dependence plays an important role in linear algebra.
Let S = {u1,u2, . . . ,um} be a nonempty set of vectors in a vector space V . The set

S is called linearly dependent if there exist scalars c1, c2, . . . , cm, not all 0, such that
c1u1 + c2u2 + . . .+ cmum = z. If S is not linearly dependent, then S is said to be linearly
independent. For S = {u1,u2, . . . ,um}, we also say that the vectors u1,u2, . . . ,um are
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linearly dependent or linearly independent according to whether the set S is linearly de-
pendent or linearly independent, respectively. Consequently, the vectors u1,u2, . . . ,um are
linearly independent if whenever c1u1 + c2u2 + . . . + cmum = z, then ci = 0 for each i
(1 ≤ i ≤ m).

We now consider some examples.

Example 15.18 Determine whether S = {(1, 1, 1), (1, 1, 0), (0, 1, 1)} is a linearly inde-
pendent set of vectors in R3.

Solution. Let a, b, and c be scalars such that

a · (1, 1, 1) + b · (1, 1, 0) + c · (0, 1, 1) = (0, 0, 0).

By scalar multiplication and vector addition, we have (a + b, a + b + c, a + c) = (0, 0, 0),
arriving at the following system of equations:

a+ b = 0
a+ b+ c = 0

a+ c = 0.

Subtracting the first equation from the second, we obtain c = 0. Substituting c = 0 into the
third equation, we obtain a = 0. Substituting a = 0 and c = 0 into the second equation, we
obtain b = 0. Hence a = b = c = 0 and S is linearly independent. ♦

Example 15.19 Determine whether

S =

{[
2 1
1 0

]
,

[
0 1
1 2

]
,

[
1 1
1 1

]}

is a linearly independent set of vectors in M2(R).

Solution. Again, let a, b, and c be scalars such that

a

[
2 1
1 0

]
+ b

[
0 1
1 2

]
+ c

[
1 1
1 1

]
=

[
0 0
0 0

]
.

By scalar multiplication and matrix addition, we have[
2a+ c a+ b+ c
a+ b+ c 2b+ c

]
=

[
0 0
0 0

]
.

This results in the system of equations:

2a+ c = 0
a+ b+ c = 0

2b+ c = 0

where the second equation actually occurs twice. From the first and third equations, it
follows that c = −2a and c = −2b and so a = b = −c/2. Substituting these values for a
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and b in the second equation gives (−c/2) + (−c/2) + c = −c + c = 0, that is, the second
equation is satisfied for every value of c. Hence, if we let c = −2, say, then a = b = 1 and

1 ·
[
2 1
1 0

]
+ 1 ·

[
0 1
1 2

]
+ (−2) ·

[
1 1
1 1

]
=

[
0 0
0 0

]
.

Consequently, S is a linearly dependent set of vectors. ♦
We now show that a familiar set of polynomial functions is linearly independent.

Theorem to Prove For every nonnegative integer n, the set Sn = {1, x, x2, . . . , xn} is
linearly independent in R[x].

Proof Strategy The elements of Sn are actually functions, say Sn = {f0, f1, f2, . . . , fn},
where fi : R → R is defined by fi(x) = xi for 0 ≤ i ≤ n and for all x ∈ R. To show that Sn

is linearly independent, we are required to show that if c0 · 1 + c1x+ c2x
2 + . . .+ cnx

n = 0,
where ci ∈ R for 0 ≤ i ≤ n, then ci = 0 for all i. Of course, the question is how to do
this. By choosing various values of x, we could arrive at a system of equations to solve. For
example, we could begin by letting x = 0, obtaining c0 · 1 + c1 · 0 + c2 · 0 + . . .+ cn · 0 = 0,
and so c0 = 0. Therefore, c1x + c2x

2 + . . . + cnx
n = 0. Letting x = 1 and x = 2, we have

c1 + c2 + . . .+ cn = 0 and 2c1 +22c2 + . . .+2ncn = 0. We could actually arrive at a system
of n equations and n unknowns, but perhaps this is sounding complicated.

On the other hand, from the statement of the theorem, another approach is suggested.
Quite often when we see a theorem stated as “for every nonnegative integer n”, we think
of applying induction. The main challenge to such a proof would be to show that if
{1, x, x2, . . . , xk} is linearly independent, where k ≥ 0, then {1, x, x2, . . . , xk+1} is linearly in-
dependent. Hence we would be dealing with the equation c0·1+c1x+c2x

2+. . .+ck+1x
k+1 = 0

for ci ∈ R, 0 ≤ i ≤ k + 1, attempting to show that ci = 0 for all i (0 ≤ i ≤ k + 1). We
already mentioned that showing c0 = 0 is not difficult. In order to make use of the induction
hypothesis, we need a linear combination of the polynomials 1, x, x2, . . . , xk. One idea for
doing this is to take the derivative of c0 · 1 + c1x+ c2x

2 + . . .+ ck+1x
k+1. ♦

Theorem 15.20 For every nonnegative integer n, the set Sn = {1, x, x2, . . . , xn} is lin-
early independent in R[x].

Proof. We proceed by induction. For n = 0, we are required to show that S0 = {1} is
linearly independent in R[x]. Let c be a scalar such that c · 1 = 0. Then surely c = 0 and
so S0 is linearly independent.

Assume that Sk = {1, x, x2, . . . , xk} is linearly independent in R[x], where k is a non-
negative integer. We show that Sk+1 = {1, x, x2, . . . , xk+1} is linearly independent in R[x].
Let c0, c1, . . . , ck+1 be scalars such that

c0 · 1 + c1x+ c2x
2 + . . .+ ck+1x

k+1 = 0, (15.2)

for all x ∈ R. Letting x = 0 in (15.2), we see that c0 = 0. Now taking the derivatives of
both sides of (15.2), we see that

c1 · 1 + 2c2x+ 3c3x2 + . . .+ (k + 1)ck+1x
k = 0

for all x ∈ R. By the induction hypothesis, Sk is a linearly independent set of vectors in
R[x] and so c1 = 2c2 = 3c3 = . . . = (k + 1)ck+1 = 0, which implies that c1 = c2 = c3 =
. . . = ck+1 = 0. Since c0 = 0 as well, it follows that Sk+1 is linearly independent.
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Proof Analysis Before proceeding further, it is important that we understand the proof
we have just given. The proof began by showing that S0 = {1} is linearly independent.
What this means is that S0 consists of the single constant polynomial function f defined
by f(x) = 1 for all x ∈ R. Let c be a scalar (real number) such that c · f = f0, where f0
is the zero polynomial function defined by f0(x) = 0 for all x ∈ R. Thus, for each x ∈ R,
(cf)(x) = f0(x) = 0, that is,

(cf)(x) = c · f(x) = c · 1 = 0 = f0(x)

and so c = 0. ♦
We now consider a result for a general vector space.

Result 15.21 If v1,v2, and v3 are linearly independent vectors in a vector space V ,
then v1, v1 + v2, and v1 + v2 + v3 are also linearly independent in V .

Proof. Let a, b, and c be scalars such that

a · v1 + b · (v1 + v2) + c · (v1 + v2 + v3) = z.

From this, we have
(a+ b+ c) · v1 + (b+ c) · v2 + c · v3 = z.

Since v1,v2, and v3 are linearly independent, a + b + c = b + c = c = 0, from which it
follows that a = b = c = 0 and so v1, v1 + v2, and v1 + v2 + v3 are linearly independent.

Let S = {v1,v2, . . . ,vn} be a set of n vectors, where n ∈ N, and let S′ be a nonempty
subset of S. Then |S′| = m for some integer m with 1 ≤ m ≤ n. Since the order in which
the elements of S are listed is irrelevant, these elements can be rearranged and relabeled if
necessary so that S′ = {v1,v2, . . . ,vm}. This fact is quite useful at times.

Theorem 15.22 Let S be a finite nonempty set of vectors in a vector space V . If S
is linearly independent in V and S′ is a nonempty subset of S, then S′ is also linearly
independent in V .

Proof. We may assume that S′ = {v1,v2, . . . ,vm} and S = {v1, v2, . . . , vm, vm+1, . . . , vn},
where then 1 ≤ m ≤ n. If m = n, then S′ = S and surely S′ is linearly independent. Thus
we can assume that m < n. Let c1, c2, . . . , cm be scalars such that

c1v1 + c2v2 + . . .+ cmvm = z.

However, then,

c1v1 + c2v2 + . . .+ cmvm + 0vm+1 + 0vm+2 + . . .+ 0vn = z. (15.3)

Since S is linearly independent, all scalars in (15.3) are 0. In particular, c1 = c2 = . . . =
cm = 0, which implies that S′ is linearly independent.

We can restate Theorem 15.22 as follows: Let V be a vector space, and let S and S′

be finite nonempty subsets of V such that S′ ⊆ S. If S is linearly independent, then S′

is linearly independent. The contrapositive of this implication gives us: If S′ is linearly
dependent, then S is linearly dependent.
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Although we have only discussed linear independence and linear dependence in connec-
tion with finite sets of vectors, these concepts exist for infinite sets of vectors as well. An
infinite set of vectors in a vector space V is linearly independent if every finite nonempty
subset of S is linearly independent. Equivalently, an infinite set S of vectors in a vector
space V is linearly dependent if some finite nonempty subset of S is linearly dependent.
Every example we have seen of a (finite) set S of linearly dependent vectors in some vector
space V gives rise to an infinite set T of linearly dependent vectors; namely, any infinite
subset T of V such that S ⊆ T is linearly dependent. But what is an example of a vec-
tor space that contains infinitely many linearly independent vectors? We provide such an
example now.

Result 15.23 The set T = {1, x, x2, . . .} is linearly independent in R[x].

Proof. Let S be a finite nonempty subset of T . Then there is a largest nonnegative integer
m such that xm ∈ S. Therefore, S ⊆ Sm = {1, x, x2, . . . , xm}. By Theorem 15.20, Sm is lin-
early independent in R[x] and by Theorem 15.22, S is linearly independent. Consequently,
T is linearly independent in R[x].

15.8 Linear Transformations

We have seen that many properties of a vector space V , subspaces of V , the span of a set
of vectors in V , and linear independence and linear dependence of vectors in V deal with a
common concept: linear combinations of vectors. Perhaps this is not unexpected in an area
of mathematics called linear algebra. There are occasions when two vectors spaces V and
V ′ are so closely linked that with each vector w ∈ V , there is an associated vector w′ ∈ V ′

such that the vector associated with αu+ βv in V is αu′ + βv′ in V ′. Such an association
describes a function from V to V ′. In particular, a function f : V → V ′ is said to preserve
linear combinations of vectors if f(αu+βv) = αf(u)+βf(v) for all u,v ∈ V and every
two scalars α and β. If f : V → V ′ has the property that f(u + v) = f(u) + f(v) for all
u,v ∈ V , then f is said to preserve addition; while if f(αu) = αf(u) for all u ∈ V and
every scalar α, then f is said to preserve scalar multiplication.

Let z′ be the zero vector of V ′. If f : V → V ′ preserves linear combinations and
u,v ∈ V , then

f(u+ v) = f(1 · u+ 1 · v) = 1 · f(u) + 1 · f(v) = f(u) + f(v)

and f(αu) = f(αu + 0v) = αf(u) + 0f(v) = αf(u) + z′ = αf(u). Hence if f : V →
V ′ is a function that preserves linear combinations, then f preserves addition and scalar
multiplication as well.

Conversely, suppose that f : V → V ′ is a function that preserves both addition and
scalar multiplication. Then for u,v ∈ V and scalars α and β,

f(αu+ βv) = f(αu) + f(βv) = αf(u) + βf(v),

that is, f preserves linear combinations. Because functions that preserve linear combinations
are so important in linear algebra, they are given a special name.

Let V and V ′ be vector spaces. A function T : V → V ′ is called a linear transfor-
mation if it preserves both addition and scalar multiplication, that is, if it satisfies the
following conditions:
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1. T (u+ v) = T (u) + T (v)

2. T (αv) = αT (v)

for all u,v ∈ V and all α ∈ R. There are some points in connection with these conditions
that need to be addressed and that may not be self-evident. Condition 1 states that T (u+
v) = T (u) + T (v) for every two vectors u and v of V . Hence the addition indicated in
T (u + v) takes place in V ; while, on the other hand, since T (u) and T (v) are vectors in
V ′, the addition indicated in T (u) + T (v) takes place in V ′. Also, condition 2 states that
T (αv) = αT (v) for every vector v in V and every scalar α. By the same reasoning, the
scalar multiplication indicated in T (αv) takes place in V , while the scalar multiplication
in αT (v) takes place in V ′. From what we have already seen, every linear transformation
preserves linear combinations of vectors (hence the name).

Let’s consider an example of a linear transformation.

Result 15.24 The function T : R3 → R2 defined by

T ((a, b, c)) = T (a, b, c) = (2a+ c, 3c − b)

is a linear transformation.

Before we prove Result 15.24, let’s be certain that we understand what this function
does. For example, T (1, 2, 3) = (5, 7), T (1,−6,−2) = (0, 0), while T (0, 0, 0) = (0, 0) as well.
We now show that T is a linear transformation.

Proof of Result 15.24. Let u,v ∈ R3. Then u = (a, b, c) and v = (d, e, f) for
a, b, c, d, e, f ∈ R. Then

T (u+ v) = T (a+ d, b+ e, c+ f) = (2(a+ d) + c+ f, 3(c+ f) − (b+ e))
= (2a+ c, 3c − b) + (2d+ f, 3f − e)
= T (a, b, c) + T (d, e, f) = T (u) + T (v)

and

T (αu) = T (α(a, b, c)) = T (αa, αb, αc)
= (2αa+ αc, 3αc − αb) = α(2a+ c, 3c − b) = αT (u),

as desired.

Sometimes the vectors in R3 are written as “column vectors”, that is, as


 a

b
c


 rather

than (a, b, c) or the “row vector” [a b c]. In this case, notice that the linear transformation
T : R3 → R2 defined by T (a, b, c) = (2a+ c, 3c − b) can be described as

T (a, b, c) = T




 a

b
c




 =

[
2 0 1
0 −1 3

] a
b
c


 =

[
2a+ c

−b+ 3c

]
,

that is, if we let v =


 a

b
c


 and A =

[
2 0 1
0 −1 3

]
, then this linear transformation can be

defined in terms of the matrix A, namely,

T (v) = Av.
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In general, if A is an m × n matrix, then the function T : Rn → Rm defined by
T (u) = Au for an n × 1 column vector u ∈ Rn is a linear transformation. For example,

consider the 3 × 2 matrix A =


 1 −2

3 −1
2 5


. For u =

[
a
b

]
, v =

[
c
d

]
, and α ∈ R,

T (u+ v) = T

([
a+ c
b+ d

])
=


 1 −2

3 −1
2 5



[

a+ c
b+ d

]
=


 a+ c − 2b − 2d

3a+ 3c − b − d
2a+ 2c+ 5b+ 5d




=


 a − 2b

3a − b
2a+ 5b


+


 c − 2d

3c − d
2c+ 5d


 = T

([
a
b

])
+ T

([
c
d

])

= T (u) + T (v)

and

T (αu) = T

([
αa
αb

])
=


 1 −2

3 −1
2 5



[

αa
αb

]
=


 αa − 2αb

3αa − αb
2αa+ 5αb




= α


 a − 2b

3a − b
2a+ 5b


 = αT

([
a
b

])
= αT (u).

Thus, T : R2 → R3 is a linear transformation. The proof for a general m × n matrix
is similar. As another illustration of a linear transformation, we consider a well-known
function from R[x] to itself.

Result 15.25 The function D (for differentiation) from R[x] to R[x] defined by

D(c0 + c1x+ c2x
2 + . . .+ cnx

n) = c1 + 2c2x+ . . .+ ncnx
n−1

is a linear transformation.

Proof. Let f, g ∈ R[x], where f(x) = a0 + a1x+ a2x
2 + . . .+ arx

r and g(x) = b0 + b1x+
b2x

2 + . . .+ bsx
s and, say, r ≤ s. Then

D(f(x) + g(x)) = D ((a0 + a1x+ . . .+ arx
r) + (b0 + b1x+ . . .+ bsx

s))

= D
(
(a0 + b0) + (a1 + b1)x+ . . .+ (ar + br)xr + br+1x

r+1 + . . .+ bsx
s
)

= (a1 + b1) + . . .+ r(ar + br)xr−1 + (r + 1)br+1x
r + . . .+ sbsx

s−1

=
(
a1 + 2a2x+ . . .+ rarx

r−1
)
+
(
b1 + 2b2x+ . . .+ sbsx

s−1
)

= D(f(x)) +D(g(x))

and

D(αf(x)) = D
(
αa0 + αa1x+ αa2x

2 + . . .+ αarx
r
)

= αa1 + 2αa2x+ . . .+ rαarx
r−1

= α(a1 + 2a2x+ . . .+ rarx
r−1) = αD(f(x)).

Since D preserves both addition and scalar multiplication, it is a linear transformation.

There is a special kind a function from a vector space to itself that is always a linear
transformation.
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Result 15.26 Let V be a vector space over the set R of real numbers. For c ∈ R, the
function T : V → V defined by T (v) = cv is a linear transformation.

Proof. Let u,w ∈ V . Then

T (u+w) = c(u+w) = cu+ cw = T (u) + T (w);

while, for α ∈ R,

T (αu) = c(αu) = (cα)(u) = (αc)(u) = α(cu) = αT (u).

Therefore, T is a linear transformation.

For c = 1, the function T defined in Result 15.26 is the identity function; while for
c = 0, the function T maps every vector into the zero vector. Consequently, both of these
functions are linear transformations.

We now look at functions involving other vector spaces. For a function f ∈ FR and a
real number r, we define the function f + r by (f + r)(x) = f(x) + r for all x ∈ R.

Example 15.27 Let r be a nonzero real number. Prove or disprove: The function T :
FR → FR defined by T (f) = f + r is a linear transformation.

Solution. Let f, g ∈ FR. Observe that

T (f + g) = (f + g) + r,

while
T (f) + T (g) = (f + r) + (g + r) = (f + g) + 2r.

Since r �= 0, it follows that T (f + g) �= T (f) + T (g). Therefore, T is not a linear transfor-
mation. ♦

Example 15.28 Let T : M2(R) → M2(R) be a function defined by

T

([
a b
c d

])
=

[
ad 0
0 bc

]
.

Prove or disprove: T is a linear transformation.

Solution. Since

T

(
2

[
1 1
1 1

])
= T

([
2 2
2 2

])
=

[
4 0
0 4

]

and

2T

([
1 1
1 1

])
= 2

[
1 0
0 1

]
=

[
2 0
0 2

]
,

T is not a linear transformation. ♦

Example 15.29 The function T : M2(R) → M2(R) is defined by

T

([
a b
c d

])
=

[
a a
c c

]
.

Prove or disprove: T is a linear transformation.
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Solution. Let

[
a1 b1
c1 d1

]
,

[
a2 b2
c2 d2

]
∈ M2(R) and α ∈ R. Then

T

([
a1 b1
c1 d1

]
+

[
a2 b2
c2 d2

])
= T

([
a1 + a2 b1 + b2
c1 + c2 d1 + d2

])

=

[
a1 + a2 a1 + a2
c1 + c2 c1 + c2

]
=

[
a1 a1
c1 c1

]
+

[
a2 a2
c2 c2

]

= T

([
a1 b1
c1 d1

])
+ T

([
a2 b2
c2 d2

])
;

while

T

(
α

[
a1 b1
c1 d1

])
= T

([
αa1 αb1
αc1 αd1

])
=

[
αa1 αa1
αc1 αc1

]

= α

[
a1 a1
c1 c1

]
= αT

([
a1 b1
c1 d1

])
.

Since T preserves both addition and scalar multiplication, T is a linear transformation. ♦

15.9 Properties of Linear Transformations

An important property of linear transformations is that the composition of any two
linear transformations (when the composition is defined) is also a linear transformation.
This fact has an interesting consequence as well.

Theorem 15.30 Let V, V ′, and V ′′ be vector spaces. If T1 : V → V ′ and T2 : V ′ → V ′′

are linear transformations, then the composition T2◦T1 : V → V ′′ is a linear transformation
as well.

Proof. For u,v ∈ V and a scalar α, observe that

(T2 ◦ T1)(u+ v) = T2(T1(u+ v)) = T2(T1(u) + T1(v))
= T2(T1(u)) + T2(T1(v)) = (T2 ◦ T1)(u) + (T2 ◦ T1)(v)

and

(T2 ◦ T1)(αv) = T2(T1(αv)) = T2(αT1(v))
= αT2(T1(v)) = α(T2 ◦ T1)(v).

Therefore, T2 ◦ T1 is a linear transformation.

As an example of the preceding theorem, let T1 : R3 → R2 and T2 : R2 → R3 be defined
by T1(a, b, c) = (a+ 2b− c, 3b+ 2c) and T2(a, b) = (b, 2a, a+ b). Then T2 ◦ T1 : R3 → R3 is
given by

(T2 ◦ T1)(a, b, c) = T2(T1(a, b, c))
= T2(a+ 2b − c, 3b+ 2c)
= (3b+ 2c, 2a+ 4b − 2c, a+ 5b+ c).
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From what we mentioned earlier, T1 and T2 can also be defined by

T1




 a

b
c




 =

[
1 2 −1
0 3 2

] a
b
c


 and T2

([
a
b

])
=


 0 1

2 0
1 1



[

a
b

]
.

Interestingly enough,

(T2 ◦ T1)




 a

b
c




 =


 0 1

2 0
1 1



[
1 2 −1
0 3 2

] a
b
c


 ,

that is, the composition T2 ◦ T1 can be obtained by multiplying the matrices that describe
T1 and T2. Therefore, if we represent the linear transformations T1 and T2 by matrices A1
and A2, respectively, then the matrix that represents T2 ◦ T1 is A2A1. This also explains
why the definition of matrix multiplication, though curious at first, is actually quite logical.

Two fundamental properties of a linear transformation are given in the next theorem.

Theorem 15.31 Let V and V ′ be vector spaces with respective zero vectors z and z′. If
T : V → V ′ is a linear transformation, then

(i) T (z) = z′ and

(ii) T (−v) = −T (v) for all v ∈ V .

Proof. We first verify (i). Since T preserves scalar multiplication,

T (z) = T (0z) = 0T (z) = z′.

Next we verify (ii). Let v ∈ V . Then

T (v) + T (−v) = T (v + (−v)) = T (z) = z′,

the last equality following by (i). Since the vector T (v) in V ′ has a unique negative, namely
−T (v), we conclude that T (−v) = −T (v).

If T : V → V ′ is a linear transformation, then it is often of interest to know how T acts
on subspaces of V . Let’s recall some terminology and notation from functions. In a linear
transformation T : V → V ′, the set V is the domain of T and the set V ′ is the codomain
of T . If W is a subset of V , then T (W ) = {T (w) : w ∈ W} is the image of W under T .
In particular, T (V ) is the range of T .

Theorem 15.32 Let V and V ′ be vector spaces and let T : V → V ′ be a linear transfor-
mation. If W is a subspace of V , then T (W ) is a subspace of V ′.

Proof. Let z and z′ be the zero vectors in V and V ′, respectively. Since z ∈ W and
T (z) = z′ by Theorem 15.31, it follows that z′ ∈ T (W ) and so T (W ) �= ∅. Thus we need
only show that T (W ) is closed under addition and scalar multiplication. Let x and y be
two vectors in T (W ). Hence, there exist vectors u and v in W such that T (u) = x and
T (v) = y. Then

x+ y = T (u) + T (v) = T (u+ v).
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Since u,v ∈ W and W is a subspace of V , it follows that u + v ∈ W . Hence x + y =
T (u+ v) ∈ T (W ).

Next let α be a scalar and x ∈ T (W ). We show that αx ∈ T (W ). Since x ∈ T (W ),
there exists u ∈ W such that T (u) = x. Now

αx = αT (u) = T (αu).

Since αu ∈ W , it follows that αx = T (αu) ∈ T (W ). By the Subspace Test, T (W ) is a
subspace of V ′.

To illustrate Theorem 15.32, let’s return to the linear transformation T : R3 → R2

defined in Result 15.24 by T (a, b, c) = (2a+ c, 3c − b). Let W = {(a, b, 0) : a, b ∈ R}. We
use the Subspace Test to show that W is a subspace of R3. Since (0, 0, 0) ∈ W , it follows
that W �= ∅. Let (a1, b1, 0), (a2, b2, 0) ∈ W and let α ∈ R. Then

(a1, b1, 0) + (a2, b2, 0) = (a1 + a2, b1 + b2, 0) ∈ W and α(a1, b1, 0) = (αa1, αb1, 0) ∈ W.

Since W is closed under addition and scalar multiplication, W is a subspace of R3. By
Theorem 15.32, T (W ) = {(2a,−b) : a, b ∈ R} is a a subspace of R2. We show in fact that
T (W ) = R2. Certainly, R2 = 〈(1, 0), (0, 1)〉. Hence to show that T (W ) = R2, it suffices, by
Corollary 15.16, to show that (1, 0) and (0, 1) belong to T (W ). Letting a = 1/2 and b = 0,
we see that (1, 0) ∈ T (W ); while letting a = 0 and b = −1, we see that (0, 1) ∈ T (W ).

For this same linear transformation T , we saw that T (1,−6,−2) = (0, 0) and T (0, 0, 0) =
(0, 0). Hence both (1,−6,−2) and (0, 0, 0) map into the zero vector of R2. The fact that
(0, 0, 0) maps into (0, 0) is not surprising, of course, since Theorem 15.31 guarantees this.

If T : V → V ′ is a linear transformation and W ′ is a subset of V ′, then

T−1(W ′) = {v ∈ V : T (v) ∈ W ′}

is called the inverse image of W ′ under T . If W ′ = {z′}, where z′ is the zero vector of
V ′, then T−1(W ′) is called the kernel of T and is denoted by ker(T ). That is, the kernel
of T : V → V ′ is the set

ker(T ) = T−1({z′}) = {v ∈ V : T (v) = z′}.

An interesting feature of the kernel lies in the following theorem.

Theorem 15.33 Let V and V ′ be vector spaces and let T : V → V ′ be a linear transfor-
mation. Then the kernel of T is a subspace of V .

Proof. Let z and z′ be the zero vectors of V and V ′, respectively. Since T (z) = z′, it
follows that z ∈ ker(T ) and so ker(T ) �= ∅. Now let u,v ∈ ker(T ) and α ∈ R. Then

T (u+ v) = T (u) + T (v) = z′ + z′ = z′

and
T (αu) = αT (u) = αz′ = z′.

This implies that u + v ∈ ker(T ) and αu ∈ ker(T ). By the Subspace Test, ker(T ) is a
subspace of V .

Returning once again to the linear transformation T : R3 → R2 in Result 15.24 defined
by T (a, b, c) = (2a+ c, 3c − b), we see that
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ker(T ) = {(a, b, c) : 2a+ c = 0 and 3c − b = 0}
is a subspace of R3. Since 2a+ c = 0 and 3c − b = 0, it follows that a = −c/2 and b = 3c.
Thus ker(T ) = {(−c/2, 3c, c) : c ∈ R}. In other words, ker(T ) is the subspace of R3

consisting of all scalar multiples of (−1/2, 3, 1).

Exercises for Chapter 15

15.1 Prove that the set C = {a + bi : a, b ∈ R} of complex numbers is a vector space
under the addition (a + bi) + (c + di) = (a + c) + (b + d)i and scalar multiplication
α(a+ bi) = αa+ αbi, where α ∈ R.

15.2 Although we have taken R to be the set of scalars in a vector space, this need not
always be the case. Let V = {([a], [b]) : [a], [b] ∈ Z3} and let Z3 be the set of scalars.

(a) Show that V is a vector space over the set Z3 of scalars under the addition
([a], [b]) + ([c], [d]) = ([a + c], [b + d]) and scalar multiplication [c]([a], [b]) =
([ca], [cb]).

(b) Write out precisely the elements of V . (Hence a vector space can have more than
one vector and be finite.)

15.3 Addition or scalar multiplication is defined in R3 in each of the following. (Each
operation not defined is taken as the standard one.) Under these operations, determine
whether R3 is a vector space.

(a) (a, b, c) + (d, e, f) = (a, b, c)

(b) (a, b, c) + (d, e, f) = (a − d, b − e, c − f)

(c) (a, b, c) + (d, e, f) = (0, 0, 0)

(d) α(a, b, c) = (a, b, c)

(e) α(a, b, c) = (b, c, a)

(f) α(a, b, c) = (0, 0, 0)

(g) α(a, b, c) = (αa, 3αb, αc)

15.4 Let V be a vector space, where u,v ∈ V . Prove that there exists a unique vector x
in V such that u+ x = v.

15.5 Let V be a vector space with v ∈ V and α ∈ R. Prove that α(−v) = (−α)v = −(αv).

15.6 (a) Let V be a vector space and u,v,w ∈ V . Prove that if u + v = u + w, then
v = w. (This is the cancellation property for addition of vectors.)

(b) Use (a) to prove Theorem 15.3.

15.7 Prove or disprove:

(a) No vector is its own negative.

(b) Every vector is the negative of some vector.

(c) Every vector space has at least two vectors.
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15.8 Let V be a vector space containing nonzero vectors u and v. Prove that if u �= αv
for each α ∈ R, then u �= β(u+ v) for each β ∈ R.

15.9 Determine which of following subsets of R4 are subspaces of R4.

(a) W1 = {(a, a, a, a) : a ∈ R}
(b) W2 = {(a, 2b, 3a, 4b) : a, b ∈ R}
(c) W3 = {(a, 0, 0, 1) : a ∈ R}
(d) W4 = {(a, a2, 0, 0) : a ∈ R}
(e) W5 = {(a, b, a+ b, b) : a, b ∈ R}

15.10 Let FR be the vector space of all functions from R to R. Determine which of the
following subsets of FR are subspaces of FR.

(a) W1 consists of all functions f such that f(1) = 0 = f(2).

(b) W2 consists of all functions f such that f(1) = 0 or f(2) = 0.

(c) W3 consists of all functions f such that f(2) = 2f(1).

(d) W4 consists of all functions f such that f(1) �= f(2).

(d) W5 consists of all functions f such that f(1) �= 0.

15.11 Recall that the set R[x] of polynomial functions is a subspace of FR. Now determine
which of the following subsets of R[x] are subspaces of R[x].

(a) U1 = {f : f(x) = a for a fixed real number a} (The set of all constant polyno-
mials)

(b) U2 = {f : f(x) = a+ bx+ cx2 + dx3, a, b, c, d ∈ R, d �= 0}
(c) U3 = {f : f(x) = a+ bx+ cx2 + dx3, a, b, c, d ∈ R}
(d) U4 = {f : f(x) = a0 + a2x

2 + a4x
4 + . . .+ a2mx2m,m ≥ 0, and ai ∈ R for 0 ≤

i ≤ m}
(e) U5 = {f : f(x) = (x3 + 1)g(x) for some g ∈ R[x]}

15.12 Let M2(R) be the vector space of 2 × 2 matrices whose entries are real numbers.
Determine which of the following subsets of M2(R) are subspaces of M2(R).

(a) W =

{[
a b
c d

]
: ad − bc = 0

}

(b) W =

{[
a b
c d

]
: α1a+ α2b+ α3c+ α4d = 0

}
, where α1, α2, α3, α4 are fixed

real numbers.

15.13 Prove that

W =




 a1 a2 a3

0 a4 a5
0 0 a6


 : ai ∈ R for 1 ≤ i ≤ 6




is a subspace of the vector space M3[R].
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15.14 Let U and W be subspaces of a vector space V . Prove that U ∩W is a subspace of V .

15.15 The graph of the functionf : R → R defined by f(x) = 3
5x is a straight line in

R2 passing through the origin. Each point (x, y) on this graph is a solution of the
equation 3x− 5y = 0. Prove that the set S of solutions of this equation is a subspace
of R2.

15.16 Determine the following linear combinations:

(a) 4 · (1,−2, 3) + (−2) · (1,−1, 0)

(b) (−1)

[
3 −2
1 −3

]
+ 2

[
1 1
1 2

]
+ 5

[
−1 −1
−1 −1

]

15.17 In R3, write i = (1, 0, 0) as a linear combination of u1 = (0, 1, 1),u2 = (1, 0, 1), and
u3 = (1, 1, 0).

15.18 Let u = (1, 2, 3), v = (0, 1, 2), and w = (3, 1,−1) be vectors in R3.

(a) Show that w can be expressed as a linear combination of u and v.

(b) Show that the vector x = (8, 5, 2) can be expressed as a linear combination of u,
v, and w in more than one way.

15.19 Let V be a vector space containing the vectors v1,v2, . . . ,vn and the vectors w1, w2,
. . ., wm. Let W = 〈v1,v2, . . . ,vn〉 and W ′ = 〈w1,w2, . . . ,wm〉. Prove that if each
vector vi (1 ≤ i ≤ n) is a linear combination of the vectors w1,w2, . . . ,wm, then
W ⊆ W ′.

15.20 Prove that 〈(1, 2, 3), (0, 4, 1)〉 = 〈(1, 6, 4), (1,−2, 2)〉 in R3

15.21 Let V be a vector space and let u and v in V . Prove that

(a) 〈u,v〉 = 〈u, 2u+ v〉
(b) 〈u,v〉 = 〈u+ v,u− v〉

15.22 Determine which sets S of vectors are linearly independent in the indicated vector
space V .

(a) S = {(1, 1, 1), (1,−2, 3), (2, 5,−1)};V = R3.

(b) S = {(1, 0,−1), (2, 1, 1), (0, 1, 3)};V = R3.

(c) S =

{[
1 1
0 0

]
,

[
1 2
1 1

]
,

[
0 1
0 1

]}
;V = M2(R).

15.23 For the vectors u = (1, 1, 1) and v = (1, 0, 2), find a vector w such that u,v,w are
linearly independent in R3. Verify that u,v,w are linearly independent.

15.24 Prove or disprove: If u1,u2,u3 are linearly independent vectors in a vector space V ,
then u1 + u2,u1 + u3, 2u3 are linearly independent vectors in V .

15.25 Determine which sets S of vectors in FR are linearly independent.

(a) S = {1, sin2 x, cos2 x}
(b) S = {1, sinx, cosx}
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(c) S = {1, ex, e−x}
(d) S = {1, x, x/(x2 + 1)}.

15.26 Let S = {u1,u2, . . . ,un} be a linearly dependent set of n ≥ 2 vectors in a vector space
V . Prove that if each subset of S consisting of n − 1 vectors is linearly independent,
then there exist nonzero scalars c1, c2, . . . , cn such that c1u1 + c2u2 + . . .+ cnun = z.

15.27 Prove that if T : V → V ′ is a linear transformation, then

T (α1v1 + α2v2 + . . .+ αnvn) = α1T (v1) + α2T (v2) + . . .+ αnT (vn),

where v1,v2, . . . ,vn ∈ V and α1, α2, . . . , αn ∈ R.

15.28 Let V and V ′ be vector spaces and let T : V → V ′ be a linear transformation. Prove
that if W ′ is a subspace of V ′, then T−1(W ′) is a subspace of V .

15.29 Prove that there exists a bijective linear transformation T : R2 → C, where C =
{a+ bi : a, b ∈ R} is the set of complex numbers.

15.30 For vector spaces V and V ′, let T1 and T2 be linear transformations from V to V ′.
Define T1 + T2 : V → V ′ as

(T1 + T2)(v) = T1(v) + T2(v).

Prove that T1 + T2 is also a linear transformation.

15.31 Let W =

{[
a b
0 a+ b

]
: a, b ∈ R

}
.

(a) Prove that W is a subspace of M2(R)

(b) Prove that there exists a bijective linear transformation T : R2 → W .

15.32 For the 2 × 3 matrix A =

[
3 1 −1
2 −5 2

]
, a function T : R3 → R2 is defined by

T (u) = Au, where u is a 3 × 1 column vector in R3.

(a) Determine T (u) for u =


 4

−1
−2


.

(b) Prove that T is a linear transformation.

15.33 Let D : R[x] → R[x] be the differentiation linear transformation defined by

D(c0 + c1x+ . . .+ cnx
n) = c1 + 2c2x+ . . .+ ncnx

n−1.

Determine each of the following.

(a) D(W ), where W = {a+ bx : a, b ∈ R}.
(b) D(W ), where W = R.

(c) ker(D).
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15.34 Let T : M2(R) → M2(R) be the linear transformation defined by

T

([
a b
c d

])
=

[
a a
c c

]

and consider the subset W =

{[
a 0
0 d

]
: a, d ∈ R

}
of M2(R).

(a) Prove that W is a subspace of M2(R).

(b) Determine the subspace T (W ) of M2(R).

(c) Determine the subspace ker(T ) of M2(R).

15.35 For the following statement S and proposed proof, either (1) S is true and the proof
is correct, (2) S is true and the proof is incorrect, or (3) S is false and the proof is
incorrect. Explain which of these occurs.

S: Let V be a vector space. If u is a vector of V such that u+v = v for some v ∈ V ,
then u+ v = v for all v ∈ V .

Proof. Assume that u+v = v for some v ∈ V . Then we also know that z+v = v,
where z is the zero vector of V . Hence u + v = z + v. By Exercise 15.6, u = z and
so u+ v = v for all v ∈ V .


