FIGURE 8.1 Empirical sampling distribution of 200 means from the population in Table 8.1. For each sample mean, $N = 8$.

The characteristics of a sampling distribution of the mean are:

1. Every sample is drawn randomly from a specified population.
2. The sample size (N) is the same for all samples.
3. The number of samples is very large.
4. The mean \bar{X} is calculated for each sample.\(^4\)
5. The sample means are arranged into a frequency distribution.

I hope that when you looked at Figure 8.1, you were at least suspicious that it might be the ubiquitous normal curve. It is. Now you are in a position that educated people often find themselves: What you learned in the past, which was how to use the normal curve for scores (X), can be used for a different problem—describing the relationship between \bar{X} and μ.

Of course, the normal curve is a theoretical curve, and I presented you with an empirical curve that only appears normal. I would like to let you prove for yourself that the form of a sampling distribution of the mean is a normal curve, but, unfortunately, that requires mathematical sophistication beyond that assumed for this course. So I will resort to a time-honored teaching technique—an appeal to authority.

Central Limit Theorem

The sampling distribution of the mean approaches a normal curve as N gets larger.

The authority I appeal to is mathematical statistics, which proved a theorem called the **Central Limit Theorem**: For any population of scores, regardless of form, the sampling distribution of the mean approaches a normal distribution as N (sample size) gets larger. Furthermore, the sampling distribution of the mean has a mean (the expected value) equal to μ and a standard deviation (the standard error) equal to σ/\sqrt{N}.
The characteristics of a sampling distribution of the mean are:

1. Every sample is drawn randomly from a specified population.
2. The sample size \(N \) is the same for all samples.
3. The number of samples is very large.
4. The mean \(\bar{X} \) is calculated for each sample.\(^4\)
5. The sample means are arranged into a frequency distribution.

I hope that when you looked at Figure 8.1, you were at least suspicious that it might be the ubiquitous normal curve. It is. Now you are in a position that educated people often find themselves: What you learned in the past, which was how to use the normal curve for scores \(X \), can be used for a different problem—describing the relationship between \(\bar{X} \) and \(\mu \).

Of course, the normal curve is a theoretical curve, and I presented you with an empirical curve that only appears normal. I would like to let you prove for yourself that the form of a sampling distribution of the mean is a normal curve, but, unfortunately, that requires mathematical sophistication beyond that assumed for this course. So I will resort to a time-honored teaching technique—an appeal to authority.

Central Limit Theorem

The authority I appeal to is mathematical statistics, which proved a theorem called the Central Limit Theorem:

For any population of scores, regardless of form, the sampling distribution of the mean approaches a normal distribution as \(N \) (sample size) gets larger. Furthermore, the sampling distribution of the mean has a mean (the expected value) equal to \(\mu \) and a standard deviation (the standard error) equal to \(\sigma / \sqrt{N} \).