

FIGURE 8.1 Empirical sampling distribution of 200 means from the population in Table 8.1. For each sample mean, N=8.

The characteristics of a sampling distribution of the mean are:

- 1. Every sample is drawn randomly from a specified population.
- 2. The sample size (N) is the same for all samples.
- 3. The number of samples is very large.
- 4. The mean \overline{X} is calculated for each sample.⁴
- 5. The sample means are arranged into a frequency distribution.

I hope that when you looked at Figure 8.1, you were at least suspicious that it might be the ubiquitous normal curve. It is. Now you are in a position that educated people often find themselves: What you learned in the past, which was how to use the normal curve for scores (X), can be used for a different problem—describing the relationship between \overline{X} and μ .

Of course, the normal curve is a theoretical curve, and I presented you with an empirical curve that only appears normal. I would like to let you prove for yourself that the form of a sampling distribution of the mean is a normal curve, but, unfortunately, that requires mathematical sophistication beyond that assumed for this course. So I will resort to a time-honored teaching technique—an appeal to authority.

Central Limit Theorem

Central Limit TheoremThe sampling distribution of the mean approaches a normal curve as *N* gets larger.

The authority I appeal to is mathematical statistics, which proved a theorem called the Central Limit Theorem:

For any population of scores, regardless of form, the sampling distribution of the mean approaches a normal distribution as N (sample size) gets larger. Furthermore, the sampling distribution of the mean has a mean (the expected value) equal to μ and a standard deviation (the standard error) equal to σ/\sqrt{N} .

FIGURE 8.1 Empirical sampling distribution of 200 means from the population in Table 8.1. For each sample mean, N=8.

The characteristics of a sampling distribution of the mean are:

- 1. Every sample is drawn randomly from a specified population.
- 2. The sample size (N) is the same for all samples.
- 3. The number of samples is very large.
- 4. The mean \overline{X} is calculated for each sample.⁴
- 5. The sample means are arranged into a frequency distribution.

I hope that when you looked at Figure 8.1, you were at least suspicious that it might be the ubiquitous normal curve. It is. Now you are in a position that educated people often find themselves: What you learned in the past, which was how to use the normal curve for scores (X), can be used for a different problem—describing the relationship between \overline{X} and μ .

Of course, the normal curve is a theoretical curve, and I presented you with an empirical curve that only appears normal. I would like to let you prove for yourself that the form of a sampling distribution of the mean is a normal curve, but, unfortunately, that requires mathematical sophistication beyond that assumed for this course. So I will resort to a time-honored teaching technique—an appeal to authority.

Central Limit Theorem

Central Limit TheoremThe sampling distribution of the mean approaches a normal curve as *N* gets larger.

The authority I appeal to is mathematical statistics, which proved a theorem called the Central Limit Theorem:

For any population of scores, regardless of form, the sampling distribution of the mean approaches a normal distribution as N (sample size) gets larger. Furthermore, the sampling distribution of the mean has a mean (the expected value) equal to μ and a standard deviation (the standard error) equal to σ/\sqrt{N} .