
96

As We Should Have Thought

Peter J. Nürnberg, John J. Leggett, Erich R. Schneider
Hypermedia Research Laboratory

Texas A&M University
College Station, TX 77843-3112 USA

Tel: 1-409-862-3217
E-mail:{pnuern , leggett , erich }@bush.cs.tamu.edu

ABSTRACT
The hypermedia field has long realized the need for first-
class structural abstractions. However, we have failed to
generalize the concept of ubiquitous structure management
to problem domains other than navigation of information
spaces. In this paper, we argue for the recognition of such
a generalization, called structural computing, in which we
assert the primacy of structure over data. We provide
examples of four problem domains that are more naturally
modeled with structure than data. We argue that support
for structural computing must come in the form of new
models, operating systems, and programming languages.
We also assert that the experience gained by hypermedia
researchers over the last decade may be naturally extended
to form the basis of the new field of structural computing,
and furthermore, the broadening of the applicability of our
work is necessary for the continued vitality of our research
community.

KEYWORDS: models of computation, hypermedia
operating systems, hypermedia models, spatial hypertext,
taxonomic hypertext, open hypermedia systems,
hyperbases, structural computing

1 HYPERMEDIA IS DEAD
Linking is more than harmful [1, 10] — it is downright
deadly. Two main problems exist with hypermedia
research today and both can be tied directly to our current
notion of linking. Firstly, linking implies a certain kind of
structural paradigm, one in which the user (or occasionally
a program) links information together for purposes of
navigation. However, there are many other cases of
computing in which structure plays a key role. We have
even accepted some of these into our field. Yet, as a field,
we have been unable to cast off the chains of the linking
paradigm. This has often left us at a loss for common
terminology to discuss these other uses of structure in
computing. Witness the inability of many (even recently)

proposed hypermedia models to naturally address the
needs of spatial hypertext systems [6, 8] or the newer
systems for literary [2, 12] and artistic work [4, 14].

Secondly, linking implies the primacy of data, not
structure. We still view hypertext functionality as
something to be added onto/over “real” programs/data.
The hypermedia field has long realized the necessity of
first-class structural abstractions in our models, but we
have yet to declare the primacy of structure over data in
computing.

Now, ten years after the start of the hypertext conference
series, we are faced with a question: should we evolve our
field into a broader domain and allow our current notion of
hypermedia to go the way of the dinosaur or try to sustain
the species as “the” model of computing? In the rest of
this paper, we attempt to make the case for expanding our
horizons into the broader domain of structural computing.

2 STRUCTURAL COMPUTING

2.1 What We Should Have Realized
We should have realized that hypermedia is just a special
case of a general philosophy of computing in which
structure is more important than data. Structure should be
the ubiquitous, atomic building block available to all
systems at all times and from which all other abstractions
(including data) are derived. Here, we call this philosophy
of the primacy of structure “structural computing.” What
are the implications of completely adopting a structural
computing paradigm?

Firstly, models must support the primacy of structure. It
must not be the case that models build up idiosyncratic
structural abstractions from data objects. Rather, models
must support a set of generic structural abstractions that
can be refined to suit the problem at hand.

Secondly, (operating) systems must support the primacy of
structure. It must not be the case that structure is seen as
an optional, additional abstraction for system construction.
It must be guaranteed to be present and recognized as a
resource to be managed.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
Hypertext 97, Southampton UK
© 1997 ACM 0-89791-866-5...$3.50

97

Thirdly, programming languages must support the
primacy of structure. It must not be the case that structural
programming abstractions are reworked from scratch by
programmers or only available as ad hoc extensions
provided by various libraries. Core language definitions
must provide generic structural capabilities.

In traditional systems, the computing environment provides
basic data abstractions. Many models provide the data
abstraction of “object,” operating systems provide
abstractions such as “file,” and programming languages
provide atomic data types such as “integer.” How would
these basic abstractions be changed in a structural
computing environment? Models would provide
relationship as the atomic building block. Operating
systems would provide a generic structure store, in which
abstractions such as file are modeled as structure with
content. Programming languages could dispense with the
notion of pointer, since all structure would automatically
be separated from data and associated with content.

Without adopting structural computing completely and
effecting the necessary changes to models, systems, and
languages, we will relegate structurally-oriented systems
(such as hypermedia systems) to ad hoc second-class
oddities in a world of exclusively data-oriented systems.

2.2 Examples of Structural Computing Problem
Domains

In this section, we present four problem domains for which
structural computing is shown to be useful. Two of these
problem domains (argumentation support and spatial
hypertext) come from the hypertext literature, while the
other two (botanical taxonomy and linguistics) are not
normally associated with hypertext. A characteristic of the
first two domains is that they are accepted as part of the
hypertext field, despite the fact that they are difficult to
discuss if we constrain ourselves to the traditional
terminology and abstractions of hypertext. What is it
about these two domains that has caused us to accept them
as examples of hypertext systems? We believe it is their
emphasis on structure, whether static and constrained [17]
or dynamic and virtual [7]. The second two problem
domains are modeled in a natural and convenient way
within the assumptions of ubiquitous support for first-class
structure.

Argumentation Support. Argumentation systems [9, 15,
17] were an early example of a different kind of structural
computing than the more traditional navigationally-
oriented systems. Structure in argumentation systems is a
special case of structure in general structural computing
systems, because there are semantic constraints on how
certain objects may be linked together. These links are not
the “associative trails” of Bush, but the formal structures of
Toulmin [15]. The structure built in argumentation
systems is not as personal as in some other forms of

hypertext; rather, information is linked in ways that reflect
formal, communally defined relationships. Is the notion of
link sufficient to discuss both personal associations and
formal relationships, or does it carry with it too many
preconceived notions? Clearly there are similarities
between these types of structures. Without explicitly
recognizing the fact that personal associations and formal
relationships are both special cases of more general
structure, we are forced to use ambiguously defined and
often inappropriate terminology to discuss different
systems and models. By recognizing navigational and
argumentation support systems as peer specializations of
structural computing we will be able to identify more
precisely the terms and concepts common and specific to
both.

Spatial Hypertext. Spatial hypertext has always pushed the
limits of our notions of hypertext. Where is the structure?
What exactly are the information nodes? What does it
mean to “follow a link?” Structure in spatial hypertext
systems is dynamic and implicit. It is defined by the
placement of data objects in a space. This structure is not
traversed explicitly for the purpose of navigating the
information. Instead, it is traversed (by the system) for the
purpose of finding higher-level compositions of atomic
data objects and lower-level compositions. For example,
in VIKI [8], this traversal consists in large part of a spatial
parse that recognizes patterns of objects. The notions of
link and navigation are insufficient to discuss spatial
hypertext — more general notions of structure and
traversal are needed. This is reflected in the fact that
spatial hypertext systems are built from scratch, without
using existing limited systems or models as building
blocks. Here, recognition of spatial hypertext as a
specialization of structural computing distinct from, but on
par with, navigation systems allows us to avoid overloaded
and inappropriate terminology such as node and link while
recognizing common concepts such as general structure
and behavior management.

Botanical Taxonomy. Taxonomic systems have (in
general) not been thought of as hypertext systems.
However, as discussed in [11], much of the taxonomic
problem can be well-modeled and supported by the
structure management facilities found in general hypertext
systems. Taxonomic work starts with a set of samples,
which are then grouped into taxa. Taxa may further be
grouped into supertaxa. The resulting taxonomy is
generally a tree or forest of taxon trees with samples at the
leaves. Problems arise in taxonomic work when taxa or
samples are differently parented and/or named by different
researchers. Often no objective criteria for grouping taxa
or samples exist, and since both the available sample set
and the subjective grouping criteria change over time, there
are no unique and “correct” taxonomies. Instead,
researchers must be able to move between taxonomies, at

98

times using parts of several taxonomies to model their
work accurately.

Computational support for taxonomic work demands
recognition of structure. In taxonomic systems, it is
imperative — in fact, it is the definition of the work — to
name the structural elements produced. Different types of
computation exist over taxonomic structure than those
found in navigational systems. We have previously argued
[11] that such taxonomic systems, especially when built on
a hyperbase system, represent a kind of hypertext. This,
however, automatically constrains the discussions about
such taxonomic systems to the use of already defined terms
invented to describe other systems with a fundamentally
different focus. We now advocate the description of both
taxonomic systems and navigational systems as special
cases of structural computing systems. This allows us to
compare and contrast the systems more effectively, by
allowing the use of common terminology when appropriate
and avoiding it otherwise.

Linguistics. The application of computing to linguistic
work defines a broad field. Here, we concentrate on
diachronic comparative linguistics, the results of which are
trees or graphs of languages, in some ways similar to
taxonomic structures, but even more complex. In this
linguistic problem, the data with which one begins are
samples of extant languages. These samples are grouped
into dialects, languages, language families, etc., as in the
taxonomic problem. However, different samples may also
be combined in a process known as “reconstruction” to
produce language definitions for extinct languages.
Reconstructed past languages may also be grouped as
present languages, forming new taxonomies. Finally,
languages are implicitly grouped in temporal ancestor and
descendent relationships through the process of
reconstruction. Taxonomies of languages at any point in
time, present or past, have all the same problematic
characteristics of regular taxonomies, with the additional
overhead of maintaining diachronic (temporal)
relationships. Furthermore, unlike most taxonomies, it is
common for languages in linguistic taxonomies to have
multiple parents.

As above, systems designed to support this problem
domain require structure. As with regular taxonomies, the
entire product of this work is the structure built from an
ever-changing set of taxa and samples. Many results
produced in the hypertext field apply directly to this
domain. Again, however, it is unnecessarily limiting to
call systems designed to support diachronic comparative
linguistics “hypertext” systems. We advocate the
description of these systems as another specific example of
structural computing.

2.3 Conceptual Architectures for Structural
Computing

What kind of conceptual architectures could support
structural computing? Since structural computing is a
generalization of hypermedia, in some sense, architectures
supporting the former should be a generalization of the
latter. Below, we discuss in broad terms the evolution of
hypermedia system architectures with respect to
generalizations and abstractions. The steps below are not
intended to provide a rigorous accounting of the actual
historical development of hypermedia systems, but rather
describe in general terms the increasing generalization over
time of representative hypermedia systems.

Monolithic Systems. Early hypermedia systems were
monolithic (figure 1a). They included the interface to the
user, a linking mechanism, and an interface to a basic file
store in one program. In general, there was no distribution
of any part of the system, except incidental distribution
effected through distribution on the part of the interface
(e.g., X) or underlying store (e.g., NFS). If behaviors
(computations over structure) were distinguished at all,
they were embedded in the system. The structure and data
representations were combined into unified, application-
dependent representations in the file store.

Abstraction of Applications. One of the first elements of
the monolithic hypermedia system to be abstracted away
was the user interface (figure 1b). This was manifested by
the movement toward “open” hypermedia systems. A
hypermedia system is open if it allows an open set of
applications to participate in a common linking protocol
provided by a link engine. As with the monolithic systems,
however, all other aspects of the system (link engine,
behaviors, interface to file stores) were centralized and
embedded in one program. Openness at the application
layer of the hypermedia system allowed natural explicit
distribution at this layer as well. The degree to which
applications should or should not be modified to
participate in a common linking protocol is still an open
issue [21], but the principle of this abstraction is well-
established.

Abstraction of Stores. The next element of hypermedia
systems to be targeted for abstraction was the interface to
the stores (figure 1c). Systems began including an
intermediate (and separate) layer which was interposed
between the link engine (with embedded behaviors) and
the file store, often in the form of a database. The
inclusion of a database as the storage engine for
hypermedia systems allowed transaction management,
notification and access control, and other database
provided functionality in link engine operations. The
resultant storage layer was occasionally made open and
distributed [3]. Oftentimes, after the storage layer had
been abstracted away from the link engine, the link engine
was renamed the ‘link service,’ since it now was a program
with a single, well-defined purpose.

99

Store

Store

Application

Behavior Link Engine

Structure StoreData Store

Link Service

Link ServiceBehavior

Application

Application

Linking mechanism

Application

Application

(Hyperbase)

(Hyperbase)

(Hyperbase)

Behavior

Behavior

Data Store

Data Store

Structure Store

Structure Store

Sproc

Figure 1a. Monolithic Systems.

Figure 1b. Abstraction of Applications.

Figure 1c. Abstraction of Stores.

Figure 1d. Abstraction of Behaviors.

Figure 1e. Abstraction of Structure Processors.

100

The interest in hyperbases represented the abstraction of
the structure store from the data store in the storage layers
of hypermedia systems [13, 16, 19]. Hyperbases provided
a separate interface to the storage layer that exclusively
managed structure. This abstraction usually did not result
in an open or distributed structure store layer in systems.

Instead, it represented the promotion of structure to a ‘first-
class’ entity in the storage layer (which itself may or may
not have been open and/or distributed).

 Abstraction of Behaviors. Currently, there is interest in the
abstraction and generalization of behavior (computations
over structure). While some earlier systems allowed for
the assignment of one of a closed set of behaviors to
specific links, only recently have systems been reported
that allow an open set of behaviors over structure [5, 18,
20]. Oftentimes, these behaviors are not distributed, and
[11] discussed reasons why behaviors may be more
efficiently implemented as threads of control inside a link
service. In any event, newer systems (in general) should
now allow an open set of behaviors (figure 1d).

Abstraction of Link Services. One principle underlies all
the abstractions discussed above: abstraction of “non-
hypermedia essential” properties from the link service. All
of the above steps can be generalized to abstracting some
functionality from the previous generation of hypermedia
systems, and consequently allowing this functionality to
become open and/or distributed. Indeed, in terms of the
general conceptual architecture presented here, all non-link
service elements have been abstracted and
opened/distributed. More accurately, all layers have been
opened except for the link service itself.

What does it mean to open this layer of hypermedia
systems? What are generalized link services? We propose
the term “structure processor” for generalized link service
(figure 1e) and assert that open structure processors
implement in a natural way structural computing.

The term structure processor (or Sproc) is appropriate for
this new abstraction, because all Sprocs have in common
the fact that they process structural abstractions. Sprocs
may be thought of as clients of generic structure served by
the structure store, and servers of specialized structure to
applications or other processes that desire it.

The examples given in Section 2.2 all have in common an
elevation of structure to first-class status in the conceptions
of their respective problems. The conceptions of structure
all have some basic elements in common. These are the
elements that are provided by structure stores in
hyperbases. However, they all specialize these general
structural abstractions in what can be considered structure
processors. To be sure, different problem domains may
require different behaviors, but in systems with open

behaviors, this is not problematic. Programmers building
systems to support such problem domains should be able to
consider the structure facilities of hyperbases as given.
This maximizes the reuse of generic structural abstractions.
However, general structural computing systems must allow
for an open set of processes that refine these generic
abstractions in order to admit all possible structural
computing systems.

3 FUTURE RETHINK/REWORK
If linking is harmful and hypermedia is dead, where does
this leave the work currently being done in hypermedia?
Clearly, there is interesting and important work being done
on navigationally-oriented hypermedia systems. However,
just as clearly, we can identify interesting and important
work related to hypermedia by virtue of the fact that it, too,
is a special case of structural computing. We as
hypermedia researchers have much to bring to other
structural computing problem domains because of our rich
history in dealing with a kind of first-class structure. For
real progress to occur in these other domains, though, we
must end the privileging of hypermedia over these other
domains. As long as we are forced to consider other
structural computing domains as derivations of
hypermedia, we will be using inappropriate and overloaded
concepts and terminologies in our modeling and
discussions.

The call for the recognition of structural computing as an
encompassing field for hypermedia and its relatives does
not imply the need to discard hypermedia systems,
concepts, or terminologies. It does, however, require two
things of our field. The first is a rigorous definition of
structural computing. What are the atomic elements and
operations over general structure? How are these best
implemented? The second is a set of mappings from this
rigorous definition to specific domains. The first such
mapping should probably be to the most well-established
structural computing domain, navigational hypertext.
However, we assert that there are a vast array of fields
whose problems may be conveniently and efficiently
addressed in a structural computing paradigm.

Viewed in light of these mappings, it would be helpful to
rethink old ideas in extant structural computing fields
(navigational hypertext, spatial hypertext, etc.) to define
clearly that which is specific to these fields and that which
applies generally to structural computing. We also should
consider how we can provide support for general structural
computing systems. The hypermedia field has a long
history of designing and implementing infrastructure for
hypermedia systems. We should now rework the results of
our experience and apply it to the building of both general
systems infrastructure and domain-specific structural
computing systems. This reworking applies to models,
operating environments, and programming languages.

101

In conclusion, hypermedia as a field unto itself may or may
not be dead. However, it can evolve into the much
broader, richer, and more important field of structural
computing, of which hypermedia will always be the most
venerable example. The question before us as hypermedia
researchers is whether or not to claim this broader field as
our own.

ACKNOWLEDGEMENTS
This research was supported in part by the Texas
Advanced Research Program under Grant No. 999903-
230.

REFERENCES
1. DeYoung, L. 1990. Linking considered harmful.

Proceedings of ECHT 90, (Versailles, France, Nov)
238-249.

2. Greco, D. 1996. Hypertext with consequences:
recovering a politics of hypertext. Proceedings of HT
96 (Washington, DC, Mar) 85-92.

3. Kacmar, C., and Leggett, J. 1991. PROXHY: A
process-oriented extensible hypertext architecture.
ACM Transactions on Information Systems 9(4) Oct,
339-419.

4. Kendall, R. 1996. Hypertextual dynamics in A Life Set
for Two. Proceedings of HT 96 (Washington, DC,
Mar) 74-84.

5. Leggett, J. J., and Schnase, J. L. 1994. Viewing Dexter
with open eyes. Communications of the ACM 37(2)
Feb, 76-86.

6. Marshall, C., Halasz, F., Rogers, R., Jansen, W. 1991.
Aquanet: a hypertext tool to hold your knowledge in
place. Proceedings of HT 91 (San Antonio, TX, Dec)
261-275.

7. Marshall, C., and Shipman, F. 1993. Searching for the
missing link: discovering implicit structure in spatial
hypertext. Proceedings of HT 93 (Seattle, WA, Nov)
217-230.

8. Marshall, C., and Shipman, F. 1995. Spatial hypertext:
designing for change. CACM 38(3), Aug, 88-97.

9. McCall, R., Bennett, P., D’Oronzio, P., Ostwald, J.,
Shipman, F., and Wallace, N. 1990. PHIDIAS:
integrating CAD graphics into dynamic hypertext.
Proceedings of ECHT 90, (Versailles, France, Nov)
152-165.

10. Meyrowitz, N. 1991. Hypertext—does it reduce
choleterol, too? From Memex to Hypertext (Kahn et
al., ed.) Academic Press, Boston.

11. Nürnberg, P., Leggett, J., Schneider, E., and Schnase, J.
1996. Hypermedia operating systems: a new paradigm
for computing. Proceedings of HT 96 (Washington,
DC, Mar) 194-202.

12. Rosenberg, J. 1996. Content-oriented integration in
hypermedia systems. Proceedings of HT 96,
(Washington, DC, Mar) 11-21.

13. Schnase, J., Leggett, J., Hicks, D., Nürnberg, P., and
Sànchez, J. 1993. Design and implementation of the
HB1 hyperbase management system. EP-ODD 6(1),
Mar, 35-63.

14. Sawhney, N. Balcom, D., and Smith, I. 1996.
HyperCafe: narrative and aesthetic properties of
hypervideo. Proceedings of HT 96 (Washington, DC,
Mar) 1-10.

15. Schuler, W., and Smith, J. 1990. Author’s
Argumentation Assistant (AAA): a hypertext-based
authoring tool for argumentative texts. Proceedings of
ECHT 90, (Versailles, France, Nov) 137-151.

16. Schütt, H. and Streitz, N. 1990. HyperBase: a
hypermedia engine based on a relational database
management system. Proceedings of ECHT 90,
(Versailles, France, Nov) 95-108.

17. Smolensky, P. Bell, B., Fox, B., King, R., and Lewis,
C. 1987. Constraint-based hypertext for
argumentation. Proceedings of HT 87 (Chapel Hill,
NC, Nov) 215-245.

18. Wiil, U., and Leggett, J. 1992. Hyperform: Using
extensibility to develop dynamic, open and distributed
hypertext systems. Proceedings of ECHT 92 (Milan,
Italy, Nov), 251-261.

19. Wiil, U. 1993. Experiences with HyperBase: a
hypertext database supporting collaborative work.
ACM SIGMOD Record 22(4), Dec, 19.

20. Wiil, U. 1995. Hyperform: rapid prototyping of
hypermedia services. CACM 38(8) Aug 1995, 109-
111.

21. Wiil, U. and Demeyer, S. 1996. Proceedings of the
2nd workshop on open hypermedia systems. University
of California at Irvine technical report ICS-96-10.

