
Engineering of Unstable Requirements Using Agile Methods

James E. Tomayko
Carnegie Mellon University

jet@cs.cmu.edu

 Abstract

 Some think that the early absence of
requirements specified later are defects. We
consider them merely “undiscovered.” Finding
these new requirements could nearly be done
adequately using early prototypes. Lately, Agile
Methods are used to refine requirements
throughout development.

 In a recent cartoon, a manager is seen walking
through an area filled with programmers. He says,
“You guys start coding and I’ll go see what they
want.” This pretty well characterizes the situation
described in the Call for Papers of this workshop.
There seems to be a common belief that agile
development methods reinforce this unfortunate
attitude toward requirements. Conversely, my
research has shown that an “agile attitude” toward
requirements is a very effective means of acquiring
them [6].
 I have had 12 teams of from four to six engineers
participate in eXtreme Programming (XP)[1, 3]
experiments in the past year. The experiments
were primarily aimed at defect reduction and not
requirements acquisition [9], but observing how
these teams go about their work can make several
insights to the requirements acquisition process,
such as were made in [10]. These observations are
further described in this paper. This workshop will
hopefully suggest some ideas for formal
experiments that deal with the requirements
elicitation process in agile methods.

The (Old) Method of Up-Front
Requirements Elicitation

 Current requirements elicitation methods
reinforce improper beliefs. Many projects try to
follow the waterfall software life cycle and other
obsolete software development life cycle models.
The requirements are gathered first in one big
effort [4]. Frequently, these requirements turn out
to be rife with omissions and misconceptions.

Correcting them costs time and money. The result
has been a movement toward more iterative
models [8].

At first, these took the form of prototypes, both to
find missing requirements and to examine the
feasibility of solutions to others [5]. The history of
iterative requirements gathering has itself gone
through several cycles, of which agile methods are
the latest. The trouble is that with each new
iterative method the requirements elicitation
process appears to become less defined.
 I feel that the attitude towards requirements
gathered early in the process is incorrect in that
ones missed at that stage are considered defects
when added later. My observations and the entire
point of iterative processes is that requirements are
seldom omitted, they are just unknown. There is
simply no way that the requirements of even well
understood problems could be known. Therefore,
why even try? Requirements are elicited by agile
methods in a more practical way.

Requirements Elicitation in Agile
Methods

The “user stories” or the like are just the beginning
points of both the requirements gathering and
development processes in agile methods. Early
requirements are simply a place to start. It is
expected to add more requirements as more is
known about the product. Conversely, the method
of trying to gather all the requirements before
starting development is almost certainly rife with
errors and surely takes too long. In such a
development process, the client is prompted by the
product to “remember” some things and by the
marketplace to want others changed. “I’ll know it
when I see it (IKIWISI)” [2] has become a well
known requirements method. In effect, the early
version of the product becomes a prototype. Agile

methods are designed to appeal to clients that
insist on IKIWISI.

 Prototyping in agile methods is even more rapid
and produces smaller amounts of code than
traditional prototypes [1, 9]. Developers that use
prototype-based life cycle models are familiar with
the case of the client falling in love with the
prototype so that they want to take it away as the
product. Avoiding a situation where bad code and
poor documentation characterizes the product
makes the developer produce a less robust
prototype. As a result, they are not as useful. Agile
Methods, which have the concept of a “spike”—a
rapid development of a prototype that answers a
single question about requirements content—avoid
this problem of showing the client too much.
 In this way, the client is kept from the
responsibility of “getting the requirements right.”
There are no wrong requirements. There are
simply some waiting to be discovered.

Difficulties Caused by Agile Methods of
Gathering Requirements

This attitude toward requirements makes
estimation and software architecture development
more difficult, and verification easier, than
traditional methods. Without knowing the final
form of the product, or marketplace demands,
estimation is going to be impossible to get correct
[7]. It is little comfort that requirements omissions
and changes caused by reacting to the competition
make most estimates incorrect right now. Agile
methods are likely to be right about the costs
involved in the current cycle, but estimating is
poorly understood for the unknown requirements
of the next cycle.
 One thing that can be done is to fund the project
one cycle at a time, which is equivalent to funding
an entire project using an older development
method now. However, there will be time when
knowing the total cost is necessary, as in contract
work. In these cases, the requirements are
expressed by the customer as well as they can, and
the estimate adjusted by the probable cost of later
changes. For instance, if a project is estimated at
$1M, and prior projects of roughly those same
characteristics have had the cost of “changed”
requirements at around 20 per cent, then the
estimate is $1.2M. Of course, as with all
estimations, this can not be used without
considerable historical data.
 As for the architecture, that chosen by the team
during the early cycles may become just plain

wrong, as later requirements become known.
Rework of the architecture matches the refactoring
principle of eXtreme Programming. Most of my
XP teams embraced refactoring, claiming that they
would do it anyway, even if the requirements were
stable. One student identified refactoring as
rework, with it attendant negative properties,
notably increased cost. Either way, significant
refactoring is to be expected in an atmosphere
where requirements are relatively unknown.
Confidence in the requirements translates to
confidence in the architecture.

Advantages of Agile Methods for
Correctness

 Aside from refactoring and effective prototyping,
agile methods have other advantages for a situaion
in which requirements are unstable. Reliance on
test-first programming, a principle of XP, means
early detection of most minor errors, more certain
detection of defects at integration, and early
thinking-through of tests for a Graphical User
Interface [10]. This is an advantage to any system.
For this reason alone, requirements engineering is
advanced by the developer knowing right away if a
requirement can be tested.

[1] Kent Beck, eXtreme Programming, Addison-
Wesley, Boston, 2000.
[2] Barry Boehm, “Requirements that Handle IKIWISI,
COTS, and Rapid Change,” Computer, IEEE, July 2000,
pp. 99-102.
[3] Alistair Cockburn, Agile Software Development,
Addison-Wesley, Boston, 2002.
[4] Alan Davis, Software Requirements, Prentice-Hall,
Englewood Cliffs, N. J., 1990.
[5] D. Leffingwell and D. Widrig, Managing Software
Requirements: A Unified Approach, Addison-Wesley,
Boston, 2000.
[6] John Smith, A Comparison of RUP and XP, Rational
Software White Paper, 2001.
[7] Richard Thayer and Merlin Dorfman, eds., Software
Requirements Engineering, IEEE Computer Society
Press, Los Alamitos, Ca.,1997.
[8] James E. Tomayko, “An Historian’s View of
Software Engineering,” in the Proceedings of the IEEE
Conference on Software Engineering Education and
Training, IEEE Computer Society Press, Los Alamitos,
Ca.,, 2000.
[9] James E. Tomayko “A Comparison of Pair
Programming to Inspections for Software Defect
Reduction” in Computer Science Education,
forthcoming, 2002.
[10] James E. Tomayko, “Using Extreme Programming
to Develop Software Requirements,” Soft-Ware 2002.
Sprnger-Verlag, 2002, pp. 315-331.

	Abstract
	The (Old) Method of Up-Front Requirements Elicitation
	Requirements Elicitation in Agile Methods
	Difficulties Caused by Agile Methods of Gathering Requirements

