Math 370

Section 1.3: Solutions to Dynamical Systems

<u>Theorem</u>: The solution of the linear dynamical system $a_{n+1} = ra_n$ for any nonzero constant r is

$$a_k = r^k a_0$$

where $k = 0, 1, 2, 3, \ldots$ and a_0 is a given initial value.

<u>Def:</u> A number a is called an equilibrium value or fixed point of a dynamical system $a_{n+1} = f(a_n)$ if $a_k = a$ for all $k = 1, 2, 3, \ldots$ when $a_0 = a$. That is, $a_k = a$ is a constant solution to the dynamical system.

<u>Def</u>: Systems that demonstrate sensitivity to the constant parameters of the system are called <u>chaotic</u>.