Math 370

Section 1.3: Solutions to Dynamical Systems

Theorem: The solution of the linear dynamical system $a_{n+1}=r a_{n}$ for any nonzero constant r is

$$
a_{k}=r^{k} a_{0}
$$

where $k=0,1,2,3, \ldots$ and a_{0} is a given initial value.

Def: A number a is called an equilibrium value or fixed point of a dynamical system $a_{n+1}=f\left(a_{n}\right)$ if $a_{k}=a$ for all $k=1,2,3, \ldots$ when $a_{0}=a$. That is, $a_{k}=a$ is a constant solution to the dynamical system.

Def: Systems that demonstrate sensitivity to the constant parameters of the system are called chaotic.

