Math 300

Section 6.1 Inner Product, Length, and Orthogonality

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then the inner product (or dot product) of \mathbf{u} and \mathbf{v}, denoted $\mathbf{u} \cdot \mathbf{v}$, is

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Properties of the Inner Product

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in \mathbb{R}^{n}, and let c be a scalar. Then
a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
b) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=(\mathbf{u} \cdot \mathbf{w})+(\mathbf{v} \cdot \mathbf{w})$
c) $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$
d) $\mathbf{u} \cdot \mathbf{u} \geq 0$, and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.

The length (or norm) of a vector \mathbf{v} in \mathbb{R}^{n} is

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

A unit vector has length 1. To find a unit vector in the direction of \mathbf{v} is to normalize the vector \mathbf{v}. To do this, we multiply \mathbf{v} by the reciprocal of its length.

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then the distance between \mathbf{u} and \mathbf{v} is $\|\mathbf{u}-\mathbf{v}\|$.

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Pythagorean Theorem Generalized

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} are orthogonal if and only if $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.

If W is a subspace of \mathbb{R}^{n}, then the vector \mathbf{z} in \mathbb{R}^{n} is orthogonal to W if $\mathbf{z} \cdot \mathbf{w}=0$ for all vectors \mathbf{w} in W. The set of all vectors \mathbf{z} in \mathbb{R}^{n} that are orthogonal to W is called W^{\perp}, the orthogonal complement of W.

Fundamental Theorem of Linear Algebra

Let A be an $m \times n$ matrix. Then

$$
(\text { Row } A)^{\perp}=N u l A \text { and }(\operatorname{Col} A)^{\perp}=N u l A^{T} .
$$

