Math 300 Section 6.1 Inner Product, Length, and Orthogonality

If **u** and **v** are vectors in \mathbb{R}^n , then the inner product (or dot product) of **u** and **v**, denoted $\mathbf{u} \cdot \mathbf{v}$, is

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 \ u_2 \ \cdots \ u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

Properties of the Inner Product

Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

- a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) + (\mathbf{v} \cdot \mathbf{w})$
- c) $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
- d) $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

The length (or <u>norm</u>) of a vector \mathbf{v} in \mathbb{R}^n is

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

A <u>unit vector</u> has length 1. To find a unit vector in the direction of \mathbf{v} is to <u>normalize</u> the vector \mathbf{v} . To do this, we multiply \mathbf{v} by the reciprocal of its length.

If **u** and **v** are vectors in \mathbb{R}^n , then the <u>distance</u> between **u** and **v** is $||\mathbf{u} - \mathbf{v}||$.

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

Pythagorean Theorem Generalized

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

If W is a subspace of \mathbb{R}^n , then the vector \mathbf{z} in \mathbb{R}^n is orthogonal to W if $\mathbf{z} \cdot \mathbf{w} = 0$ for all vectors \mathbf{w} in W. The set of all vectors \mathbf{z} in \mathbb{R}^n that are orthogonal to W is called W^{\perp} , the orthogonal complement of W.

Fundamental Theorem of Linear Algebra

Let A be an $m \times n$ matrix. Then

$$(Row A)^{\perp} = Nul A \text{ and } (Col A)^{\perp} = Nul A^{T}.$$