Math 300

Section 5.5 Complex Eigenvalues

A complex number is of the form z = a + bi, where a and b are real numbers and $i = \sqrt{-1}$. The real part of z is $Re \ z = a$ and the imaginary part of z is $Im \ z = b$.

The conjugate of z = a + bi is $\overline{z} = a - bi$. The <u>absolute value</u> of z = a + bi is $\sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$.

The angle between the positive real axis and the line from the origin to z is the Argument of z, which is denoted $\phi = Arg z$. Notice that if z = a + bi, then $a = |z| \cos \phi$ and $b = |z| \sin \phi$. The complex number z can be expressed in polar form:

$$z = |z|(\cos\phi + i\sin\phi).$$

If the matrix A has a complex eigenvalue λ with corresponding eigenvector \mathbf{x} , then $\bar{\lambda}$ is also an eigenvalue of A with corresponding eigenvector $\bar{\mathbf{x}}$.

Theorem Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ and an associated eigenvector \mathbf{v} in \mathbb{C}^2 . Then $A = PCP^{-1}$, where $P = [Re \mathbf{v} \ Im \mathbf{v}]$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.