Math 300

Section 5.5 Complex Eigenvalues

A complex number is of the form $z=a+b i$, where a and b are real numbers and $i=\sqrt{-1}$. The real part of z is $\operatorname{Re} z=a$ and the imaginary part of z is $\operatorname{Im} z=b$.

The conjugate of $z=a+b i$ is $\bar{z}=a-b i$. The absolute value of $z=a+b i$ is $\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$.
The angle between the positive real axis and the line from the origin to z is the Argument of z, which is denoted $\phi=\operatorname{Arg} z$. Notice that if $z=a+b i$, then $a=|z| \cos \phi$ and $b=|z| \sin \phi$. The complex number z can be expressed in polar form:

$$
z=|z|(\cos \phi+i \sin \phi)
$$

If the matrix A has a complex eigenvalue λ with corresponding eigenvector \mathbf{x}, then $\bar{\lambda}$ is also an eigenvalue of A with corresponding eigenvector $\overline{\mathbf{x}}$.

Theorem Let A be a real 2×2 matrix with a complex eigenvalue $\lambda=a-b i$ and an associated eigenvector \mathbf{v} in \mathbb{C}^{2}. Then $A=P C P^{-1}$, where $P=[\operatorname{Re} \mathbf{v} \operatorname{Im} \mathbf{v}]$ and $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

