Math 300

Section $5.1 \& 5.2$ Eigenvalues, Eigenvectors, and The Characteristic Equation

An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A \mathbf{x}=\lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ.
$\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation.

The null space of $A-\lambda I$ is called the eigenspace of A corresponding to λ.

Theorem If $\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ is linearly independent.

