Math 300

Section 3.1 Introduction to Determinants

For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$, denoted $\operatorname{det} A$, is the sum of n terms of the form $\pm a_{1 j} \operatorname{det} A_{1 j}$, with plus and minus signs alternating, where $A_{i j}$ denotes the submatrix formed by deleting the i th row and j th column of A. In symbols,

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{n+1} a_{1 n} \operatorname{det} A_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j}
\end{aligned}
$$

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
$$

Theorem The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the i th row using the cofactors is

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

The cofactor expansion down the j th column is

$$
\operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} .
$$

The plus or minus sign in the (i, j)-cofactor follows the checkerboard pattern:

$$
\left[\begin{array}{cccc}
+ & - & + & \ldots \\
- & + & - & \ldots \\
+ & - & + & \ldots \\
\vdots & \ddots & &
\end{array}\right]
$$

Theorem If A is a triangular matrix, then $\operatorname{det} A$ is the product of the entries on the main diagonal of A.

