Math 300

Section 2.9 Dimension and Rank

Suppose the set $\mathcal{B}=\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{p}\right\}$ is a basis for a subspace H. For each \mathbf{x} in H, the coordinates of \mathbf{x} relative to the basis \mathcal{B} are the weights c_{1}, \cdots, c_{p} such that $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{p} \mathbf{b}_{p}$, and the vector in \mathbb{R}^{p}

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right]
$$

is called the coordinate vector of \mathbf{x} (relative to \mathcal{B}) or the $\underline{\mathcal{B}}$-coordinate vector of \mathbf{x}.

The transformation $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the coordinate mapping. The coordinate mapping is a one-to-one onto linear
 onto linear transformation is called an isomorphism.

The dimension of a nonzero subspace H, denoted by $\operatorname{dim} H$, is the number of vectors in any basis for H. The dimension of the zero subspace $\{0\}$ is defined to be zero.

The rank of a matrix A, denoted by $\operatorname{rank} A$, is the dimension of the column space of A.

The Rank Theorem If a matrix A has n columns, then $\operatorname{rank} A+\operatorname{dim} N u l A=n$.

The Basis Theorem Let H be a p-dimensional subspace of \mathbb{R}^{n}. Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

Invertible Matrix Theorem (Revamped)

Let A be an $n \times n$ matrix. Then the following are equivalent:
(a) A is an invertible matrix.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $T(\mathbf{x})=A \mathbf{x}$ is one-to-one.
(g) The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The linear transformation $T(\mathbf{x})=A \mathbf{x}$ is onto.
(j) There is an $n \times n$ matrix C such that $C A=I_{n}$.
(k) There is an $n \times n$ matrix D such that $A D=I_{n}$.
(l) A^{T} is an invertible matrix.
(m) The columns of A form a basis of \mathbb{R}^{n}.
(n) $\operatorname{Col} A=\mathbb{R}^{n}$.
(o) $\operatorname{dimCol} A=n$.
(p) $\operatorname{rank} A=n$.
(q) $N u l A=\{\mathbf{0}\}$.
(r) $\operatorname{dim} N u l A=0$.

