Math 300

Section 2.9 Dimension and Rank

Suppose the set $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_p}$ is a basis for a subspace H. For each \mathbf{x} in H, the <u>coordinates of \mathbf{x} relative to the basis \mathcal{B} </u> are the weights c_1, \dots, c_p such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p$, and the vector in \mathbb{R}^p

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$

is called the <u>coordinate vector of \mathbf{x} </u> (relative to \mathcal{B}) or the <u> \mathcal{B} -coordinate vector of \mathbf{x} </u>.

The transformation $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the coordinate mapping. The coordinate mapping is a one-to-one onto linear transformation from the subspace \overline{H} to \mathbb{R}^m , where m is the number of elements in the basis \mathcal{B} . A one-to-one onto linear transformation is called an isomorphism.

The <u>dimension</u> of a nonzero subspace H, denoted by dimH, is the number of vectors in any basis for H. The dimension of the zero subspace $\{0\}$ is defined to be zero.

The rank of a matrix A, denoted by rankA, is the dimension of the column space of A.

The Rank Theorem If a matrix A has n columns, then rankA + dimNulA = n.

The Basis Theorem Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

Invertible Matrix Theorem (Revamped)

Let A be an $n \times n$ matrix. Then the following are equivalent:

- (a) A is an invertible matrix.
- (b) A is row equivalent to I_n .
- (c) A has n pivot positions.
- (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (f) The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is one-to-one.
- (g) The equation $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (i) The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is onto.
- (j) There is an $n \times n$ matrix C such that $CA = I_n$.
- (k) There is an $n \times n$ matrix D such that $AD = I_n$.
- (l) A^T is an invertible matrix.
- (m) The columns of A form a basis of \mathbb{R}^n .

- (n) $ColA = \mathbb{R}^n$.
- (o) dimColA = n.
- (p) rankA = n.
- (q) $NulA = \{0\}.$
- (r) dimNulA = 0.