Math 300

Section 2.8 Subspaces of \mathbb{R}^n

A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that has three properties:

- 1. The zero vector is in H.
- 2. For each \mathbf{u} and \mathbf{v} in H, $\mathbf{u} + \mathbf{v}$ is in H.
- 3. For each \mathbf{u} in H and each scalar c, $c\mathbf{u}$ is in H.

The <u>column space</u> of a matrix A is the set ColA of all linear combinations of the columns of A. The null space of a matrix A is the set NulA of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Theorem If A is an $m \times n$ matrix, ColA is a subspace of \mathbb{R}^m and NulA is a subspace of \mathbb{R}^n .

A <u>basis</u> for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H.

Theorem The pivot columns of a matrix A form a basis for the column space of A.