Math 300

Section 2.8 Subspaces of \mathbb{R}^{n}

A subspace of \mathbb{R}^{n} is any set H in \mathbb{R}^{n} that has three properties:

1. The zero vector is in H.
2. For each \mathbf{u} and \mathbf{v} in $H, \mathbf{u}+\mathbf{v}$ is in H.
3. For each \mathbf{u} in H and each scalar $c, c \mathbf{u}$ is in H.

The column space of a matrix A is the set $\operatorname{Col} A$ of all linear combinations of the columns of A.
The null space of a matrix A is the set $N u l A$ of all solutions of the homeneous equation $A \mathbf{x}=\mathbf{0}$.

Theorem If A is an $m \times n$ matrix, $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m} and $N u l A$ is a subspace of \mathbb{R}^{n}.

A basis for a subspace H of \mathbb{R}^{n} is a linearly independent set in H that spans H.

Theorem The pivot columns of a matrix A form a basis for the column space of A.

