Math 300

Section 2.5 Matrix Factorizations

A matrix L is lower triangular if $l_{i j}=0$ for all $i<j$. A matrix U is upper triangular if $u_{i j}=0$ for all $i>j$.

If $A=L U$, then solving the matrix equation $A \mathbf{x}=\mathbf{b}$ is equivalent to solving the system

$$
\begin{gathered}
L \mathbf{y}=\mathbf{b} \\
U \mathbf{x}=\mathbf{y} .
\end{gathered}
$$

To find L and U is to perform an $\underline{\mathrm{LU}}$ factorization of A. The matrix U is found by row reducing A to row echelon form using only row replacements. The matrix L is found by beginning with the identity matrix, then placing at each position under the main diagonal the negative of the multiplier used to eliminate the corresponding entry from A.

