Math 300

Section 2.3 Characterizations of Invertible Matrices

The Invertible Matrix Theorem (IMT)

Let A be an $n \times n$ matrix. Then the following are equivalent:

- (a) A is an invertible matrix.
- (b) A is row equivalent to I_n .
- (c) A has n pivot positions.
- (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (f) The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is one-to-one.
- (g) The equation $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (i) The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is onto.
- (j) There is an $n \times n$ matrix C such that $CA = I_n$.
- (k) There is an $n \times n$ matrix D such that $AD = I_n$.
- (l) A^T is an invertible matrix.

Invertible Linear Transformations

A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is <u>invertible</u> if there exists a transformation $S : \mathbb{R}^n \to \mathbb{R}^n$ such that $S(T(\mathbf{x})) = \mathbf{x}$ and $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . In this case, we say $S = T^{-1}$.

Theorem Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function for which $S(T(\mathbf{x})) = \mathbf{x}$ and $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .