Math 300

Section 2.3 Characterizations of Invertible Matrices

The Invertible Matrix Theorem (IMT)

Let A be an $n \times n$ matrix. Then the following are equivalent:
(a) A is an invertible matrix.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation $T(\mathbf{x})=A \mathbf{x}$ is one-to-one.
(g) The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The linear transformation $T(\mathbf{x})=A \mathbf{x}$ is onto.
(j) There is an $n \times n$ matrix C such that $C A=I_{n}$.
(k) There is an $n \times n$ matrix D such that $A D=I_{n}$.
(l) A^{T} is an invertible matrix.

Invertible Linear Transformations

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if there exists a transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $S(T(\mathbf{x}))=\mathbf{x}$ and $T(S(\mathbf{x}))=\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}. In this case, we say $S=T^{-1}$.

Theorem Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x})=A^{-1} \mathbf{x}$ is the unique function for which $S(T(\mathbf{x}))=\mathbf{x}$ and $T(S(\mathbf{x}))=\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}.

