Math 300

Section 2.2 The Inverse of a Matrix

Let A be an $n \times n$ matrix. If there is a matrix C with $A C=C A=I_{n}$, then A is $\underline{\text { invertible }}$ and C is the inverse of A. This is denoted $C=A^{-1}$.

Theorem If A is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^{n}$, the matrix equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Properties of the Inverse

1. If A is invertible, then A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.
2. If A and B are invertible, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
3. If A is invertible, then A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

When is a matrix invertible?

An $n \times n$ matrix is invertible if and only if it is row equivalent to I_{n}.

Elementary Matrices

An elementary matrix results from performing a single row operation on I_{n}.

An Algorithm for finding A^{-1}

Row reduce the augmented matrix $[A \mid I]$. If A is row equivalent to I, then $[A \mid I]$ is row equivalent to $\left[I \mid A^{-1}\right]$. Otherwise, A does not have an inverse.

