## Math 300

## Section 2.1 Matrix Operations

The number $a_{i j}$ is the $(i, j)$ entry of a matrix $A$. The $(i, j)$ entry of $A$ lies in the $i$ th row and $j$ th column of $A$.

The zero matrix 0 is the $m \times n$ matrix whose entries are all zeroes.
Two matrices are equal if they have the same size and if their corresponding entries are equal.

## Addition

The sum $A+B$ of two $m \times n$ matrices is an $m \times n$ matrix whose entries are the sum of the corresponding entries in $A$ and $B$.

## Scalar Multiplication

If $r$ is a scalar and $A$ is a matrix, then the scalar multiple $r A$ is the matrix whose entries are the corresponding entries of $A$ multiplied by $r$.

## Properties of Addition and Scalar Multiplication

Let $A, B$, and $C$ be matrices of the same size, and let $r$ and $s$ be scalars. Then

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $A+0=A$
4. $r(A+B)=r A+r B$
5. $(r+s) A=r A+s A$
6. $r(s A)=(r s) A$

## Multiplication

$$
A B=\left[A \mathbf{b}_{1} A \mathbf{b}_{2} \cdots A \mathbf{b}_{p}\right]
$$

## Properties of Matrix Multiplication

Let $A$ be an $m \times n$ matrix, let $B$ and $C$ be matrices of appropriate size, and let $r$ be a scalar. Then

1. $A(B C)=(A B) C$
2. $A(B+C)=A B+A C$
3. $(B+C) A=B A+C A$
4. $r(A B)=(r A) B=A(r B)$
5. $I_{m} A=A=A I_{n}$ where $I_{n}$ is the $n \times n$ matrix with ones along the diagonal and zeroes elsewhere

## Warnings

1. In general, $A B \neq B A$, even when $A B$ and $B A$ are both defined and are the same size. If $A B=B A$, we say that $A$ and $B$ commute.
2. It is not true in general that $A B=A C$ implies that $B=C$.
3. If is not true in general that $A B=0$ implies that $A=0$ or $B=0$.

## Powers of a Matrix

If $A$ is an $n \times n$ matrix, then one can use matrix multiplication to define positive integer powers of $A$ :

$$
A^{k}=A \dot{A} \cdots A(k \text { times })
$$

(Note: $A^{0}=I_{n}$.)

## Transpose

The transpose $A^{T}$ of an $m \times n$ matrix is an $n \times m$ matrix whose $i$ th column is the $i$ th row of $A$.

## Properties of the Transpose

Let $A$ be an $m \times n$ matrix, let $B$ be a matrix of appropriate size, and let $r$ be a scalar. Then

1. $\left(A^{T}\right)^{T}=A$
2. $(A+B)^{T}=A^{T}+B^{T}$
3. $(r A)^{T}=r A^{T}$
4. $(A B)^{T}=B^{T} A^{T}$
