Math 300

Section 1.9 The Matrix of a Linear Transformation

Theorem Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

In fact, A is the $m \times n$ matrix

$$
A=\left[T\left(\mathbf{e}_{1}\right) \cdots T\left(\mathbf{e}_{n}\right)\right]
$$

A is called the standard matrix for the linear transformation T.

Existence and Uniqueness Questions

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}.
A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one if each \mathbf{b} in the range of T is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

Summarizing Chapter 1

Existence Questions
Let A be an $m \times n$ matrix. Then the following are equivalent:

1. The equation $A \mathbf{x}=\mathbf{b}$ is consistent for all vectors \mathbf{b} in \mathbb{R}^{m}.
2. The columns of A span \mathbb{R}^{m}.
3. The matrix A has a pivot in each row.
4. The transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $T(\mathbf{x})=A \mathbf{x}$ is onto.

Uniqueness Questions
Let A be an $m \times n$ matrix. Then the following are equivalent:

1. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$.
2. The system of equations with matrix equation $A \mathbf{x}=\mathbf{0}$ has no free variables.
3. The columns of A are linearly independent.
4. The transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $T(\mathbf{x})=A \mathbf{x}$ is one-to-one.
