Math 300 Section 1.9 The Matrix of a Linear Transformation

Theorem Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x} \ \forall \mathbf{x} \in \mathbb{R}^n.$$

In fact, A is the $m \times n$ matrix

$$A = [T(\mathbf{e}_1) \cdots T(\mathbf{e}_n)].$$

A is called the standard matrix for the linear transformation T.

Existence and Uniqueness Questions

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be <u>onto</u> \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be <u>one-to-one</u> if each **b** in the range of T is the image of at most one **x** in \mathbb{R}^n .

Summarizing Chapter 1

Existence Questions

Let A be an $m \times n$ matrix. Then the following are equivalent:

- 1. The equation $A\mathbf{x} = \mathbf{b}$ is consistent for all vectors \mathbf{b} in \mathbb{R}^m .
- 2. The columns of A span \mathbb{R}^m .
- 3. The matrix A has a pivot in each row.
- 4. The transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ with $T(\mathbf{x}) = A\mathbf{x}$ is onto.

Uniqueness Questions

Let A be an $m \times n$ matrix. Then the following are equivalent:

- 1. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.
- 2. The system of equations with matrix equation $A\mathbf{x} = \mathbf{0}$ has no free variables.
- 3. The columns of A are linearly independent.
- 4. The transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ with $T(\mathbf{x}) = A\mathbf{x}$ is one-to-one.