Math 300

Section 1.8 Introduction to Linear Transformations

A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}. The set \mathbb{R}^{n} is called the domain of T, and \mathbb{R}^{m} is called the codomain of T. For \mathbf{x} in \mathbb{R}^{n}, the vector $T(\mathbf{x})$ in \mathbb{R}^{m} is called the image of \mathbf{x} and the set of all images $T(\mathbf{x})$ is called the range of T. Notation: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

A transformation (or mapping) T is linear if:

1. $T(\mathbf{u}+\mathbf{v})=T \mathbf{u}+T \mathbf{v}$ for all \mathbf{u}, \mathbf{v} in the domain of T.
2. $T(c \mathbf{u})=c T(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

Theorem T is a linear transformation if and only if

$$
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
$$

for all \mathbf{u}, \mathbf{v} in the domain of T and for all scalars c, d.

