Math 300

Section 1.8 Introduction to Linear Transformations

A <u>transformation</u> (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the <u>domain</u> of T, and \mathbb{R}^m is called the <u>codomain</u> of T. For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the <u>image</u> of \mathbf{x} and the set of all images $T(\mathbf{x})$ is called the <u>range</u> of T. Notation: $T : \mathbb{R}^n \to \mathbb{R}^m$.

A transformation (or mapping) T is <u>linear</u> if:

- 1. $T(\mathbf{u} + \mathbf{v}) = T\mathbf{u} + T\mathbf{v}$ for all \mathbf{u}, \mathbf{v} in the domain of T.
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all **u** in the domain of T.

Theorem T is a linear transformation if and only if

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

for all \mathbf{u}, \mathbf{v} in the domain of T and for all scalars c, d.