## Math 300

Section 1.7 Linear Independence

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=0
$$

has only the trivial solution $x_{1}=x_{2}=\cdots=x_{p}=0$. The set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is linearly dependent if there exist $c_{1}, c_{2}, \cdots, c_{p}$ not all zero with

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=0
$$

## Notes

1. The columns of a matrix $A$ are linearly independent if and only if the matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$.
2. The set $\left\{\mathbf{v}_{1}\right\}$ is linearly independent if and only if $\mathbf{v}_{1} \neq \mathbf{0}$.
3. If the zero vector $\mathbf{0}$ is an element in a set of vectors, then that set must be linearly dependent.
4. The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if and only if one of the vectors is a scalar multiple of the other.
5. Suppose that $\mathbf{v}_{1} \neq \mathbf{0}$ and that $p \geq 2$. Then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is linearly dependent if and only if some vector $\mathbf{v}_{j}$ with $j>1$ is a linear combination of vectors in the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{j-1}\right\}$; that is, if and only if $\mathbf{v}_{j}$ with $j>1$ is a linear combination of vectors preceding it in the set.
6. If a set of vectors contains more vectors that there are entries in each vector, then the set must be linearly dependent. That is, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ of vectors in $\mathbb{R}^{n}$ is linearly dependent if $p>n$.
