Math 300

Section 1.4 The Matrix Equation $A \mathbf{x}=\mathbf{b}$

If A is an $m \times n$ matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$ and \mathbf{x} is a vector in \mathbb{R}^{n}, then the product $A \mathbf{x}$ is a vector in \mathbb{R}^{m} that is the linear combination of the columns of A using the corresponding entries as weights; that is,

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots x_{n} \mathbf{a}_{n}
$$

Theorem Given an $m \times n$ matrix A with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$ and given a vector \mathbf{b} in \mathbb{R}^{m}, then the matrix equation $A \mathbf{x}=\mathbf{b}$ has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which has the same solution set as the system of linear equations with augmented matrix

$$
\left[\mathbf{a}_{1} \mathbf{a}_{2} \cdots \mathbf{a}_{n} \mathbf{b}\right]=\left[\begin{array}{ll}
A & \mathbf{b}
\end{array}\right]
$$

Theorem Let A be an $m \times n$ matrix. The following are equivalent:

1. For all vectors \mathbf{b} in \mathbb{R}^{m}, the matrix equation $A \mathbf{x}=\mathbf{b}$ has a solution.
2. The columns of A span \mathbb{R}^{m}.
3. The matrix A has a pivot position in each row.

Properties of the Matrix-Vector Product

If A is an $m \times n$ matrix, the vectors \mathbf{u}, \mathbf{v} are in \mathbb{R}^{n} and c is a scalar, then

1. $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
2. $A(c \mathbf{u})=c(A \mathbf{u})$
