Math 300

Section 1.4 The Matrix Equation $A\mathbf{x} = \mathbf{b}$

If A is an $m \times n$ matrix with columns $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ and \mathbf{x} is a vector in \mathbb{R}^n , then the product $A\mathbf{x}$ is a vector in \mathbb{R}^m that is the linear combination of the columns of A using the corresponding entries as weights; that is,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots x_n\mathbf{a}_n$$

Theorem Given an $m \times n$ matrix A with columns $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ and given a vector **b** in \mathbb{R}^m , then the matrix equation $A\mathbf{x} = \mathbf{b}$ has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

which has the same solution set as the system of linear equations with augmented matrix

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}] = [A \ \mathbf{b}]$$

Theorem Let A be an $m \times n$ matrix. The following are equivalent:

- 1. For all vectors \mathbf{b} in \mathbb{R}^m , the matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. The columns of A span \mathbb{R}^m .
- 3. The matrix A has a pivot position in each row.

Properties of the Matrix-Vector Product

If A is an $m \times n$ matrix, the vectors \mathbf{u}, \mathbf{v} are in \mathbb{R}^n and c is a scalar, then

1.
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$

2. $A(c\mathbf{u}) = c(A\mathbf{u})$