Math 300

Section 1.3 Vector Equations

A vector is a matrix with one column.

Algebraic Properties of \mathbb{R}^{n}

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^{n} and all scalars c and d :

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
3. $\mathbf{u}+\mathbf{0}=0+\mathbf{u}=\mathbf{u}$
4. $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$ where $-\mathbf{u}$ denotes $(-1) \mathbf{u}$
5. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
6. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
7. $c(d \mathbf{u})=(c d) \mathbf{u}$
8. $1 \mathbf{u}=\mathbf{u}$

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ are vectors in \mathbb{R}^{n} and $c_{1}, c_{2}, \cdots, c_{p}$ are scalars, then

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

is a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ with weights $c_{1}, c_{2}, \cdots, c_{p}$.

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ are vectors in \mathbb{R}^{n}, then the set of all possible linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ is called the subset of \mathbb{R}^{n} spanned by the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ or the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$. It is denoted $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$.

The vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots x_{n} \mathbf{a}_{n}=\mathbf{b}$ has the same solution set as the system of linear equations with augmented matrix $\left[\mathbf{a}_{1} \mathbf{a}_{2} \cdots \mathbf{a}_{n} \mathbf{b}\right]$. The vector \mathbf{b} is a linear combination of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\right\}$ (that is, \mathbf{b} is in the $\left.\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\right\}\right)$ if and only if this system is consistent.

Three Ways to Ask the Same Question

1. Is \mathbf{b} a linear combination of the columns of A ?
2. Is \mathbf{b} in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\right\}$?
3. Is the system with augmented matrix $[A \mathbf{b}]$ consistent?
