Math 300

Section 1.3 Vector Equations

A vector is a matrix with one column.

Algebraic Properties of \mathbb{R}^n

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^n and all scalars c and d:

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
3. $\mathbf{u} + \mathbf{0} = 0 + \mathbf{u} = \mathbf{u}$
4. $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$ where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$
5. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
6. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
7. $c(d\mathbf{u}) = (cd)\mathbf{u}$
8. $1\mathbf{u} = \mathbf{u}$

If $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ are vectors in \mathbb{R}^n and c_1, c_2, \cdots, c_p are scalars, then

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$

is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ with weights c_1, c_2, \cdots, c_p .

If $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ are vectors in \mathbb{R}^n , then the set of all possible linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ is called the subset of \mathbb{R}^n spanned by the set $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ or the span of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$. It is denoted $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$.

The vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ has the same solution set as the system of linear equations with augmented matrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}]$. The vector \mathbf{b} is a linear combination of $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$ (that is, \mathbf{b} is in the Span $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$) if and only if this system is consistent.

Three Ways to Ask the Same Question

- 1. Is **b** a linear combination of the columns of A?
- 2. Is **b** in Span $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$?
- 3. Is the system with augmented matrix $[A \mathbf{b}]$ consistent?