Math 300

Section 1.1 Systems of Linear Equations

A linear equation in the variables x_1, x_2, \dots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where b and the <u>coefficients</u> a_1, a_2, \dots, a_n are real or complex numbers.

A system of linear equations is a collection of one or more linear equations involving the same variables.

A <u>solution</u> of the system is a list (s_1, s_2, \dots, s_n) of numbers that makes each equation a true statement when the values s_1, s_2, \dots, s_n are substituted for x_1, x_2, \dots, x_n respectively.

Two linear systems are called equivalent if they have the same solution set.

A system of linear equations is said to be <u>consistent</u> if it has either one solution or infinitely many solutions; a system is <u>inconsistent</u> if it has no solutions.

The essential information of a linear system can be recorded compactly in a rectangular array called a <u>matrix</u>. The matrix formed by the coefficients of a linear system is called the <u>coefficient matrix</u> and the matrix formed by adding the right hand side of a linear system an additional column to the coefficient matrix is called the augmented matrix.

The <u>size</u> of a matrix tells how many rows and columns it has. An $m \times n$ matrix has m rows and n columns.

Elementary Row Operations

(Replacement) Replace one row by the sum of itself and a multiple of another row.

(Interchange) Interchange two rows.

(Scaling) Multiply all entries in a row by a nonzero constant.

Two matrices are called <u>row equivalent</u> if there is a sequence of elementary row operations that transforms one matrix into the other.

Theorem If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.