The Joy of Pi

Kristen Kobylus Abernathy

Winthrop University
3.14

Obsession with Pi

People with time on their hands
Pi in Song
Search Pi

It All Began...

"And he made a molten sea, ten cubits from the one brim to the other: it was round all about, and his height was five cubits: and a line of thirty cubits did compass it about." (I Kings 7, 23)

It All Began...

"And he made a molten sea, ten cubits from the one brim to the other: it was round all about, and his height was five cubits: and a line of thirty cubits did compass it about." (I Kings 7, 23)

This verse refers to an object built for the great temple of Solomon, built around 950 BC , and gives $\pi=3$.

It All Began...

"And he made a molten sea, ten cubits from the one brim to the other: it was round all about, and his height was five cubits: and a line of thirty cubits did compass it about." (I Kings 7, 23)

This verse refers to an object built for the great temple of Solomon, built around 950 BC , and gives $\pi=3$.

However, the first trace of a calculation of π can be found in the Egyptian Rhind Papyrus, which is dated about 1650 BC and gives $\pi=4\left(\frac{8}{9}\right)^{2}=3.16$.

A Little History

Archimedes (287-212 BC) is credited with being the first to calculate π theoretically. He obtained the approximation

$$
\frac{223}{71}<\pi<\frac{22}{7}
$$

A Little History

Archimedes (287-212 BC) is credited with being the first to calculate π theoretically. He obtained the approximation

$$
\frac{223}{71}<\pi<\frac{22}{7}
$$

Euler adopted the symbol π in 1737 (after it was introduced by William Jones in 1706) and it quickly became standard notation.

Buffon's Needle Experiment

If we have a uniform grid of parallel lines, unit distance apart and if we drop a needle of length $k<1$ on the grid, the probability that the needle falls across a line is $\frac{2 k}{\pi}$.

Buffon's Needle Experiment

If we have a uniform grid of parallel lines, unit distance apart and if we drop a needle of length $k<1$ on the grid, the probability that the needle falls across a line is $\frac{2 k}{\pi}$.
Various people have tried to calculate π by throwing needles. The most remarkable result was that of Lazzerini (1901), who made 34080 tosses and got

$$
\pi=\frac{335}{113}=3.1415929 .
$$

Some open questions about the number π

Does each of the digits $0,1,2,3,4,5,6,7,8,9$ each occur infinitely often in π ?
Brouwer's question: In the decimal expansion of π, is there a place where a thousand consecutive digits are all zero?

Where does our distance formula for \mathbb{R}^{2} come from?

Where does our distance formula for \mathbb{R}^{2} come from?

By Pythagoras' Theorem,

$$
d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} .
$$

What does this have to do with the unit circle?

What does this have to do with the unit circle?

The unit circle is all points (x, y) that are one-unit distance from the origin; ie,

$$
\begin{aligned}
& 1=\sqrt{(x-0)^{2}+(y-0)^{2}} \\
& 1=x^{2}+y^{2}
\end{aligned}
$$

What's in a norm?

Given a vector space V over a subfield F of the complex numbers, a norm on V is a function $\|\cdot\|: V \rightarrow F$ with the following properties: For all $a \in F$ and $\mathbf{u}, \mathbf{v} \in V$,

What's in a norm?

Given a vector space V over a subfield F of the complex numbers, a norm on V is a function $\|\cdot\|: V \rightarrow F$ with the following properties:
For all $a \in F$ and $\mathbf{u}, \mathbf{v} \in V$,

$$
\|\mathbf{v}\| \geq 0 \text { and }\|\mathbf{v}\|=0 \text { iff } \mathbf{v}=0
$$

What's in a norm?

Given a vector space V over a subfield F of the complex numbers, a norm on V is a function $\|\cdot\|: V \rightarrow F$ with the following properties:
For all $a \in F$ and $\mathbf{u}, \mathbf{v} \in V$,

$$
\begin{aligned}
& \|\mathbf{v}\| \geq 0 \text { and }\|\mathbf{v}\|=0 \text { iff } \mathbf{v}=0 \\
& \|a \mathbf{v}\|=|a|\|\mathbf{v}\|
\end{aligned}
$$

What's in a norm?

Given a vector space V over a subfield F of the complex numbers, a norm on V is a function $\|\cdot\|: V \rightarrow F$ with the following properties:
For all $a \in F$ and $\mathbf{u}, \mathbf{v} \in V$,

$$
\begin{aligned}
& \|\mathbf{v}\| \geq 0 \text { and }\|\mathbf{v}\|=0 \text { iff } \mathbf{v}=0 \\
& \|a \mathbf{v}\|=|a|\|\mathbf{v}\| ; \\
& \|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\| \text { (Triangle Inequality). }
\end{aligned}
$$

A couple examples

The absolute value on the space of real numbers is a norm.

A couple examples

The absolute value on the space of real numbers is a norm.

The Euclidean norm for \mathbb{R}^{n} is

$$
\left\|<x_{1}, x_{2}, \cdots, x_{n}>\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} .
$$

A couple examples

The absolute value on the space of real numbers is a norm.

The Euclidean norm for \mathbb{R}^{n} is

$$
\left\|<x_{1}, x_{2}, \cdots, x_{n}>\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} .
$$

A couple examples

The absolute value on the space of real numbers is a norm.

The Euclidean norm for \mathbb{R}^{n} is

$$
\left\|<x_{1}, x_{2}, \cdots, x_{n}>\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} .
$$

The Taxicab norm (or Manhattan norm) for \mathbb{R}^{n} is

$$
\left\|<x_{1}, x_{2}, \cdots, x_{n}>\right\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots\left|x_{n}\right|
$$

Back to our idea of distance in \mathbb{R}^{2}

What if we used the Taxicab norm (instead of the Euclidean norm) to compute the distance between two points?

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|
$$

Back to our idea of distance in \mathbb{R}^{2}

What if we used the Taxicab norm (instead of the Euclidean norm) to compute the distance between two points?

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|
$$

To infinity and beyond!

Let's define " p-distance" as

$$
d_{p}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\left|x_{2}-x_{1}\right|^{p}+\left|y_{2}-y_{1}\right|^{p}\right)^{1 / p}=\left\|x_{2}-x_{1}\right\|_{p}
$$

where $x_{1}=\left(x_{1}, y_{1}\right)$ and $x_{2}=\left(x_{2}, y_{2}\right)$. We can now visualize what the unit ball (ie, the set of all points of distance 1 from the origin) looks like under these different norms in \mathbb{R}^{2}.

To infinity and beyond!

Let's define " p-distance" as

$$
d_{p}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\left|x_{2}-x_{1}\right|^{p}+\left|y_{2}-y_{1}\right|^{p}\right)^{1 / p}=\left\|x_{2}-x_{1}\right\|_{p}
$$

where $x_{1}=\left(x_{1}, y_{1}\right)$ and $x_{2}=\left(x_{2}, y_{2}\right)$. We can now visualize what the unit ball (ie, the set of all points of distance 1 from the origin) looks like under these different norms in \mathbb{R}^{2}.
Notice as p gets larger, the unit ball is approaching

To infinity and beyond!

Let's define " p-distance" as

$$
d_{p}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\left|x_{2}-x_{1}\right|^{p}+\left|y_{2}-y_{1}\right|^{p}\right)^{1 / p}=\left\|x_{2}-x_{1}\right\|_{p}
$$

where $x_{1}=\left(x_{1}, y_{1}\right)$ and $x_{2}=\left(x_{2}, y_{2}\right)$. We can now visualize what the unit ball (ie, the set of all points of distance 1 from the origin) looks like under these different norms in \mathbb{R}^{2}.
Notice as p gets larger, the unit ball is approaching

We define

$$
d_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|\right\}
$$

Pi equals what?!

π is defined as $\pi=\frac{C}{2 r}$ where C represents the circumference of a circle, and r is the circle's radius. What happens to the value of π as we change how we calculate distance?

Pi equals what?!

π is defined as $\pi=\frac{C}{2 r}$ where C represents the circumference of a circle, and r is the circle's radius. What happens to the value of π as we change how we calculate distance?
For example, in the 1-norm,

$d((1,0),(0,1))_{1}=|0-1|+|1-0|=2$ so $C=8$ and $r=1$ which gives

Pi equals what?!

π is defined as $\pi=\frac{C}{2 r}$ where C represents the circumference of a circle, and r is the circle's radius. What happens to the value of π as we change how we calculate distance?
For example, in the 1-norm,

$d((1,0),(0,1))_{1}=|0-1|+|1-0|=2$ so $C=8$ and $r=1$ which gives $\pi=4$!

What?!

From Calculus, we can compute the length of the curve $y=f(t)$ from $t=a$ to $t=b$ using a formula for arc length:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

What?!

From Calculus, we can compute the length of the curve $y=f(t)$ from $t=a$ to $t=b$ using a formula for arc length:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

We can calculate what π would be in any norm by adjusting our formula for arc length:

$$
\pi=2 * \int_{0}^{1}\left(1+\left(\frac{1}{p}\left(1-t^{p}\right)^{(1-p) / p}(-p t)\right)^{p}\right)^{(1 / p)} d t
$$

What?!

From Calculus, we can compute the length of the curve $y=f(t)$ from $t=a$ to $t=b$ using a formula for arc length:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

We can calculate what π would be in any norm by adjusting our formula for arc length:

$$
\pi=2 * \int_{0}^{1}\left(1+\left(\frac{1}{p}\left(1-t^{p}\right)^{(1-p) / p}(-p t)\right)^{p}\right)^{(1 / p)} d t
$$

Thank you for having me!!

