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Chapter 1

Ancestral Monty

1.1 A Mathematician’s Life

Like all professional mathematicians, I take it for granted that most people

will be bored and intimidated by what I do for a living. Math, after all, is the

sole academic subject about which people brag of their ineptitude. “Oh,”

says the typical well-meaning fellow making idle chit-chat at some social

gathering, “I was never any good at math.” Then he smiles sheepishly, secure

in the knowledge that his innumeracy in some way reflects well on him. I have

my world-weary stock answers to such statements. I resist the temptation

to say something snide (“How were you at reading?”), or downright nasty

(“Perhaps you’re just dim,”) and instead say, “Well, maybe you just never

had the right teacher.” That typically defuses the situation nicely.

It is the rare person who fails to see humor in assigning to me the task of

dividing up a check at a restaurant. You know, because I’m a mathematician.

Like the elementary arithmetic used in check division is some sort of novelty

act they train you for in graduate school. I used to reply with “Dividing up

a check is applied math. I’m a pure mathematician,” but this elicits puzzled

looks from those who thought mathematics was divided primarily into the

courses they were forced to take in order to graduate versus the ones they

could mercifully ignore. I find, “Better have someone else do it. I’m not good

with numbers,” works pretty well.
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6 CHAPTER 1. ANCESTRAL MONTY

I no longer grow vexed by those who ask, with perfect sincerity, how

folks continue to do mathematical research when surely everything has been

figured out by now. My patience is boundless for those who assure me that

their grade-school nephew is quite the little math prodigy. When a student,

after absorbing a scintillating presentation of, say, the mean-value theorem,

asks me with disgust what it is good for, I am no longer even tempted to

give him the smack in the face he so richly deserves. Instead I pretend not to

realize he is merely expressing contempt for any subject that calls for both

hard work and abstract thought, and launch into a discourse about all of

the practical benefits that accrue from an understanding of calculus. (“You

know how when you flip a switch the lights come on? Ever wonder why that

is? It’s because some really smart scientists like James Clerk Maxwell knew

lots of calculus and figured out how to apply it to the problem of taming

electricity. Kind of puts your whining into perspective, wouldn’t you say?)

And upon learning that a mainstream movie has a mathematician character,

I feel cheated if that character and his profession are presented with any

element of realism.

(Speaking of which, you remember that 1966 Alfred Hitchcock movie

Torn Curtain, the one where physicist Paul Newman goes to Leipzig in an

attempt to elicit certain German military secrets? Remember the scene where

Newman starts writing equations on a chalkboard, only to have an impatient

East German scientist, disgusted by the primitive state of American physics,

cut him off and finish the equations for him? Well, we don’t do that. We

don’t finish each other’s equations. And that scene in Good Will Hunting

where emotionally troubled math genius Matt Damon and Fields Medalist

Stellan Skarsgaard high-five each other after successfully performing some

feat of elementary algebra? We don’t do that either. And don’t even get me

started on Jeff Goldblum in Jurassic Park or Russell Crowe in A Beautiful

Mind...)

I tolerate these things because for all the petty annoyances resulting from

society’s impatience with math and science, being a mathematician has some
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considerable compensating advantages. My professional life is roughly equal

parts doing mathematics and telling occasionally interested undergraduates

about mathematics, which if you like math (and I really like math) is a fine

professional life indeed. There is the pleasure of seeing the raised eyebrows

on people’s faces when it dawns on them that since I am a mathematician I

must have a PhD in the subject, which in turn means that I am very, very

smart. And then there is the deference I am given when the conversation

turns to topics of math and science (which it often does, when I am in the

room). That’s rather pleasant. Social conventions being what they are, it is

quite rare that my opinion on number-related questions is challenged.

Unless, that is, we are discussing the Monty Hall problem.

In this little teaser we are asked to play the role of a game show contestant

confronted with three identical doors. Behind one is a car, behind the other

two are goats. The host of the show, referred to as Monty Hall, asks us to

pick one of the doors. We choose a door, but do not open it. Monty now

opens a door different from our initial choice, careful always to open a door

he knows to conceal a goat. We stipulate that if Monty has a choice of doors

to open, then he chooses randomly from among his options. Monty now

gives us the options of either sticking with our original choice, or switching

to the one other unopened door. After making our decision, we win whatever

is behind our door. Assuming that our goal is to maximize our chances of

winning the car, what decision should we make?

So simple a scenario! And apparently with a correspondingly simple

resolution. After Monty eliminates one of the doors, you see, we are left

with a mere two options. As far as we are concerned, these two options are

equally likely to conceal the car. It follows that there is no advantage to be

gained one way or the other from sticking or switching, and consequently it

makes no difference what decision we make. How sneaky to throw in that

irrelevant nonsense about Monty choosing randomly when he has a choice!

Surely you did not expect your little mathematical mind games to work on

one so perspicacious as myself!
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Or so it usually goes.

The minutiae of working out precisely why that intuitive and plausible

argument is nonetheless incorrect will occupy us in the next chapter. For

now I will note simply that it takes a person of rare sangfroid to respond

with patience and humility to being told that the correct answer is to switch

doors. You can share with a college class the glories of the human intellect,

the most beautiful theorems and sublime constructs ever to spring forth from

three pounds of matter in a human skull, and they will dutifully jot it all

down in their notes without a trace of passion. But tell them that you

double your chances of winning by switching doors, and suddenly the swords

are drawn and the temperature drops ten degrees.

That PhD with which they were formerly so impressed? Forgotten! The

possibility that they have overlooked some subtle point in their knee-jerk

reaction to the problem? Never crosses their mind! They will explain with as

much patience as they can muster, as though they were now the teacher and

I the student, that it makes no difference what door you chose originally, or

how Monty chose his door to open. It matters only that just two doors remain

after Monty does his thing. Those doors, and this is the really important part,

have an equal probability of being correct!. And when I stubbornly

refuse to accept their cogent logic, when I try to explain instead that there

is, indeed, relevance to the fact that Monty follows a particular procedure in

choosing his door, the chief emotion quickly shifts from anger to pity.

My remarks thus far may have given the impression that I find this reac-

tion annoying. Quite the contrary, I assure you. My true emotion in these

situations is delighted surprise. I have presented the problem to numerous

college classes and in countless other social gatherings. No matter how many

times I do so, I remain amazed by the ability of a mere math problem to

awaken such passion and interest. The reason, I believe, is that the Monty

Hall problem does not look like a math problem, at least not to people who

think tedious symbol manipulation is what mathematics is really all about.

The problem features no mathematical symbols, no excessively abstract ter-
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minology or ideas. Indeed, the problem can be explained to a middle-school

student. The scenario it describes is one in which we can all imagine our-

selves. And in such a situation, why should the egghead have any advantage

over the normal folks?

1.2 Probability is Hard

The Monty Hall problem is a fine illustration of the difficulties most people

encounter in trying to reason about uncertainty. Probabilistic reasoning is

just not something that comes naturally. For myself, I remember the precise

moment I came to realize that probability is hard. I was in high school,

and my father proposed to me the following brainteaser (as we shall see

throughout this book, my father often gave me puzzling problems to think

about during my formative years): Imagine two ordinary, well-shuffled decks

of cards on the table in front of you. Turn over the top card on each deck.

What is the probability that at least one of those cards is the ace of spades?

Surely, I thought, we should reason that since a deck has fifty-two cards

only one of which is the ace of spades, the probability of getting the ace on the

first deck is 1
52

. The probability of getting the ace of spades on the second

deck is likewise 1
52

. Since the two decks are independent of one another,

the probability that at least one of those two cards was the ace of spades

should be obtained by adding the two fractions together, thereby obtaining
1
52

+ 1
52

= 1
26

. I gave my answer.

And that is when my father gave me the bad news. My answer was

incorrect since I had not adequately considered the possibility of getting the

ace of spades on both decks simultaneously. Why, though, should that be

relevant? If we get the two aces simultaneously that is like a super victory!

Getting them both may be overkill since only one ace was required, but it is

not at all clear why that ought to alter my estimation of the probability.

Look a bit more closely, however, and you see that something is amiss.

Imagine that instead of using fifty-two card decks, you instead remove the
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ace of spades and a joker from each deck. Now we have two small decks of

two cards each. Let us repeat the experiment. There is now a probability of
1
2

that the top card on the first deck is the ace of spades (and a corresponding

probability of 1
2

that the top card is a joker.) There is likewise a probability

of 1
2

that the top card of the second deck is the ace. Following our previous

argument, we would now claim that the probability of obtaining the ace of

spades on at least one of the two decks is given by 1
2

+ 1
2

= 1, which would

imply that we are certain to get an ace on at least one of the decks. This is

plainly false, since there is a possibility of flipping up two jokers.

Turn now to the opposite extreme. Imagine that we have million card

decks, with only one ace of spades in each deck. We repeatedly flip up the top

card on each deck, careful to shuffle thoroughly between trials. Obtaining

the ace of spades on either deck is an event of enormous rarity. When it

happens, we expect to have to wait through another million trials before

once again flipping up the ace on that deck. There is some small solace here.

At least we expect to wait something less than that before flipping up the

ace of spades on the other deck. Now imagine that the ace of spades come

up simultaneously on both decks. In this event one of our precious ace flips

has been wasted, no to happen again, on average, for another million trials.

Flipping up the ace happens so infrequently that we can not afford such

waste. The possibility of flipping up both aces simultaneously shows that we

do not win as often as we think.

Let us try a more rigorous argument. Notice that there are 52×52 = 2704

different pairs of cards that can be formed by taking one card out of the first

deck and one card out of the second deck (note that we are thinking of

ordered pairs here, so that removing the two of spades from the first deck

and the three of hearts from the second deck should be regarded as different

from choosing the three of hearts from the first deck and the two of spades

from the second). Now, there are 52 pairs where the ace of spades is the

card chosen from the first deck (that is, the ace of spades from the first deck

can be paired with any of the 52 cards from the second deck). There are
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likewise 52 pairs in which the card drawn from the second deck is the ace of

spades. This makes a total of 104 out of 2704 pairs in which the ace of spades

appears. Sadly, there is one pair that has been counted twice. Specifically,

the pair in which both cards are the ace of spades has been double counted.

Consequently, there are only 103 pairs of cards in which at least one of the

cards is the ace of spades. This gives us a probability of 103
2704

, and that is

our final answer. I would note that this fraction is equal to 1
52

+ 1
52
− 1

2704
,

which is the sum of the probabilities of getting the ace of spades on each

deck individually, minus the probability of getting the ace on both decks.

The justification for this formula will be presented at the appropriate time

in this narrative.

This was a humbling experience for me. My father’s scenario was superfi-

cially very simple. Just two decks of cards and a straightforward procedure.

Yet a full understanding of what was going on required some careful analy-

sis. Even after seeing the cold equations, the counterintuitive nature of the

solution remains. That made quite an impression.

But for all of that, the Monty Hall problem looks at the two deck scenario

and just laughs its head off. If the two deck problem struck you as frustrat-

ingly subtle, then there is a real danger that the Monty Hall problem will

drive you insane. As much as I want people to read my book, I must advise

you to consider turning back now.

1.3 The Perils of Intuition

It is customary for books about probability to try to persuade otherwise

intelligent people that they are lousy when it comes to reasoning about un-

certainty. There are numerous well-known examples to choose from in that

regard. Since I see no reason to break from so fine a custom, I will present a

few of my favorites below.

In presenting the Monty Hall problem to students I have found the com-

mon reactions to follow the well-known five stages of grief. There is Denial



12 CHAPTER 1. ANCESTRAL MONTY

(There is no advantage to switching.), Anger (How dare you suggest there

is an advantage to switching!), Bargaining (It’s really all a matter of per-

spective, so maybe we’re both right.), Depression (Whatever. I’m probably

wrong.) and Acceptance (Is this going to be on the test?). I figure I can

speed that process along by showing you at the outset that your intuitions

about probability are sometimes mistaken. Below are three of my favorites.

(I realize, of course, that the first two examples in particular are so famous

that it is possible you have heard them before. If that is the case then I

apologize. But there are reasons they are classics!)

1.3.1 The Birthday Problem

Let us begin with an old chestnut known as the birthday problem. How

many people do you need to assemble before the probability is greater than

one half that some two of them have the same birthday? While you are

pondering that, let me mention that I am not asking trick questions. You

can safely assume there is no pair of identical twins among the people under

discussion, you do not have to worry about leap years, every day is as likely

as any other to be someone’s birthday, and our birthdays consist of a month

and a day with no year attached.

In the interest of putting a bit more space between our statement of

the problem and its eventual solution, let me mention that the assumption

that every day is as likely as any other to be someone’s birthday is known

to be unrealistic. For example, large numbers of children are conceived in

the period between Christmas and New Year’s, which leads to an unusually

large number of children being born in August and September. Further-

more, many children are birthed via Caesarian section or induced labor, and

these procedures are not generally scheduled for the weekends. This leads to

an unusually large number of children being born on Mondays or Tuesdays

(which is highly relevant for the teacher presenting this problem to a roomful

of school children, since in that case most of the people in the room share a

birth year.)



1.3. THE PERILS OF INTUITION 13

Back to the problem. A common answer is 183, since this number is the

next integer larger than 365 divided by two. It is a reasonable answer, since

with 183 people we can expect that more than half of the days in a normal

year are represented. And if the question had been, “How many people do

you need before obtaining a probability greater than one half that someone

has the same birthday as you?” then 183 would be the correct answer.

But there’s a big difference between someone in the crowd matching your

birthday specifically, and some two people having the same birthday more

generally. To see the distinction, imagine there are four people in the room.

We shall call them Alice, Benjamin, Carol and Dennis. Then there are six

ways of choosing two people from this group: (Alice, Benjamin), (Alice,

Carol), (Alice, Dennis), (Benjamin, Carol), (Benjamin, Dennis) and (Carol,

Dennis). Since only three of these pairs involve Alice, there are just three

opportunities for someone to match Alice’s birthday. This is in contrast to

the six chances we have to get two arbitrary people matching a birthday.

From this we conclude that significantly less than 183 people are required.

To determine the precise number, let us assume there are only two people,

Alice and Benjamin. Then the probability is 364
365

that they will have different

birthdays. There are 364 days in the year that are not Alice’s birthday,

and each is as likely as any other to be Benjamin’s birthday. If we add a

third person, Carol, to the mix, there is a probability of 363
365

that she will

have a birthday different from Alice and Benjamin (because there are 363

days in the year that are the birthday of neither Alice nor Benjamin.) And

if a fourth person now enters the room, the probability that his birthday

is different from everyone else in the room will be 362
365

. The probability P

that in a roomful of n people no two of them will have the same birthday is

obtained by multiplying these numbers together, we obtain the formula

P =

(
364

365

)(
363

365

)(
362

365

)
· · ·
(

365− n + 1

365

)
.

This, recall, is the probability that we do not have two people with the same

birthday. To answer the original question we must find the smallest value of
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n for which 1− P ≥ 1
2
. It turns out that n = 23 does the trick.

So just 23 people are needed to have a probability greater than 1
2

of having

two with the same birthday. With 23 people there are 253 pairs, which means

253 chances of getting a match. Remarkable. If you are curious, it turns out

that with 88 people, the probability is greater than one half of having three

people with the same birthday, while 187 people gives a probability greater

than one half of four people having the same birthday. These facts are rather

difficult to prove, however, and I will refer you to [57] for the full details.

1.3.2 False Positives in Medical Testing

Imagine a disease which afflicts roughly one out of every one thousand mem-

bers of the population. There is a test for the disease, and this test is 95%

accurate. It never gives a false negative; if it says you do not have the dis-

ease, then you do not have it. But 5% of the people who test positive for the

disease are in reality disease-free. Let us suppose you have tested positive.

What is the probability that you actually have the disease?

If you are inclined to answer that the probability is very high then your

reasoning was probably that 95% is pretty close to certain and that is the end

of the story. Overlooked in this argument, however, is the significance of the

disease being very rare in the population. Only five percent of the positives

returned by the test are false, but the disease only afflicts one tenth of one

percent of the population. Your chance of having the disease is so small to

begin with, that it should take something truly extraordinary to send you

into a panic.

To see this, suppose that 100, 000 people take the test. Of these, we

expect that 100 have the disease and 99, 900 are healthy. In that population

of healthy people, we expect that 5%, or 4, 995, will receive a false positive.

Since we are stipulating that the test has no false negatives, the one hundred

people with the disease will also receive a positive test result. That makes

a total of 100 true positives out of 5, 095 positive test results. Dividing 100

by 5, 095 gives us something just under 2%. Testing positive barely rates an
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eyebrow raise, much less a fit of panic. Indeed, even if the test were 99.9%

accurate, it would still be just fifty-fifty that you have the disease (for in that

case you would have .1% of 99, 900 people, or 99.9, receiving false positives.

That makes 200 positive tests, of which 100 are accurate and 100 are not.)

This result is so surprising that we are in danger of thinking that the posi-

tive test result is essentially worthless as evidence of having the disease. This,

however, would be the wrong conclusion. The positive test result changed

our assessment of the probability of having the disease from .1% to 2%, a

twenty-fold increase. It is simply that the probability of having the disease

was so small to begin with, that even this increase is insufficient to make

it seem likely. The tendency of people to ignore such considerations is re-

ferred to by psychologists and cognitive scientists as the “base-rate fallacy,”

(though I should mention there is some controversy over the extent to which

people fall prey to this fallacy).

The source of the confusion lies in misapprehending the reference class to

which the 5% applies. The 95% accuracy rate means that the huge majority

of people who take the test get an accurate result. Most people will test

negative, and will, in fact, be negative. These, however, are not the folks of

interest to you upon testing positive. Instead you ought to concern yourself

solely with the people who tested positive, and most of those people received

a false result. The disease is so rare that a positive test result is far more

likely to indicate an error than it is to indicate actual sickness.

Whole books get written exposing these sorts of pitfalls, and I recommend

[77] as an especially good representative of the genre.

1.3.3 Thirty Percent Chance of Rain?

Sometimes the difficulty lies in the ambiguity of a probabilistic statement,

as opposed to some error in reasoning. Take, for example, the weatherman’s

assertion that there is a thirty percent chance of rain tomorrow. What,

exactly, does this mean?

In [32], a group of researchers polled residents of five different cities on
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precisely that question. The cities were New York, Amsterdam, Berlin, Mi-

lan and Athens. New York, you see, had introduced probabilistic weather

forecasts in 1965. Amsterdam and Berlin did so in 1975 and the late eighties,

respectively. In Milan they are used only on the internet, and in Athens they

are not used at all. This provided some diversity in the level of exposure of

the people of those cities to these sorts of forecasts.

Respondents were asked to assess which of the following three choices was

the most likely, and which the least likely, to be the correct interpretation of

the forecast:

1. It will rain tomorrow in thirty percent of the region.

2. It will rain tomorrow for thirty percent of the time.

3. It will rain on thirty percent of the days like tomorrow.

The correct answer is number three, though, in fairness, the wording is

not quite right. A thirty percent chance of rain means roughly that in thirty

percent of the cases when the weather conditions are like today, there was

some significant amount of rain the following day. It was only in New York

that a majority of respondents answered correctly. Option one was selected

as most likely in each of the European cities.

The article goes on to discuss various cultural reasons for their findings, as

well as some suggestions for how weather reporting bureaus can help clear up

the confusion. For us, however, the take away message is that a probabilistic

statement is ambiguous unless a clearly defined reference class is stipulated.

There is nothing inherently foolish in any of the three interpretations above.

A failure to pay attention to details, however, is a major source of error in

probabilistic reasoning.

Along the same lines, the article [32] also contains the following amusing

anecdote:

A psychiatrist who prescribed Prozac to depressed patients

used to inform that they had a 30% − 50% chance of develop-

ing a sexual problem such as impotence or loss of sexual interest.
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On hearing this, many patients became concerned and anxious.

Eventually, the psychiatrist changed his method of communicat-

ing risks, telling patients that out of every ten people to whom he

prescribes Prozac, three to five experience sexual problems. This

way of communicating the risk of side effects seemed to put pa-

tients more at ease, and it occurred to the psychiatrist that he had

never checked how his patients understood what a “30% − 50%

chance of developing a sexual problem” means. It turned out that

many had thought that something would go awry in 30%− 50%

of their sexual encounters. The psychiatrist’s original approach

to risk communication left the reference class unclear: Does the

percentage refer to a class of people (patients who take Prozac),

to a class of events (a given person’s sexual encounters), or to

some other class? Whereas the psychiatrist’s reference class was

the total number of his patients who take Prozac, his patient’s

reference class was their own sexual encounters. When risks are

solely communicated in terms of single-event probabilities, people

have little choice but to fill in a class spontaneously based on their

own perspective on the situation. Thus, single event probability

statements invite a type of misunderstanding that is likely to go

unnoticed.

And if that does not impress upon you the importance of thinking clearly

about probability then I do not know what will!

1.4 The Legacy of Pascal and Fermat

Who is responsible for foisting on decent folks all of this subtlety and counter-

intuition? There is a story in that, a small part of which will now be related.

The branch of mathematics devoted to analyzing problems of chance is

known as probability theory. If it strikes you as odd that mathematics, a

tool devised for explicating the regularities of nature, has any light to shed on
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unpredictable events, then rest assured you are in good company. Probability

is a relative latecomer on the mathematical scene, and as recently as 1866 the

British mathematician and philosopher John Venn (of Venn diagram fame)

could write [92], without fear of being gainsaid,

To many persons the mention of Probability suggests little

else than the notion of a set of rules, very ingenious and profound

rules no doubt, with which mathematicians amuse themselves by

setting and solving puzzles.

Bertrand Russell expressed the paradox at the heart of probability by

asking rhetorically, “How dare we speak of the laws of chance? Is not chance

the antithesis of all law?” A resolution to this paradox begins with the

observation that while individual events are frequently unpredictable, long

series of the same kind of event can be a different matter entirely. The result

of a single coin toss can not be predicted. But we can say with confidence

that in a million tosses of a fair coin, the ratio of heads to tails will be very

close to one.

That long-run frequencies can be stable where individual occurrences are

not is a fact obvious to any gambler, and it is perhaps for this reason that

probability emerged from a consideration of certain games of chance. Indeed,

we now risk facing a different paradox. Since evidence of gambling goes

back almost as far as human civilization itself, we might wonder why the

mathematics of probability took so long to appear.

There were halting steps in that direction throughout the Middle Ages.

This appears most notably in the work of Cardano and Galileo, both of

whom noted that, in a variety of situations, there is insight to be gained

from enumerating all of the possible outcomes from some particular chance

scenario and assigning an equal probability to each. That said, it is fair to

observe that probability in its modern form was born from a correspondence

between the seventeenth century French mathematicians Blaise Pascal and

Pierre de Fermat. The correspondence was the result of certain questions

posed to Pascal by the Chevalier de Mere, a nobleman and gambler.
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Especially significant was the “problem of points.” The general question

is this: We have two players involved in a game of chance. The object of

the game is to accumulate points. Each point is awarded in such a way

that the players have equal chances of winning each point. The winner is

the first player to reach a set number of points, and the prize is a pool of

money to which both players have contributed equally. Suppose the game is

interrupted prior to its completion. Given the score at the moment of the

interruption, how ought the prize money be apportioned?

With the appearance of the word “ought” in the statement of the problem,

we realize that this is not a question solely of mathematics. Some notion of

fair play must be introduced to justify any proposed division. We will not

delve into this aspect of things, preferring instead to use the principle that

we know a fair division when we see one.

As a simple example, imagine the players are Alistair and Bernard. Points

are awarded by the toss of a coin, with heads going to Alistair and tails going

to Bernard. Let us say the winner is the first one to ten points, and the score

is currently 8 for Alistair and 7 for Bernard. This is roughly the scenario

pondered by Pascal and Fermat.

Fermat got the ball rolling by noting that the game will surely end after

no more than four further tosses of the coin. This corresponds to sixteen

scenarios, all of them equally likely. Since it is readily seen that eleven of

these scenarios lead to victories for Alistair while a mere five lead to victories

for Bernard, the prize money should be divided in the ratio of 11 : 5, with

the larger share going to Alistair.

Not much to gainsay there, but Pascal one-upped him by noting that enu-

merating all of the possibilities becomes tedious in a hurry, and can become

effectively impossible for large numbers. What is needed is a general method

for counting the number of scenarios in which each of the players win. He

pictured a situation in which Alistair needed n points to win, while Bernard

needed m points. In that case the game would end in no more than n+m−1

plays, for a total of 2n+m−1 possible scenarios. You can imagine listing all of
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these possible scenarios, recording A for an Alistair point and B for a point

to Bernard. The result will be 2n+m−1 strings of A’s and B’s. Any string in

which n, n + 1, n + 2, · · · , n + m − 1 plays come up in favor of Alistair will

correspond to an Alistair victory. In modern notation, we would say that we

seek the sum of the following binomial coefficients:

(
n +m− 1

n

)
,

(
n+m− 1

n+ 1

)
,

(
n+m− 1

n + 2

)
, · · · ,

(
n +m− 1

n +m− 1

)
.

Pascal’s name was already associated with such objects, as he had previously

written extensively about them. In particular, he devoted considerable at-

tention to what is now known as Pascal’s triangle (though the existence of

the triangle was known well before Pascal arrived on the scene.) The values

of the binomial coefficients can be arranged in a triangle, the first five rows

of which are as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Armed with this triangle, we find row n+m, and sum up the first m numbers

we find there. This will give us the number of scenarios in which Alistair

wins.

For example, in our original game we saw that Alistair needed two more

points to win while Bernard needed three. Consequently, we have n = 2 and

m = 3. It follows that the game will be over in no more than 2 + 3− 1 = 4

subsequent plays. To determine the number of scenarios in which Alistair

wins, we go to row n+m = 5 of the triangle. We find the numbers 1, 4, 6, 4, 1.

The sum of the first m of these entries is 1 + 4 + 6 = 11, which is precisely

what Fermat found with his less elegant approach.

Nowadays these are the sorts of considerations that appear very early

in any standard undergraduate course in probability or statistics. At the

time, however, this was impressive stuff. It represents one of the first serious
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attempts to develop a calculus for probabilities, and the level of algebraic

sophistication achieved by Pascal and Fermat went far beyond anything that

had been seen previously. These basic principles prove to be adequate for

solving the classical Monty Hall problem.

Were this intended to be a history of probability generally, I would here

take note of the many people either contemporary with or prior to Pascal who

contributed to the then nascent theory of probability. If you are interested in

such a history, I recommend either Ian Hacking’s The Emergence of Proba-

bility [40], or F. N. David’s Games, Gods, and Gambling [17]. (David’s book

is especially interesting for her opinion, in defiance of the consensus view,

that Pascal’s contributions have been overrated, and that Fermat deserves

more credit than he gets). But since my actual intention is to find someone

to blame for the endless stream of counterintuitive probabilistic brainteasers

with which generations of undergraduate math majors have been tormented,

I will follow convention and blame the correspondence between Pascal and

Fermat.

1.5 What Bayes’ Wrought

Thus far we have been concerned primarily with the problem of inferring

the effects of known causes. For example, given what we know about coins,

what are we likely to observe if one is tossed multiple times? Likewise for the

problem of points. We are given much regarding the structure of the game,

and seek some reasonable conclusion as to how things are likely to proceed.

This sort of thinking, however, can be turned around. Sometimes we

have known effects and wish to work backward to what caused them. Typ-

ically there are many plausible causes for given mysterious effects. We seek

some statement about which of them is most likely to be correct. This is

referred to as the problem of inverse probability, and it was pioneered by an

eighteenth century British mathematician and Presbyterian minister named

Thomas Bayes. His discussion of the problem appears in an essay published
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posthumously in 1764 entitled “An Essay Towards Solving a Problem in the

Doctrine of Chances.”

Upon resolving to include in this book some material on the history of

probability, I thought it might be fun to read Bayes’ essay. I was mistaken.

Even with several modern commentaries to guide me, I found it largely im-

penetrable. Bayes’ writing is frequently muddled and confusing, and you will

search his essay in vain for anything that looks like what we now call Bayes

theorem. (A special case of the theorem appears in Bayes’ essay. The mod-

ern form of Bayes’ theorem received its first careful formulation in the work

of Laplace.) Add to this the inevitable difficulties that arise in trying to read

technical papers written long ago, at a time when much modern terminology

and notation had yet to arrive on the scene, and I would say you are better

off with a modern textbook.

Bayes occupies a curious position in the history of mathematics. His name

is today attached to a major school of philosophical thought on the nature

of probability (more on that in Chapter Three). “Bayesianism” also refers to

an influential view of proper statistical reasoning. Nevertheless, histories of

probability can not seem to dismiss Bayes quickly enough. David’s history

of the early days of probability [17] contains not a single reference to him.

Hacking mentions him only briefly in [40]. Isaac Todhunter’s magisterial and

still authoritative 1865 book History of the Theory of Probability From the

Time of Pascal to That of Laplace [?] devotes a chapter to Bayes, but at six

pages long it is the shortest in the book. It also quite critical of Bayes’ work.

The mathematical details of Bayes’ theorem will occupy us in Chapter

Three. For now let us consider the more general question of how to update a

prior probability assessment in the face of new evidence. In the Monty Hall

problem, for example, let us assume that we initially choose door number

one. Since the doors are assumed to be identical, we assign a probability of 1
3

to this door. We now see Monty open one of the other two doors to reveal a

goat. The question is whether our 1
3

probability assignment ought to change

in the light of this new information.
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It will be useful, in pondering such situations, to change our perspective

regarding the nature of probability. To this point we have behaved as though

the point of probability was to discover the properties of certain real world

objects. Assigning a probability of 1
2

to the result of a coin toss was viewed as

a statement about coins, for example. More specifically, it was a description

of something coins tend to do when they are flipped a large number of times.

This, however, is not the only way of viewing things. We might also think

of probability assignments as representing our degree of belief in a given

proposition. In this view, the assignment of 1
2

to each possible result of a

coin toss means that we have no basis for believing that one outcome is more

likely than another. It is a statement about our beliefs, as opposed to a

statement about coins.

We now ask for the variables affecting how we update our degree of be-

lief in a proposition in the face of new evidence. One consideration, I sug-

gest, is obvious. Our updated assignment will depend in part on our prior

assignment. Scientists have a saying that extraordinary claims require ex-

traordinary evidence. This captures the insight that if we initially view a

proposition as exceedingly unlikely, it will take impressive evidence indeed

to make it suddenly seem likely.

The next consideration is less obvious. If A is the proposition whose

probability we are trying to assess, and B is the new evidence, we want to

know how tightly correlated B occurrences are with A occurrences. That is,

we need to know how likely it is that B will occur given that A is true. If we

assess this probability as very high, then the occurrence of B will increase

our confidence in the truth of A. Perhaps we are on a jury in a criminal trial.

We learn that a hair found at the scene of the crime provides a DNA match

with the defendant. Since the probability that such evidence will be found

given that the suspect is guilty is quite high, the DNA match would tend

to increase our confidence in the guilt of the defendant. But now suppose

we learn that the suspect has an unbreakable alibi for the time of the crime.

Since the probability that the defendant would have such an alibi given that
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he is guilty is quite low, this revelation would decrease our confidence in the

guilt of the defendant.

This, however, can not be the end of the story. It is possible that B is the

sort of thing that happens frequently regardless of whether or not A is true.

In such a situation we would assess that the probability of B given that A is

true is high not because of any particular connection between A and B, but

simply because B is something that is very likely to happen regardless. The

finding that B is very likely to happen diminishes its relevance as evidence

for A. What matters, then, is not just how likely it is that B will occur given

that A is true. Rather, we seek the ratio of this probability to the probability

that B will occur barring any assumption about A.

In other words, B should be viewed as strong evidence in support of A if

B is something that is likely to occur if A is true, but unlikely to occur if A is

false. Let us suppose our defendant has no plausible reason for being present

at the scene of the crime. Then we might say that finding his DNA at the

scene is likely to happen only if he is guilty, and the DNA match is strong

evidence for the prosecution. But if it turns out that the crime was committed

in a place the defendant often frequents for entirely innocent reasons, then

the DNA match is likely to occur independent of any assumption about his

guilt. In this case, the DNA match constitutes weak evidence indeed.

Bayes’ theorem takes these vague intuitions and turns them into a precise

formula for updating prior probability assessments. It will be our constant

companion through most of this book.

1.6 The Bertrand Box Paradox

The Monty Hall problem in its modern form goes back to 1975, and I assure

you we will arrive at that little matter soon enough. For sixteen years prior

to that it was traveling incognito as the Three Prisoners Problem. That will

be the subject of the next section.

Annoying brainteasers in conditional probability, however, have a far
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longer history, and there is one little bagatelle of sufficient importance to

rate a mention in this chapter. It is nowadays referred to as the Bertrand

Box Paradox, in honor of French mathematician Joseph Bertrand. It ap-

peared in his 1889 book Calcul des Probabilites (Calculus of Probabilities) as

follows (see [67] for a useful discussion of Bertrand’s thinking):

Three boxes are identical in external appearance. The first

box contains two gold coins, the second contains two silver coins,

and the third contains a coin of each kind, one gold and one

silver. A box is chosen at random. What is the probability that

it contains the unlike coins?

If your first instinct was that the problem is trivial, but then worried

that if it were really trivial I would not have included it, then rest assured

that this is one of the few places in the book where you may trust your first

instinct. It really is trivial. Let us denote the box containing the two gold

coins by Bgg, the box containing the two silver coins by Bss, and the box

containing one of each by Bgs. Since the boxes are identical they have equal

probabilities of being chosen. And since there is only one box in which the

coins are different, we find the probability of having chosen Bgs to be 1
3
. I

should mention that this question appeared on page two of the book, and

was intended merely to illustrate the idea of enumerating a set of equally

likely possibilities.

Bertrand, however, did not leave things here. He went on to wonder how

one ought to react to the following argument: Let us suppose we choose one

drawer at random and remove one of the coins without looking at it. Regard-

less of the coin we choose, there are only two possibilities: the remaining coin

in the box is either gold or it is silver. It is, therefore, either like or unlike

the unexamined coin we have just removed. That makes two possibilities,

each equally likely, and in only one of them are the coins different. It would

seem that the removal of the coin caused our probability to jump from 1
3

to
1
2
.
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This argument is plainly fallacious, since the mere removal of one uniden-

tified coin in no way increases our knowledge of the coin in the other drawer.

Bertrand reasoned that the fallacy lay in assuming that the two possibili-

ties (the coin being either like or unlike the coin we removed) were equally

likely. In fact, since there are two chests in which the coins are the same

and only one in which they are different, it is self-evident that like coins are

more probable than unlike coins. If we find, for example, that the coin we

removed was gold, then the other coin is more likely to be gold than silver.

To see this, note that since the chosen coin is gold, we are removing from

consideration the possibility that we chose Bss. If we reached into Bgg, then

the probability of removing a gold coin is equal to 1. But if we reached into

Bgs, there is a probability of just 1
2

of removing the gold. It follows that we

are twice as likely to remove a gold coin having chosen Bgg than we would

have been had we chosen Bgs. And since these probabilities must sum to 1,

we find that the other coin will be silver with probability 1
3

(and will be gold

with probability 2
3
, just as we found previously.

Bertrand intended this as a cautionary tale of what happens when you

are too cavalier in assigning equal probabilities to events. Lest you find

this point too trivial to bother with, I assure you that some very competent

mathematicians throughout history have managed to bungle it. In a famous

example, the French mathematician Jean le Rond d’Alembert once argued

that the probability of tossing at least one head in two tosses of a coin is
2
3
. He argued there were only three possibilities: we could get a head on the

first toss or, barring that, get a tail on the first toss and then a head on the

second toss. We can represent these as H, TH, TT . He then treated these

possibilities as equiprobable, from which his answer follows. Of course, a

proper analysis would note that the coin comes up heads on the first toss half

the time, while the scenario TH happens one fourth of the time. Summing

these possibilities leads to the correct probability of 3
4

for getting heads at

least once in two tosses of a coin.

A more modern form of Bertrand’s problem begins with the same set-up,
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and asks for the probability that the second coin in the box is gold given

that one coin was removed at random and seen to be gold. Stated thusly

we have a standard problem in inverse probability. We initially assign an

equal probability to each box. The new information is that our chosen box

contains a gold coin. How ought we to revise our probability assessments?

Bertrand’s argument shows that updating the probability of an event given

new information requires considering the probability of obtaining the infor-

mation given the event. For example, the probability of having chosen Bgs

given that we removed a gold coin depends in part on the probability of re-

moving a gold coin having chosen Bgs. As we have mentioned, this insight

lies at the heart of Bayes’ Theorem.

The similarity between this scenario and the Monty Hall problem is clear.

In both scenarios an initial selection of three equiprobable options is narrowed

to two in the light of new information. There is a tendency, in both cases,

to assign an equal probability to the two remaining scenarios, but this must

be resisted. Understanding Bertrand’s problem is a useful first step towards

resolving the Monty Hall scenario.

1.7 The Three Prisoners

In a 1959 column for Scientific American, Martin Gardner wrote

Charles Sanders Pierce once observed that in no other branch

of mathematics is it so easy for experts to blunder as in proba-

bility theory. History bears this out. Leibniz thought it just as

easy to throw 12 with a pair of dice as to throw 11. Jean le Rond

d’Alembert, the great 18-th century French mathematician, could

not see that the results of tossing a coin three times are the same

as tossing three coins at once, and he believed (as many amateur

gamblers persist in believing) that after a long run of heads, a

tail is more likely.
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In light of the explosion over the Monty Hall problem that would occur

just over three decades later, these words seem downright prophetic. That

notwithstanding, our interest in this section resides in a particular brain-

teaser, presented by Gardner as follows:

A wonderfully confusing little problem involving three prison-

ers and a warden, even more difficult to state unambiguously, is

now making the rounds. Three men - A, B and C - were in sep-

arate cells under sentence of death when the governor decided to

pardon one of them. He wrote their names on three slips of paper,

shook the slips in a hat, drew out one of them and telephoned

the warden, requesting that the name of the lucky man be kept

secret for several days. Rumor of this reached prisoner A. When

the warden made his morning rounds, A tried to persuade the

warden to tell him who had been pardoned. The warden refused.

“Then tell me,” said A, “the name of one of the others who

will be executed. If B is to be pardoned, give me C’s name. If C

is to be pardoned, give me B’s name. And if I’m to be pardoned,

flip a coin to decide whether to name B or C.”

“But if you see me flip the coin.” replied the wary warden,

“you’ll know that you’re the one pardoned. And if you see that I

don’t flip a coin, you’ll know it’s either you or the person I don’t

name.”

“Then don’t tell me now,” said A. “Tell me tomorrow morn-

ing.”

The warden, who knew nothing about probability theory, thought

it over that night and decided that if he followed the procedure

suggested by A, it would give A no help whatever in estimating

his survival chances. So next morning he told A that B was going

to be executed.

After the warden left, A smiled to himself at the warden’s

stupidity. There were now only two equally probable elements
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in what mathematicians like to call the “sample space” of the

problem. Either C would be pardoned or himself, so by all the

laws of conditional probability, his chances of survival had gone

up from 1
3

to 1
2
.

The warden did not know that A could communicate with C,

in an adjacent cell, by tapping in code on a water pipe. This

A proceeded to do, explaining to C exactly what he had said

to the warden and what the warden had said to him. C was

equally overjoyed with the news because he figured, by the same

reasoning used by A, that his own survival chances had also risen

to 1
2
.

Did the two men reason correctly? If not, how should each

calculate his chances of being pardoned?

This, surely, is the Monty Hall problem in all but name. Simply replace

the three prisoners with three doors, the pardon with the car, the prisoners

to be executed with the doors concealing the goats, and the warden with

Monty Hall. Now, I realize that it is a perilous thing for an historical re-

searcher to declare that X is the first instance of Y . If it subsequently turns

out that Y was lurking in some obscure corner of the academic literature,

you can be certain that some overeducated braggart will delight in pointing

out the fact. That risk notwithstanding, I would mention that I have dozens

of professional references discussing this problem, and not one of them cites

anything earlier than Gardner’s column as its source. In personal correspon-

dence Gardner was gracious enough to tell me he did not find the problem in

any older published source, but rather that he heard the problem from var-

ious acquaintances. My own considerable researches have likewise failed to

turn up any older reference. So, I am calling it. Gardner’s 1959 column is the

first published instance of the Monty Hall problem, or at least of something

formally equivalent to it.

Gardner presented the correct solution, that A will be pardoned with

probability 1
3

while C’s chances have improved to 2
3
, in the following issue of
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the magazine [30]. He offered two arguments: first, by enumerating the sam-

ple space, and alternatively by making an analogy to a situation with vastly

more prisoners. Since the next chapter is devoted entirely to a consideration

of such arguments, we will not discuss them here. We should also note the

care with which Gardner stated the problem. In particular, he was explicit

that the warden chooses randomly when given a choice of prisoners to name.

This detail is essential to a proper solution of the problem, but it is often

omitted in casual statements of it.

That said, in the spirit of showing just how difficult it can be to provide

a truly pristine analysis of the problem, we can point to one unfortunate bit

of phrasing in Gardner’s presentation of the problem’s solution. He writes,

“Regardless of who is pardoned, the warden can give A the name of a man,

other than A, who will die. The warden’s statement therefore had no in-

fluence on A’s survival chances; they continue to be 1
3
.” Writing in [22],

psychologist Ruma Falk points out the difficulty with this sentence, “Both

parts of that sentence are correct, just the adverb “therefore”, used here

with conjunctive force, is inapt.” The conclusion that A’s probability does

not change does not follow merely from the fact that the warden can always

reveal the name of one of A’s fellow prisoners. Rather, it is a consequence

of the precise method used by the warden in deciding which name to reveal.

We will revisit this point in the next chapter.

After Gardner’s column, the three prisoner’s problem accumulated quite

a literature, much of it providing an eerie parallel to the Monty Hall fracas

that would erupt in the early nineties. Statistician Fred Mosteller included

it as problem thirteen in his Fifty Challenging Problems in Probability with

Solutions [62] in 1965. In presenting the solution, he remarked that this

problem attracts far more mail from readers than any other. Biologist John

Maynard Smith, after presenting the problem in his 1968 book Mathematical

Ideas in Biology [84], remarked, “This should be called the Serbelloni problem

since it nearly wrecked a conference on theoretical biology in the summer of

1966; it yields at once to common sense or to Bayes’ theorem.” I certainly
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accept the latter part of that disjunction, but accumulated painful experience

has left me dubious regarding the former.

As a case in point I would mention a statement made by Nicholas Falletta

in his otherwise excellent 1983 book The Paradoxicon [23]. After present-

ing the three prisoners problem, Falletta writes, “Prisoner A reasoned that

since he was now certain that B would die then his chances for survival had

improved from 1
3

to 1
2

and, indeed, they had!” Alas, Falletta did not ex-

plain how he came to this conclusion. He also neglected, in his statement of

the problem, to tell his readers how the warden went about choosing which

name to reveal. If he was envisioning the usual assumption, that the warden

chooses randomly when given a choice, then we must regard Falletta’s state-

ment as simply incorrect. It is possible to imagine procedures the warden

could follow that would justify Falletta’s statement, but then these details

needed to be spelled out. We will have more to say about this in the chapters

ahead.

For now, let us note simply that it is a rare problem indeed that has been

immortalized in verse. The prisoner’s problem can claim that distinction,

courtesy of mathematician Richard Bedient in [8].

The Prisoner’s Paradox Revisited

Awaiting the dawn sat three prisoners wary

A trio of brigands named Tom, Dick and Mary

Sunrise would signal the death knoll of two

Just one would survive, the question was who

Young Mary sat thinking and finally spoke

To the jailer she said, “You may think this a joke.

But it seems that my odds of surviving ’til tea,

Are clearly enough just one out of three.

But one of my cohorts must certainly go,

Without question, that’s something I already know.
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Telling the name of one who is lost,

Can’t possibly help me. What could it cost?”

That shriveled old jailer himself was no dummy,

He thought, “But why not?” and pointed to Tommy.

“Now it’s just Dick and I,” Mary chortled with glee.

“One in two are my chances, and not one in three!”

Imagine the jailer’s chagrin, that old elf.

She’d tricked him, or had she? Decide for yourself.

1.8 Let’s Make a Deal

In 1963 the television game show Let’s Make A Deal premiered on American

television. In its initial run it lasted until 1977. In each episode the host,

Monty Hall, engaged in various games with members of his audience. These

games had a number of formats, but the general principle was typically the

same. Players had to decide between definitely winning a small prize, or

gamble on some probability of winning a greater prize.

In one game, which often served as the show’s climax, contestants were

shown three identical doors and were told that behind one of them was a

car, while the other two concealed goats. Recall that in the abstract version

of the problem considered here and in the next chapter, the game unfolds as

follows: The contestant chooses but does not open a door. Monty now opens

a door he knows to conceal a goat, choosing randomly when he has a choice.

He then gives the player the options of sticking with his original choice or

switching to the other unopened door. The contestant makes his choice and

wins whatever is behind his door.

This is not, however, how things unfolded on the show. Typically, if the

contestant initially chose a goat the door was opened immediately and the

game ended on the spot. But if the contestant chose the car, Monty opened

one of the remaining doors and gave the contestant the option of switching.
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This option was sometimes accompanied by an offer of cash money from

Monty not to make the switch (if this offer was accepted, the player took the

cash and went home, not opening any of the doors). If the player insisted

on switching nonetheless, Monty would sometimes offer still more money,

at times reaching as high as a few thousand dollars. This was a highly

effective psychological ploy to make it seem that the car was behind the

other remaining door. Of course, a devoted watcher of the show might have

picked up on Monty’s skullduggery, but that does not seem to have happened

too often in practice.

Things do not get mathematically interesting until we stipulate that

Monty always opens a goat-concealing door and always gives the option of

switching. This might explain why it would be another dozen years until the

term “Monty Hall problem,” would enter the mathematical literature.

1.9 The Birth of the Monty Hall Problem

In February 1975, the academic journal The American Statistician published

a letter to the editor from Steve Selvin, then a mathematician at the Univer-

sity of California at Berkeley, proposing the following exercise in probability

[78]. Given its considerable historical significance, we reproduce it in full:

It is “Let’s Make a Deal” - a famous TV show starring Monte

Hall.

MONTY HALL: One of the three boxes labeled A, B and

C contains the keys to that new 1975 Lincoln Continental. The

other two are empty. If you choose the box containing the keys,

you win the car.

CONTESTANT: Gasp!

MONTY HALL: Select one of these boxes.

CONTESTANT: I’ll take box B.

MONTY HALL: Now box A and box C are on the table and

here is box B (contestant grips box B tightly). It is possible the
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car keys are in that box! I’ll give you $ for the box.

CONTESTANT: No, thank you.

MONTY HALL: How about $200?

CONTESTANT: No!

AUDIENCE: No!!

MONTY HALL: Remember that the probability of your box

containing the keys to the car is 1
3

and the probability of your

box being empty is 2
3
. I’ll give you $500.

AUDIENCE: No!!

CONTESTANT: No, I think I’ll keep this box.

MONTY HALL: I’ll do you a favor and open one of the re-

maining boxes on the table (he opens box A). It’s empty! (Au-

dience: applause). Now either box C or your box B contains the

car keys. Since there are two boxes left, the probability of your

box containing the keys is now 1
2
. I’ll give you $1000 cash for

your box.

WAIT!!!!

Is Monty right? The contestant knows that at least one of

the boxes on the table is empty. He now knows that it was box

A. Does this knowledge change his probability of having the box

containing the keys from 1
3

to 1
2
? One of the boxes on the table has

to be empty. Has Monty done the contestant a favor by showing

him which of the two boxes was empty? Is the probability of

winning the car 1
2

or 1
3
?

CONTESTANT: I’ll trade you my box B for the box C on

the table.

MONTY HALL: That’s Weird!!

HINT: The contestant knows what he is doing.

The logic verifying the correctness of the contestant’s strategy is then

presented in the form of a table enumerating all the possibilities. It seemed
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straightforward enough, since a quick inspection revealed that in six out

of nine possible scenarios, the contestant would win the car by switching.

Considering the venue, a high level journal read primarily by professional

statisticians, you would have expected a raised eyebrow or two and little

more. But this is the Monty Hall problem we are discussing, and it has the

power to make otherwise intelligent people take leave of their senses.

Selvin’s letter was published in February. By August, Professor Selvin

was back in the letters page with a follow-up [79]. His letter was entitled,

“On the Monty Hall Problem,” and we note with great fanfare this earliest

known occurrence of that phrase in print. Selvin noted that he received

a number of letters in response to his earlier essay taking issue with his

proposed solution. He went on to present a second argument in defense of

his conclusion, this time a more technical one involving certain formulas from

conditional probability.

Especially noteworthy is the following statement from Selvin’s follow-up:

“The basis to my solution is that Monty Hall knows which box contains the

keys and when he can open either of two boxes without exposing the keys,

he chooses between them at random.” In writing this he had successfully

placed his finger on the two central points of the problem. Alter either of

those assumptions and the analysis can become even more complex, as we

shall see in the chapters to come.

In an amusing coda to this story, Selvin notes in his follow-up that he

had received a letter from Monty Hall himself:

Monty Hall wrote and expressed that he was not a “student

of statistics problems” but “the big hole in your argument is that

once the first box is seen to be empty, the contestant cannot

exchange his box.” He continues to say, “Oh, and incidentally,

after one [box] is seen to be empty, his chances are no longer

50/50 but remain what they were in the first place, one out of

three. It just seems to the contestant that one box having been

eliminated, he stands a better chance. Not so.”
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It would seem that Monty Hall was on top of the mathematical issues

raised by his show. It is a pity that more mathematicians were not aware of

Selvin’s lucid analysis. They might thereby have spared themselves consid-

erable public embarrassment.

Another decade and a half would go by before the Monty Hall problem

really left its mark on the mathematical community. While the three pris-

oners problem continued to feature prominently in professional articles from

various disciplines, the Monty Hall problem was mostly dormant throughout

the eighties. There were a few exceptions. Statisticians Persi Diaconis and

Sandy Zabell used it in a 1986 paper [?] to discuss various approaches to

the problem of inverse probability. It also appeared in 1987, when Barry

Nalebuff [64] presented it in the inaugural problem section of the academic

journal Economic Perspectives. For the most part, however, the problem was

still flying decidedly below the radar during this time.

1.10 L’Affaire Parade

It is September 9, 1990. President Samuel Doe of the small African nation

of Liberia is assassinated by rebel forces as part of one of the bloodiest

Civil Wars that continent would ever see. Untied States President George

Bush and Russian President Mikhail Gorbachev present a joint statement

protesting the illegal occupation of Kuwait by Iraqi military forces. Tennis

star Pete Sampras won the first of his record-setting fourteen Grand Slam

tennis championships by defeating fellow American Andre Agassi in the finals

of the U.S. Open. The uncut version of Stephen King’s horror masterpiece

The Stand rests at number five on the New York Times bestseller list.

And Marilyn vos Savant, a Q and A columnist for Parade magazine,

responds to the following question from reader Craig Whitaker of Columbia,

Maryland [94]:

Suppose you’re on a game show, and you’re given the choice

of three doors. Behind one door is a car, behind the others, goats.
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You pick a door, say number 1, and the host, who knows what’s

behind the doors, opens another door, say number 3, which has

a goat. He says to you, “Do you want to pick door number 2?”

Is it to your advantage to switch your choice of doors?

Ms. vos Savant replied as follows:

Yes, you should switch. The first door has a 1
3

chance of

winning, but the second door has a 2
3

chance. Here’s a good way

to visualize what happened. Suppose there are a million doors,

and you pick door number 1. Then the host, who knows what’s

behind the doors and will always avoid the one with the prize,

opens them all except door number 777, 777. You’d switch to

that door pretty fast, wouldn’t you?

With this exchange we open one of the strangest chapters in the history

of mathematics.

The Oxford University biologist Richard Dawkins once responded to an

extremely hostile, and badly misinformed, review of one of his books [18]

by writing, “Some colleagues have advised me that such transparent spite

is best ignored, but others warn that the venomous tone of her article may

conceal the errors in its content. Indeed, we are in danger of assuming that

nobody would dare to be so rude without taking the elementary precaution

of being right in what she said.” He might as well have been discussing the

response to vos Savant’s proposed solution.

Mind you, I can understand why someone, even a professional mathe-

matician, would be caught out by the Monty Hall problem. It is genuinely

counter-intuitive, even for people with serious training in probability and

statistics. As we shall see in the next chapter, no less a personage than Paul

Erdos, one of the most famous mathematicians of the twentieth century, not

only got the problem wrong, but stubbornly refused to accept the correct an-

swer for quite some time. The prominent Stanford University mathematician

Persi Diaconis once said of the Monty Hall problem [88], “I can’t remember
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what my first reaction to it was because I’ve known about it for so many

years. I’m one of many people who have written papers about it. But I do

know that my first reaction has been wrong time after time on similar prob-

lems. Our brains are just not wired to do probability problems very well, so

I’m not surprised there were mistakes.”

But if getting it wrong is understandable, being snotty and condescending

about it is not. In a follow-up column on December 2, vos Savant shared

some of the choicer items from her mailbox. I have not troubled here to

reproduce the names of the correspondents, since it is not my intention to

embarrass anyone. The morbidly curious can check out vos Savant’s book

[94]. Suffice it to say that the correspondents below were all mathematicians:

Since you seem to enjoy coming straight to the point, I’ll

do the same. In the following question and answer, you blew

it! Let me explain. If one door is shown to be a loser, that

information changes the probability of either remaining choice,

neither of which has any reason to be more likely, to 1
2
. As a

professional mathematician, I’m very concerned with the general

public’s lack of mathematical skills. Please help by confessing

your error and in the future being more careful.

And:

You blew it, and you blew it big! Since you seem to have diffi-

culty grasping the basic principle at work here, I’ll explain. After

the host reveals a goat, you now have a one-in-two chance of being

correct. Whether you change your selection or not, the chances

are the same. There is enough mathematical illiteracy in this

country, and we don’t need the world’s highest I.Q. propagating

more. Shame!

And:



1.10. L’AFFAIRE PARADE 39

Your answer to the question is in error. But if it is any conso-

lation, many of my academic colleagues have also been stumped

by this problem.

In replying, vos Savant rightly stuck to her original answer. This time

she opted for the approach of enumerating the sample space, which really

ought to have ended the discussion. It did not.

On February 17, 1991, vos Savant revisited the problem yet again. Once

more she shared the musings of some of her more obnoxious correspondents:

May I suggest that you obtain and refer to a standard text-

book on probability before you try to answer a question of this

type again?

And:

I have been a faithful reader of your column, and I have not,

until now, had any reason to doubt you. However, in this matter

(for which I do have expertise), your answer is clearly at odds

with the truth.

And:

You are utterly incorrect about the game-show question, and

I hope this controversy will call some public national attention

to the serious national crisis in mathematical education. If you

can admit your error, you will have contributed constructively

towards the solution of a deplorable situation. How many irate

mathematicians are needed to get you to change your mind?

And:

You made a mistake, but look at the positive side. If all those

PhD’s were wrong, the country would be in some very serious

trouble.
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Looks like the country is in serious trouble.

Marilyn vos Savant’s answer this time introduced two important nuances

into the discussion. First, she stated more explicitly than previously that it

is crucial to assume that Monty always opens a losing door. Relaxing that

assumption in any way changes the problem completely.

Second, she proposed that mathematics classes across the country put her

proposed solution to the test. The Monty Hall scenario is easily simulated,

making it possible to run through a large number of trials in a relatively

short period of time. By having one segment of the class follow an “always

switch” strategy while having the other electing to “always stick,” it becomes

a straightforward matter to see who wins more frequently. In mathspeak we

would say that vos Savant was proposing the question be resolved via a Monte

Carlo simulation.

Many folks took her up on this suggestion, leading to a fourth column on

the subject. The letters inspiring this one were of a considerably different

tone:

In a recent column, you called on math classes around the

country to perform an experiment that would confirm your re-

sponse to a game show problem. My eighth-grade classes tried it,

and I don’t really understand how to set up an equation for your

theory, but it definitely does work. You’ll have to help rewrite

the chapters on probability.

And:

Our class, with unbridled enthusiasm, is proud to announce

that our data support your position. Thank you so much for your

faith in America’s educators to solve this.

And:

I must admit I doubted you until my fifth-grade math class

proved you right. All I can say is WOW!
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And:

After considerable discussion and vacillation here at the Los

Alamos National Laboratory, two of my colleagues independently

programmed the problem, and in 1 million trials, switching paid

off 66.7 percent of the time. The total running time on the com-

puter was less than one second.

Most amusing of all, one letter writer had the audacity to write: “Now

’fess up. Did you really figure all this out, or did you get help from a math-

ematician?”

So vos Savant was vindicated. Nothing succeeds like success, and to

anyone actually playing the game multiple times it quickly becomes clear

that switching is the way to go.

This story has a curious footnote. Shortly after vos Savant wrote her last

column on the Monty Hall problem, she received the following letter:

A shopkeeper says she has two new baby beagles to show you,

but she doesn’t know whether they’re male, female, or a pair.

You tell her that you want only a male, and she telephones the

fellow who’s giving them a bath. “Is at least one a male?” she

asks him. “Yes!” she informs you with a smile. What is the

probability that the other one is a male?

She replied with the correct answer that the probability is one out of

three. There are three ways to have a pair of puppies in which one is male,

you see, and these scenarios are equally likely. Listing the puppies in the

order of their birth, they could be male/female, female/male or male/male.

Since it is only the last of these scenarios in which “the other puppy” is male,

we arrive at our answer. This problem, in various forms, is itself a classic

problem in probability, and we shall have more to say about it in a later

chapter.
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By now you should not be surprised to learn that a storm of angry cor-

respondence ensued, most of them lecturing vos Savant about how the sex

of each puppy is entirely independent of the sex of the other one. A family

could have five sons in a row, but the chances are still fifty-fifty that the next

child will be a daughter.

This is not in dispute. It also is not what was asked. Had the problem

said, “The older puppy is a male. What is the probability that the younger

puppy is a male also?” then the answer would surely be one half. As it is,

however, there is no first puppy or second puppy.

1.11 The Am. Stat. Exchange

The humiliation dealt to the mathematical community in the wake of L’Affaire

Parade could not be ignored. Countless simulations made clear the fact that

Marilyn vos Savant had answered the question correctly, suggesting that her

rather intemperate correspondents had a lot of crow to eat. That notwith-

standing, it was possible that some portion of the blame could still be laid

at her feet. While her answer was surely correct, perhaps her reasoning left

something to be desired. This tactic took its most pointed form in an ex-

change of letters in the academic journal The American Statistician [58],

[59].

I have already reproduced vos Savant’s first solution to the problem. Let

us now consider her subsequent attempts. Her second gambit was the fol-

lowing:

My original answer is correct. But first, let me explain why

your answer is wrong. The winning chances of 1/3 on the first

choice can’t go up to 1/2 just because the host opens a losing

door. To illustrate this, let’s say we play a shell game. You look

away, and I put a pea under one of three shells. Then I ask you to

put your finger on a shell. The chances that your choice contains

a pea are 1/3, agreed? Then I simply lift up an empty shell from
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the remaining two. As I can (and will) do this regardless of what

you’ve chosen, we’ve learned nothing to allow us to revise the

chances on the shell under your finger.

The benefits of switching are readily proven by playing through

the six games that exhaust all the possibilities. For the first three

games, you chose number 1 and “switch” each time, for the sec-

ond three games, you choose number 1 and “stay” each time, and

the host always opens a loser. Here are the results:

She now produced a table listing the various scenarios. In the interests

of conserving space, I will note that she described three scenarios which can

be described as AGG,GAG and GGA depending on the location of the car.

These scenarios are equally likely. If we now assume that you always choose

door one and that Monty only opens goat-concealing doors, we see than in

two of the three scenarios you win by switching. She then concluded:

When you switch, you win 2/3 of the time and lose 1/3, but

when you don’t switch, you only win 1/3 of the time and lose

2/3. You can try it yourself and see.

Alternatively, you can actually play the game with another

person acting as the host with three playing cards – two jokers

for the goats and an ace for the prize. However, doing this a

few hundred times to get statistically valid results can get a little

tedious, so perhaps you can assign it as extra credit – or for

punishment! (That’ll get their goats!)

vos Savant gave a still more detailed treatment in her third column. I

will beg your indulgence as I present a lengthy excerpt. It is necessary for

fully understanding what happened next.

So let’s look at it again, remembering that the original answer

defines certain conditions, the most significant of which is that

the host always opens a losing door on purpose. (There’s no way
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he can always open a losing door by chance!) Anything else is a

different question.

The original answer is still correct, and the key to it lies in

the question “Should you switch?” Suppose we pause at this

point, and a UFO settles down onto the stage. A little green

woman emerges, and the host asks her to point to one of the two

unopened doors. The chances that she’ll randomly choose the

one with the prize are 1/2, all right. But that’s because she lacks

an advantage the original contestant had – the help of the host.

(Try to forget any particular television show.)

When you first choose door number 1 from three, there’s a

1/3 chance that the prize is behind that one and a 2/3 chance

that it’s behind one of the others. But then the host steps in and

gives you a clue. If the prize is behind number 2, the host shows

you number 3, and if the prize is behind number 3, the host shows

you number 2. So when you switch, you win if the prize is behind

number 2 or number 3. You win either way! But if you don’t

switch, you win only if the prize is behind door number 1.

And as this problem is of such intense interest, I’ll put my

thinking to the test with a nationwide experiment. This is a call

to math classes all across the country. Set up a probability trial

exactly as outlined below and send me a chart of all the games

along with a cover letter repeating just how you did it, so we can

make sure the methods are consistent.

One student plays the contestant, and another, the host. La-

bel three paper cups number 1, number 2, and number 3. While

the contestant looks away, the host randomly hides a penny un-

der a cup by throwing a die until a one, two, or three comes up.

Next, the contestant randomly points to a cup by throwing a die

the same way. Then the host purposely lifts up a losing cup from

the two unchosen. Lastly, the contestant “stays” and lifts up his
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original cup to see if it covers the penny. Play “not switching”

two hundred times and keep track of how often the contestant

wins.

Then test the other strategy. Play the game the same way

until the last instruction, at which point the contestant instead

“switches” and lifts up the cup not chosen by anyone to see if it

covers the penny. Play “switching” two hundred times, also.

Certainly vos Savant’s arguments are not mathematically rigorous, and

we can surely point to places where her phrasing might have been somewhat

more precise. Her initial argument based on the million door case is pedagog-

ically effective, but mathematically incomplete (as we shall see). And there

was a subtle shift from the correspondent’s initial question, in which the host

always opens door three, to the listing of the scenarios given by vos Savant,

in which it was assumed only that the host always opens a goat-concealing

door.

But for all of that it seems clear that vos Savant successfully apprehended

all of the major points of the problem, and explained them rather well con-

sidering the forum in which she was writing. Her intent was not to provide

an argument of the sort a mathematician would regard as definitive, but

rather to illuminate the main points at issue with arguments that would be

persuasive and comprehensible. In this she was successful.

Four people who were less impressed were mathematicians J. P. Morgan,

N. R. Chaganty, R. C. Dahiya and M. J. Doviak (MCDD). Writing in The

American Statistician, they presumed to lay down the law regarding vos

Savant’s treatment of the problem. After quoting the original question as

posed by vos Savant’s correspondent, they write:

Marilyn vos Savant, the column author and reportedly holder

of the world’s highest I.Q., replied in the September article, “Yes,

you should switch. The first door has a 1/3 chance of winning,

but the second door has a 2/3 chance.” She then went on to
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give a dubious analogy to explain the choice. In the December

article letters from three PhD’s appeared saying that vos Savant’s

answer was wrong, two of the letters claiming that the correct

probability of winning with either remaining door is 1/2. Ms.

vos Savant went on to defend her original claim with a false proof

and also suggested a false simulation as a method of empirical

verification. By the February article a full scale furor had erupted;

vos Savant reported, “I’m receiving thousands of letters nearly

all insisting I’m wrong.... Of the letters from the general public,

92% are against my answer; and of letters from universities, 65%

are against my answer.” Nevertheless, vos Savant does not back

down, and for good reason, as, given a certain assumption, her

answer is correct. Her methods of proof, however, are not.

Rather strongly worded, wouldn’t you say? And largely unfair, for reasons

I have already discussed. Indeed, continuing with their lengthy essay makes

clear that their primary issue with vos Savant is her shift from what they

call the “conditional problem,” as posed by her correspondent (in which it is

stipulated that the contestant always chooses door one and the host always

opens door three) to the “unconditional problem,” in which we stipulate

only that after the contestant chooses a door, the host opens one of the goat-

concealing doors. She did, indeed, make this shift, but this was hardly the

point at issue between vos Savant and her angry letter-writers.

The authors go on to provide an interesting and useful probabilistic anal-

ysis of the problem, but that is not our interest here. At present we are

interested in the human drama that surrounded the appearance of the prob-

lem in vos Savant’s column. With that in mind, let us ponder vos Savant’s

response to MCDD. After quoting the original question and her original an-

swer, vos Savant writes,

It should be understood by an academic audience that this

problem, written for a popular audience, was not intended to be
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subject to strong attempts at misinterpretation. If it had been,

it would have been a page long. While it may be instruction-

ally constructive to purposely focus on semantic issues here, it is

surely intellectually destructive to imply that it reflects negatively

on the perspicacity of the writer involved.

And later,

Nearly all of my critics understood the intended scenario, and

few raised questions of ambiguity. I personally read nearly three

thousand letters (out of many more thousands that ultimately

arrived) and found virtually every reader, from university lectern

to kitchen table, insisting simply that because two options re-

mained, the chances were even.

I would continue, but I find my initial annoyance flagging and

will instead devote my energy to confounding the editorial staff

at Parade once again, especially as it has occurred to me that

the authors have clearly at least found a way to provoke me to

sit down and write a response when other readers have failed to

do so. Frankly, after seeing this problem analyzed on the front

page of the New York Times and now creating a similar stir in

England, I have given up on getting the facts across properly

and have decided simply to sit back and amuse myself with the

reading of it all.

Zing!

MCDD responded to this. They had the audacity to begin with, “We

are surprised at the tone of vos Savant’s reply.” It is unclear what tone they

were expecting in response to their bellicose and condescending essay. They

then repeated the main points from their earlier essay, emphasizing that the

problem vos Savant discussed was not precisely the problem laid out in the

initial question. This point is not at issue, but what vos Savant discussed

was surely what was intended. Even if it was not, vos Savant made it quite
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clear what problem she was discussing. Seen in that light, MCDD ought not

to have said that her arguments were wrong and contained technical errors

when they meant simply that she had altered the problem slightly from what

was originally stated. In fairness, MCDD do moderate their tone later on,

writing, “None of this diminishes the fact that vos Savant has shown excellent

probabilistic judgment in arriving at the answer 2/3, where, to judge from

the letters in her column, even member of our own profession failed.”

I have belabored this incident for two reasons. The first is to capture for

you the heat and emotion that has characterized so many discussions of this

issue, even in otherwise staid, professional outlets. I would hardly be doing

my job as a chronicler of all things related to the Monty Hall problem if I

did otherwise.

The other is to illustrate what I perceive as an occupational hazard among

mathematicians. Specifically, the desire always to be the smartest person in

the room. In my experience, this sad tendency is especially prevalent when

interacting with non-mathematicians. The relish with which MCDD declare

vos Savant’s arguments to be wrong is both palpable, and completely uncalled

for.

They, at least, were mathematically correct in their substantive points.

The motives of the letter writers whose hectoring and arrogant missives have

deservedly earned them a place in the mathematical hall of shame are even

more incomprehensible. What could possibly make people think it is accept-

able to write with such a tone over a mere exercise in probability theory?

1.12 The Aftermath

Writing in the magazine Bostonia [71], cognitive scientist Massimo Piatelli-

Palmarini aptly described the Monty Hall problem by writing, “...no other

statistical puzzle comes so close to fooling all the people all the time...The

phenomenon is particularly interesting precisely because of its specificity, its

reproducibility, and its immunity to higher education.”
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In a front-page article for the Sunday New York Times on July 21, 1991,

John Tierney summed things up as follows:

Since she gave her answer, Ms. vos Savant estimates she has

received 10,000 letters, the great majority disagreeing with her.

The most vehement criticism has come from mathematicians and

scientists, who have alternated between gloating at her, (“You

are the goat!”) and lamenting the nation’s innumeracy.

Her answer – that the contestant should switch doors – has

been debated in the halls of the Central Intelligence Agency and

the barracks of fighter pilots in the Persian Gulf. It has been

analyzed by mathematicians at the Massachusetts Institute of

Technology and computer programmers at Los Alamos National

Laboratory in New Mexico. It has been tested in classes from

second grade to graduate level at more than 1,000 schools across

the country.

Since the initial fracas erupted, the Monty Hall problem has accumu-

lated a formidable technical literature. It would seem that researchers from

a wide variety of disciplines found something of interest within its simple

scenario. Mathematicians and statisticians hashed out the probabilistic is-

sues raised by the problem and its variants [3], [10], [14], [33], [53], [75], [77],

[81]. Philosophers found connections between the Monty Hall problem and

various longstanding problems in their own discipline [6], [7], [11], [15], [44],

[52], [60]. Physicists devised quantum mechanical versions of the problem

[16], [100]. Cognitive scientists and psychologists tried to determine why,

exactly, people have so much trouble with this problem [1], [34], [36], [37],

[38], [39], [45], [46], [51]. Economists pondered the relevance of the Monty

Hall problem to the problems of human decision making [48], [70], [72], [83],

[90]. These are just a few representative citations. There are many others.

We will have occasion to look at much of this research in the pages ahead,

but this introduction has gone on long enough. It is time to do some math!
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1.13 Appendix: Dignity in Problem State-

ments

Steve Selvin gave the first ever published presentation of the Monty Hall

problem in the form of a play. In doing so he inaugurated a disturbing trend

in published statements of the problem. Apparently believing the scenario

is insufficiently confusing when presented flat-out as a teaser in probability,

many authors feel the need to embed it within some larger bit of melodrama.

Here is an example, taken from [56] (all emphases in original):

Announcer: And now ... the game show that mathematicians

argue about ... LET”S MAKE A DEAL. Here’s your genial host,

Monty Hall! [Applause]

Monty: Hello, good evening, and welcome! Now let’s bring

up our first contestant. It’s ... YOU! Come right up here. Now,

you know our rules. Here are three doors, numbered 1, 2, and 3.

Behind one of these doors is a beautiful new PONTIAC GRAN

HORMONISMO!

Audience: Oooh! Aahh!

Monty: Behind the other two are WORTHLESS GOATS!

Audience: [Laughter]

Goats: Baah!

Monty: Now, you’re going to choose one of those doors. Then

I’m going to open one of the other doors with a goat behind it,

and show you the goat. Then I’ll offer you this deal: if you stick

with the door you’ve chosen, you can keep what’s behind it, plus

$100. If instead you chose the remaining unopened door, you can

keep what’s behind it. Now choose one door.

Audience: Pick 3! No, 1! 2!

You: Um, oh well, I guess I’ll pick...3.

Monty: Okay. Now our beautiful host Charleen will open door

number 2. Inside that door, as you can see, is a WORTHLESS
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GOAT. You can keep what’s behind your door 3 plus $100, or

you can make a deal and switch for whatever’s behind door 1.

While we take our commercial break, you should decide: do you

wanna MAKE A DEAL??

It’s the line where the goats say “Baah!” that really makes you feel like

you’re there.

In the course of describing the relevance of the Monty Hall problem to

bridge players [55] (details in Chapter Nine), Phil Martin serves up the fol-

lowing presentation:

“Behind one of these three doors,” shouts Monty Hall, “is the

grand prize, worth one hundred thousand dollars. It’s all yours –

if you pick the right door.”

“I’ll take door number one,” you say.

“Let’s see what’s behind door number – No! Wait a minute!”

says Monty Hall. “Before we look, I’ll offer you twenty thousand

dollars, sight unseen, for whatever’s behind door number one.”

“No! No!” shouts the audience.

“Of course not, you say. “Even assuming the booby prizes are

worth nothing, the expected value of my choice is thirty-three and

a third thousand dollars. Why should I take twenty thousand?”

“All right, says Monty Hall. “But before we see what you’ve

won, let’s take a look behind door number two!”

Door number two opens to reveal one of the booby prizes: a

date in the National Open Pairs with Phil Martin. You and the

audience breathe a sigh of relief.

“I’ll give you one last chance,” says Monty Hall. “You can

have forty thousand dollars for what’s behind door number one.”

“No, no!” shouts the audience.

“Sure,” you say.
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I really must protest these cheap theatrics. The problem has all it

can handle getting itself stated with sufficient clarity to be mathematically

tractable. Embedding it in a skit only makes it harder to parse, and typ-

ically, as in the two examples above, leads to important assumptions not

being spelled out. So knock it off!
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