Section 3.5 Linearization of Nonlinear Systems

Theorem Let $f(x) = A(x - x_0) + g(x)$ where $\lim_{x \to x_0} \frac{\|g(x)\|}{\|x - x_0\|} = 0$.

- (i) If all eigenvalues of A have negative real parts, then the equilibrium x_0 is asymptotically stable.
- (ii) If some eigenvalue of A has positive real part, then x_0 is unstable.

Theorem In the case of two equations in two unknowns, assume A has eigenvalues λ_1, λ_2 with $\lambda_1 < 0 < \lambda_2$. Then there are two orbits of x' = f(x) that go to x_0 as $t \to \infty$ along a smooth curve tangent at x_0 to the eigenvectors for λ_1 and two orbits that go to x_0 as $t \to -\infty$ along a smooth curve tangent at x_0 to the eigenvectors of λ_2 .