Definition Let $x_0 \in \mathbb{R}^n$ and r > 0.

(i) The open ball centered at x_0 with radius r is the set

$$B(x_0, r) \equiv \{ x \in \mathbb{R}^n : ||x - x_0|| < r \}.$$

- (ii) Let x_0 be an equilibrium point for x' = f(x). Then x_0 is <u>stable</u> if for each ball $B(x_0, r)$, there is a ball $B(x_0, s)$ (here $s \le r$) so that if $x \in B(x_0, s)$, then $\phi(t, x)$ remains in $B(x_0, r)$ for $t \ge 0$.
- (iii) If, in addition to the conditions in part (ii), there is a ball $B(x_0, p)$ so that for each $x \in B(x_0, p)$, $\phi(t, x) \to x_0$ as $t \to \infty$, then x_0 is asymptotically stable.

Definition If $V : \mathbb{R}^n \to \mathbb{R}$ has partial derivatives with respect to each component of x, then we define the gradient of V to be the $1 \times n$ matrix function

$$gradV(x) = \begin{bmatrix} \frac{\partial V}{\partial x_1}(x) & \frac{\partial V}{\partial x_2}(x) & \cdots & \frac{\partial V}{\partial x_n}(x) \end{bmatrix}.$$

Definition Let x_0 be an equilibrium point for x' = f(x). A continuously differentiable function V defined on an open set $U \subset \mathbb{R}^n$ with $x_0 \in U$ is called a Lyapunov function for x' = f(x) on U provided $V(x_0) = 0$, V(x) > 0 for $x \neq x_0, x \in U$, and

$$gradV(x) \cdot f(x) \le 0,$$

for $x \in U$. If $gradV(x) \cdot f(x) < 0$ for $x \in U$, $x \neq x_0$, then V is called a strict Lyapunov function for x' = f(x) on U.

Lyapunov's Stability Theorem If V is a Lyapunov function for x' = f(x) on an open set U containing an equilibrium point x_0 , then x_0 is stable. If V is a strict Lyapunov function, then x_0 is asymptotically stable.

Definition A set S is said to be positively invariant for system x' = f(x) if for each $x_0 \in S$, $\phi(t, x_0) \in S$, for $t \in [0, \omega)$.

Theorem If V is a Lyapunov function for x' = f(x) on a bounded open set U, then for any constant c > 0 such that the set $\{x \in U : V(x) \le c\}$ is closed in \mathbb{R}^n , this set is positively invariant.

LaSalle Invariance Theorem Let V be a Lyapunov function for x' = f(x) on a bounded open set U containing an equilibrium point x_0 . If c > 0 is a constant so that $S := \{x : V(x) \le c\}$ is a closed set in \mathbb{R}^n , and if there is no $x \ne x_0$ in S for which $V(\phi(t, x))$ is constant for $t \ge 0$, then for all $x \in S$, $\phi(t, x) \to x_0$ as $t \to \infty$.