Existence/Uniqueness Theorem Assume $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous. Then for each $t_0 \in \mathbb{R}$ and $x_0 \in \mathbb{R}^n$, the initial value problem (IVP)

$$x' = f(x), \ x(t_0) = x_0,$$

has a solution x. Furthermore, x has a maximal interval of existence (α, ω) , where $-\infty \leq \alpha < t_0 < \omega \leq \infty$. If $\alpha > -\infty$, then $\lim_{t \to \alpha^+} ||x(t)|| = \infty$, and if $\omega < \infty$, then $\lim_{t \to \omega^-} ||x(t)|| = \infty$. If, in addition, f has continuous first-order partial derivatives with respect to x_1, x_2, \cdots, x_n , on \mathbb{R}^n , then the above IVP has a unique solution.

Theorem For each t in its maximal interval of existence, $\phi(t, x)$ is continuous as a function of x.

Definition If x is a solution of

$$x' = f(x), \ x(t_0) = x_0$$

on its maximal interval of existence (α, ω) , then $\{x(t) : \alpha < t < \omega\} \subseteq \mathbb{R}^n$ is called an <u>orbit</u> or <u>trajectory</u> of $x' = f(x), x(t_0) = x_0.$

Theorem The following hold:

- (i) Assume x(t) satisfies x' = f(x), $x(t_0) = x_0$ on an interval (c, d). Then for any constant h, x(t h) satisfies x' = f(x), $x(t_0) = x_0$ on the interval (c + h, d + h).
- (ii) If two orbits of x' = f(x), $x(t_0) = x_0$ have a common point, then the orbits are identical.

Definition We say that x_0 is an equilibrium point of x' = f(x), $x(t_0) = x_0$ provided

$$f(x_0) = 0.$$

An equilibrium point x_0 is a one-point orbit since $x(t) = x_0$ is a constant solution of x' = f(x), $x(t_0) = x_0$.