Jordan Canonical Form If A is an $n \times n$ constant matrix, then there is a nonsingular $n \times n$ constant matrix P so that $A = PJP^{-1}$, where J is a block diagonal matrix of the form

$$J = \begin{bmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_k \end{bmatrix},$$

where either J_i is the 1×1 matrix $J_i = [\lambda_i]$ or

$$J_{i} = \begin{bmatrix} \lambda_{i} & 1 & 0 & \cdots & 0 \\ 0 & \lambda_{i} & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \lambda_{i} & 1 \\ 0 & \cdots & 0 & 0 & \lambda_{i} \end{bmatrix},$$

 $1 \leq i \leq k$, and the λ_i 's are the eigenvalues of A.

Log of a Matrix If C is an $n \times n$ nonsingular matrix, then there is a matrix B such that

$$e^B = C.$$

Floquet's Theorem If Φ is a fundamental matrix for the Floquet system x' = A(t)x, where the matrix function A is continuous on \mathbb{R} and has minimum positive period ω , then the matrix function Ψ defined by $\Psi(t) := \Phi(t + \omega), t \in \mathbb{R}$, is also a fundamental matrix. Furthermore there is a nonsingular, continuously differentiable $n \times n$ constant matrix B (possibly complex) so that

$$\Phi(t) = P(t)e^{Bt},$$

for all $t \in \mathbb{R}$.

Definition Let Φ be a fundamental matrix for the Floquet system x' = A(t)x. Then the eigenvalues μ of

 $C := \Phi^{-1}(0)\Phi(\omega)$

are called the Floquet multipliers of the Floquet system x' = A(t)x.

Theorem Let $\Phi(t) = P(t)e^{Bt}$ be as in Floquet's theorem. Then x is a solution of the Floquet system x' = A(t)x iff the vector function y defined by $y(t) = P^{-1}(t)x(t), t \in \mathbb{R}$ is a solution of y' = By.

Theorem Let $\mu_1, \mu_2, \dots, \mu_n$ be the Floquet multipliers of the Floquet system x' = A(t)x. Then the trivial solution is

- (i) globally asymptotically stable on $[0, \infty)$ iff $|\mu_i| < 1, 1 \le i \le n$;
- (ii) stable on $[0,\infty)$ provided $|\mu_i| \leq 1, 1 \leq i \leq n$ and whenever $|\mu_i| = 1, \mu_i$ is a simple eigenvalue;
- (iii) unstable on $[0,\infty)$ provided there is an $i_0, 1 \le i_0 \le n$, such that $|m_{i_0}| > 1$.

Theorem The number μ_0 is a Floquet multiplier of the Floquet system x' = A(t)x iff there is a nontrivial solution x such that

$$x(t+\omega) = \mu_0 x(t),$$

for all $t \in \mathbb{R}$. Consequently, the Floquet system has a nontrivial periodic solution of period ω iff $\mu_0 = 1$ is a Floquet multiplier.

Theorem Assume $\mu_1, \mu_2, \cdots, \mu_n$ are the Floquet multipliers of the Floquet system x' = A(t)x. Then

$$\mu_1\mu_2\cdots\mu_n=e^{\int_0^\omega tr[A(t)]dt}.$$