Section 2.5 Floquet Theory

Jordan Canonical Form If A is an $n \times n$ constant matrix, then there is a nonsingular $n \times n$ constant matrix P so that $A=P J P^{-1}$, where J is a block diagonal matrix of the form

$$
J=\left[\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \cdots & 0 \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & J_{k}
\end{array}\right]
$$

where either J_{i} is the 1×1 matrix $J_{i}=\left[\lambda_{i}\right]$ or

$$
J_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \lambda_{i} & 1 \\
0 & \cdots & 0 & 0 & \lambda_{i}
\end{array}\right]
$$

$1 \leq i \leq k$, and the λ_{i} 's are the eigenvalues of A.
\log of a Matrix If C is an $n \times n$ nonsingular matrix, then there is a matrix B such that

$$
e^{B}=C
$$

Floquet's Theorem If Φ is a fundamental matrix for the Floquet system $x^{\prime}=A(t) x$, where the matrix function A is continuous on \mathbb{R} and has minimum positive period ω, then the matrix function Ψ defined by $\Psi(t):=\Phi(t+\omega), t \in \mathbb{R}$, is also a fundamental matrix. Furthermore there is a nonsingular, continuously differentiable $n \times n$ constant matrix B (possibly complex) so that

$$
\Phi(t)=P(t) e^{B t}
$$

for all $t \in \mathbb{R}$.

Definition Let Φ be a fundamental matrix for the Floquet system $x^{\prime}=A(t) x$. Then the eigenvalues μ of

$$
C:=\Phi^{-1}(0) \Phi(\omega)
$$

are called the Floquet multipliers of the Floquet system $x^{\prime}=A(t) x$.

Theorem Let $\Phi(t)=P(t) e^{B t}$ be as in Floquet's theorem. Then x is a solution of the Floquet system $x^{\prime}=A(t) x$ iff the vector function y defined by $y(t)=P^{-1}(t) x(t), t \in \mathbb{R}$ is a solution of $y^{\prime}=B y$.

Theorem Let $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ be the Floquet multipliers of the Floquet system $x^{\prime}=A(t) x$. Then the trivial solution is
(i) globally asymptotically stable on $[0, \infty)$ iff $\left|\mu_{i}\right|<1,1 \leq i \leq n$;
(ii) stable on $[0, \infty)$ provided $\left|\mu_{i}\right| \leq 1,1 \leq i \leq n$ and whenever $\left|\mu_{i}\right|=1, \mu_{i}$ is a simple eigenvalue;
(iii) unstable on $[0, \infty)$ provided there is an $i_{0}, 1 \leq i_{0} \leq n$, such that $\left|m_{i_{0}}\right|>1$.

Theorem The number μ_{0} is a Floquet multiplier of the Floquet system $x^{\prime}=A(t) x$ iff there is a nontrivial solution x such that

$$
x(t+\omega)=\mu_{0} x(t)
$$

for all $t \in \mathbb{R}$. Consequently, the Floquet system has a nontrivial periodic solution of period ω iff $\mu_{0}=1$ is a Floquet multiplier.

Theorem Assume $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ are the Floquet multipliers of the Floquet system $x^{\prime}=A(t) x$. Then

$$
\mu_{1} \mu_{2} \cdots \mu_{n}=e^{\int_{0}^{\omega} \operatorname{tr}[A(t)] d t} .
$$

