Definition Let A be an $n \times n$ constant matrix. Then we define the matrix exponential function e^{At} as the solution of the IVP

$$X' = AX, \ X(0) = I,$$

where I is the $n \times n$ identity matrix.

Cayley-Hamilton Theorem Every $n \times n$ constant matrix satisfies its characteristic matrix.

Putzer Algorithm for Finding e^{At} Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the (not necessarily distinct) eigenvalues of the matrix A. Then

$$e^{At} = \sum_{k=0}^{n-1} p_{k+1}(t)M_k,$$

where $M_0 := I$,

$$M_k := \prod_{i=1}^k (A - \lambda_i I),$$

for $1 \leq k \leq n$ and the vector function p defined by

$$p(t) = \begin{bmatrix} p_1(t) \\ p_2(t) \\ \vdots \\ p_n(t) \end{bmatrix},$$

for $t \in \mathbb{R}$, is the solution of the IVP

$$p' = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 1 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 1 & \lambda_3 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & \lambda_n \end{bmatrix} p, \ p(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Theorem Assume A and B are $n \times n$ constant matrices. Then

(i)
$$\frac{d}{dt}e^{At} = Ae^{At}$$
, for $t \in \mathbb{R}$,

- (ii) det $[e^{At}] \neq 0$, for $t \in \mathbb{R}$ and e^{At} is a fundamental matrix for x' = Ax,
- (iii) $e^{At}e^{As} = e^{A(t+s)}$, for $t, s \in \mathbb{R}$,
- (iv) $\{e^{At}\}^{-1} = e^{-At}$, for $t \in \mathbb{R}$ and, in particular,

$$\{e^A\}^{-1} = e^{-A},$$

(v) if AB = BA, then $e^{At}B = Be^{At}$, for $t \in \mathbb{R}$ and, in particular,

$$e^A B = B e^A,$$

(vi) if AB = BA, then $e^{At}e^{Bt} = e^{(A+B)t}$, for $t \in \mathbb{R}$ and, in particular,

$$e^A e^B = e^{A+B},$$

(vii)
$$e^{At} = I + A \frac{t}{1!} + A^2 \frac{t^2}{2!} + \dots + A^k \frac{t^k}{k!} + \dots$$
, for $t \in \mathbb{R}$,

(viii) if P is a nonsingular matrix, then $e^{PBP^{-1}} = Pe^BP^{-1}$.

Variation of Constants Assume that A is an $n \times n$ continuous matrix function on an interval I, b is a continuous $n \times 1$ vector function on I, and Φ is a fundamental matrix for x' = A(t)x. Then the solution of the IVP

$$x' = A(t)x + b(t), \quad x(t_0) = x_0,$$

where $t_0 \in I$ and $x_0 \in \mathbb{R}^n$, is given by

$$x(t) = \Phi(t)\Phi^{-1}(t_0)x_0 + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)b(s)ds,$$

for $t \in I$.

Corollary Assume A is an $n \times n$ constant matrix and b is a continuous $n \times 1$ vector function on an interval I. Then the solution x of the IVP

$$x' = Ax + b(t), \ x(t_0) = x_0,$$

where $t_0 \in I, x_0 \in \mathbb{R}^n$ is given by

$$x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}b(s)ds,$$

for $t \in I$.

Stability Theorem Assume A is an $n \times n$ constant matrix.

- (i) If A has an eigenvalue with positive real part, then the trivial solution of x' = Ax is unstable on $[0, \infty)$.
- (ii) If all the eigenvalues of A with zero real parts are simple (multiplicity one) and all other eigenvalues of A have negative real parts, then the trivial solution is stable on $[0, \infty)$.
- (iii) If all the eigenvalues of A have negative real parts, then the trivial solution of x' = Ax is globally asymptotically stable on $[0, \infty)$.