Section 2.3 The Matrix Exponential Function

Definition Let A be an $n \times n$ constant matrix. Then we define the matrix exponential function $e^{A t}$ as the solution of the IVP

$$
X^{\prime}=A X, \quad X(0)=I
$$

where I is the $n \times n$ identity matrix.

Cayley-Hamilton Theorem Every $n \times n$ constant matrix satisfies its characteristic matrix.

Putzer Algorithm for Finding $e^{A t}$ Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the (not necessarily distinct) eigenvalues of the matrix A. Then

$$
e^{A t}=\sum_{k=0}^{n-1} p_{k+1}(t) M_{k}
$$

where $M_{0}:=I$,

$$
M_{k}:=\prod_{i=1}^{k}\left(A-\lambda_{i} I\right)
$$

for $1 \leq k \leq n$ and the vector function p defined by

$$
p(t)=\left[\begin{array}{c}
p_{1}(t) \\
p_{2}(t) \\
\vdots \\
p_{n}(t)
\end{array}\right]
$$

for $t \in \mathbb{R}$, is the solution of the IVP

$$
p^{\prime}=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
1 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 1 & \lambda_{3} & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & \lambda_{n}
\end{array}\right] p, p(0)=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Theorem Assume A and B are $n \times n$ constant matrices. Then
(i) $\frac{d}{d t} e^{A t}=A e^{A t}$, for $t \in \mathbb{R}$,
(ii) $\operatorname{det}\left[e^{A t}\right] \neq 0$, for $t \in \mathbb{R}$ and $e^{A t}$ is a fundamental matrix for $x^{\prime}=A x$,
(iii) $e^{A t} e^{A s}=e^{A(t+s)}$, for $t, s \in \mathbb{R}$,
(iv) $\left\{e^{A t}\right\}^{-1}=e^{-A t}$, for $t \in \mathbb{R}$ and, in particular,

$$
\left\{e^{A}\right\}^{-1}=e^{-A}
$$

(v) if $A B=B A$, then $e^{A t} B=B e^{A t}$, for $t \in \mathbb{R}$ and, in particular,

$$
e^{A} B=B e^{A}
$$

(vi) if $A B=B A$, then $e^{A t} e^{B t}=e^{(A+B) t}$, for $t \in \mathbb{R}$ and, in particular,

$$
e^{A} e^{B}=e^{A+B}
$$

(vii) $e^{A t}=I+A \frac{t}{1!}+A^{2} \frac{t^{2}}{2!}+\cdots+A^{k} \frac{t^{k}}{k!}+\cdots$, for $t \in \mathbb{R}$,
(viii) if P is a nonsingular matrix, then $e^{P B P^{-1}}=P e^{B} P^{-1}$.

Variation of Constants Assume that A is an $n \times n$ continuous matrix function on an interval I, b is a continuous $n \times 1$ vector function on I, and Φ is a fundamental matrix for $x^{\prime}=A(t) x$. Then the solution of the IVP

$$
x^{\prime}=A(t) x+b(t), \quad x\left(t_{0}\right)=x_{0},
$$

where $t_{0} \in I$ and $x_{0} \in \mathbb{R}^{n}$, is given by

$$
x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) b(s) d s,
$$

for $t \in I$.

Corollary Assume A is an $n \times n$ constant matrix and b is a continuous $n \times 1$ vector function on an interval I. Then the solution x of the IVP

$$
x^{\prime}=A x+b(t), \quad x\left(t_{0}\right)=x_{0},
$$

where $t_{0} \in I, x_{0} \in \mathbb{R}^{n}$ is given by

$$
x(t)=e^{A\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} e^{A(t-s)} b(s) d s,
$$

for $t \in I$.

Stability Theorem Assume A is an $n \times n$ constant matrix.
(i) If A has an eigenvalue with positive real part, then the trivial solution of $x^{\prime}=A x$ is unstable on $[0, \infty)$.
(ii) If all the eigenvalues of A with zero real parts are simple (multiplicity one) and all other eigenvalues of A have negative real parts, then the trivial solution is stable on $[0, \infty)$.
(iii) If all the eigenvalues of A have negative real parts, then the trivial solution of $x^{\prime}=A x$ is globally asymptotically stable on $[0, \infty)$.

