Section 2.2 The Vector Equation $x^{\prime}=A(t) x$

Definition We say that the constant $n \times 1$ vectors $\psi_{1}, \psi_{2}, \cdots, \psi_{k}$ are linearly dependent provided there are constants $c_{1}, c_{2}, \cdots, c_{k}$, not all zero, such that

$$
c_{1} \psi_{1}+c_{2} \psi_{2}+\cdots+c_{k} \psi_{k}=0
$$

where 0 denotes the $n \times 1$ zero vector. Otherwise we say that these k constant vectors are linearly independent.

Theorem Assume we have exactly n constant $n \times 1$ vectors

$$
\psi_{1}, \psi_{2}, \cdots, \psi_{n}
$$

and C is the column matrix $C=\left[\psi_{1} \psi_{2} \cdots \psi_{n}\right]$. Then $\psi_{1}, \psi_{2}, \cdots, \psi_{n}$ are linearly dependent iff $\operatorname{det}(C)=$ 0 .

Definition Assume the $n \times 1$ vector functions $\phi_{1}(t), \phi_{2}(t), \cdots, \phi_{k}(t)$ are defined on an interval I. We say that these k vector functions are linearly dependent on I provided there are constants $c_{1}, c_{2}, \cdots, c_{k}$, not all zero, such that

$$
c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)+\cdots c_{k} \phi_{k}(t)=0
$$

for all $t \in I$. Otherwise we say that these k vector functions are linearly independent on I.

Theorem The linear vector differential equation $x^{\prime}=A(t) x$ has n linearly independent solutions on I, and if $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ are n linearly independent solutions on I, then

$$
x=c_{1} \phi_{1}+c_{2} \phi_{2}+\cdots+c_{n} \phi_{n}
$$

for $t \in I$, where $c_{1}, c_{2}, \cdots, c_{n}$ are constants, is a general solution of $x^{\prime}=A(t) x$.

Definition Let A be a given $n \times n$ constant matrix and let x be a column unknown n-vector. For any number λ the vector equation

$$
A x=\lambda x
$$

has the solution $x=0$ called the trivial solution of the vector equation. If λ_{0} is a number such that the vector equation $A x=\lambda_{0} x$ has a nontrivial solution x_{0}, then λ_{0} is called an eigenvalue of A and x_{0} is called a corresponding eigenvector. We say λ_{0}, x_{0} is an eigenpair of A.

Theorem If λ_{0}, x_{0} is an eigenpair for the constant $n \times n$ matrix A, then

$$
x(t)=e^{\lambda_{0} t} x_{0}, \quad t \in \mathbb{R}
$$

defines a solution x of

$$
x^{\prime}=A x
$$

on \mathbb{R}.

Theorem If $x=u+i v$ is a complex vector-valued solution of $x^{\prime}=A(t) x$, where u, v are real vector-valued functions, then u, v are real vector-valued solutions of $x^{\prime}=A(t) x$.

Theorem Assume A is a continuous $n \times n$ matrix function on an interval I and assume that Φ defined by

$$
\Phi(t)=\left[\phi_{1}(t), \phi_{2}(t), \cdots, \phi_{n}(t)\right], \quad t \in I
$$

is the $n \times n$ matrix function with columns $\phi_{1}(t), \phi_{2}(t), \cdots, \phi_{n}(t)$. Then Φ is a solution of the matrix differential equation $X^{\prime}=A(t) X$ on I iff each column ϕ_{i} is a solution of the vector differential equation $x^{\prime}=A(t) x$ on I for $1 \leq i \leq n$. Furthermore, if Φ is a solution of the matrix differential equation $X^{\prime}=A(t) X$, then

$$
x(t)=\Phi(t) c
$$

is a solution of the vector differential equation $x^{\prime}=A(t) x$ for any constant $n \times 1$ vector c.

Existence-Uniqueness Theorem Assume A is a continuous matrix function on an interval I. Then the IVP

$$
X^{\prime}=A(t) X, \quad X\left(t_{0}\right)=X_{0}
$$

where $t_{0} \in I$ and X_{0} is an $n \times n$ constant matrix, has a unique solution X that is a solution on the whole interval I.

Definition Let

$$
A(t)=\left[\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\
\vdots & \ddots & & \vdots \\
a_{n 1}(t) & a_{n 2}(t) & \cdots & a_{n n}(t)
\end{array}\right]
$$

Then we define the trace of $A(t)$ by

$$
\operatorname{tr}[A(t)]=a_{11}(t)+a_{22}(t)+\cdots+a_{n n}(t)
$$

Liouville's Theorem Assume $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ are n solutions of the vector differential equation $x^{\prime}=A(t) x$ on I and Φ is the matrix function with columns $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$. Then, if $t_{0} \in I$,

$$
\operatorname{det} \Phi(t)=e^{\int_{t_{0}}^{t}} \operatorname{tr}[A(s)] d s \operatorname{det} \Phi\left(t_{0}\right)
$$

for $t \in I$.

Corollarly to Liouville's Theroem Assume $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ are n solutions of the vector differential equation $x^{\prime}=A(t) x$ on I and Φ is the matrix function with columns $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$. Then either
(a) $\operatorname{det} \Phi(t)=0$ for all $t \in I$, or
(b) $\operatorname{det} \Phi(t) \neq 0$ for all $t \in I$.

Case (a) holds iff the solutions $\phi_{1}, \phi_{2}, c d o t s, \phi_{n}$ are linearly dependent on I, while case (b) holds iff the solutions $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ are linearly independent on I.

Definition An $n \times n$ matrix function Φ is said to be a fundamental matrix for the vector differential equation $x^{\prime}=A(t) x$ provided Φ is a solution of the matrix equation $X^{\prime}=A(t) X$ on I and $\operatorname{det} \Phi(t) \neq 0$ on I.

Theorem An $n \times n$ matrix function Φ is a fundamental matrix for the vector differential equation $x^{\prime}=A(t) x$ iff the columns of Φ are n linearly independent solutions of $x^{\prime}=A(t) x$ on I. If Φ is a fundamental matrix for the vector differential equation $x^{\prime}=A(t) x$, then a general solution x of $x^{\prime}=A(t) x$ is given by

$$
x(t)=\Phi(t) c, \quad t \in I
$$

where c is an arbitrary $n \times 1$ constant vector. There are infinitely many fundamental matrices for the differential equation $x^{\prime}=A(t) x$.

