Section 2.2 The Vector Equation x' = A(t)x

Definition We say that the constant $n \times 1$ vectors $\psi_1, \psi_2, \dots, \psi_k$ are <u>linearly dependent</u> provided there are constants c_1, c_2, \dots, c_k , not all zero, such that

$$c_1\psi_1 + c_2\psi_2 + \dots + c_k\psi_k = 0,$$

where 0 denotes the $n \times 1$ zero vector. Otherwise we say that these k constant vectors are linearly independent.

Theorem Assume we have exactly n constant $n \times 1$ vectors

$$\psi_1, \psi_2, \cdots, \psi_n$$

and C is the column matrix $C = [\psi_1 \psi_2 \cdots \psi_n]$. Then $\psi_1, \psi_2, \cdots, \psi_n$ are linearly dependent iff $\det(C) = 0$.

Definition Assume the $n \times 1$ vector functions $\phi_1(t), \phi_2(t), \dots, \phi_k(t)$ are defined on an interval I. We say that these k vector functions are linearly dependent on I provided there are constants c_1, c_2, \dots, c_k , not all zero, such that

$$c_1\phi_1(t) + c_2\phi_2(t) + \cdots + c_k\phi_k(t) = 0,$$

for all $t \in I$. Otherwise we say that these k vector functions are linearly independent on I.

Theorem The linear vector differential equation x' = A(t)x has n linearly independent solutions on I, and if $\phi_1, \phi_2, \dots, \phi_n$ are n linearly independent solutions on I, then

$$x = c_1\phi_1 + c_2\phi_2 + \dots + c_n\phi_n$$

for $t \in I$, where c_1, c_2, \dots, c_n are constants, is a general solution of x' = A(t)x.

Definition Let A be a given $n \times n$ constant matrix and let x be a column unknown n-vector. For any number λ the vector equation

 $Ax = \lambda x$

has the solution x = 0 called the <u>trivial solution</u> of the vector equation. If λ_0 is a number such that the vector equation $Ax = \lambda_0 x$ has a nontrivial solution x_0 , then λ_0 is called an <u>eigenvalue</u> of A and x_0 is called a corresponding eigenvector. We say λ_0, x_0 is an eigenpair of A.

Theorem If λ_0, x_0 is an eigenpair for the constant $n \times n$ matrix A, then

$$x(t) = e^{\lambda_0 t} x_0, \ t \in \mathbb{R},$$

defines a solution x of

$$x' = Ax$$

on \mathbb{R} .

Theorem If x = u + iv is a complex vector-valued solution of x' = A(t)x, where u, v are real vector-valued functions, then u, v are real vector-valued solutions of x' = A(t)x.

Theorem Assume A is a continuous $n \times n$ matrix function on an interval I and assume that Φ defined by

$$\Phi(t) = [\phi_1(t), \phi_2(t), \cdots, \phi_n(t)], \quad t \in I,$$

is the $n \times n$ matrix function with columns $\phi_1(t), \phi_2(t), \dots, \phi_n(t)$. Then Φ is a solution of the matrix differential equation X' = A(t)X on I iff each column ϕ_i is a solution of the vector differential equation x' = A(t)x on I for $1 \le i \le n$. Furthermore, if Φ is a solution of the matrix differential equation X' = A(t)X, then

$$x(t) = \Phi(t)c$$

is a solution of the vector differential equation x' = A(t)x for any constant $n \times 1$ vector c.

Existence-Uniqueness Theorem Assume A is a continuous matrix function on an interval I. Then the IVP

$$X' = A(t)X, \ X(t_0) = X_0,$$

where $t_0 \in I$ and X_0 is an $n \times n$ constant matrix, has a unique solution X that is a solution on the whole interval I.

Definition Let

$$A(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \ddots & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{bmatrix}$$

Then we define the <u>trace</u> of A(t) by

tr
$$[A(t)] = a_{11}(t) + a_{22}(t) + \dots + a_{nn}(t).$$

Liouville's Theorem Assume $\phi_1, \phi_2, \dots, \phi_n$ are *n* solutions of the vector differential equation x' = A(t)xon *I* and Φ is the matrix function with columns $\phi_1, \phi_2, \dots, \phi_n$. Then, if $t_0 \in I$,

$$\det \Phi(t) = e^{\int_{t_0}^t \operatorname{tr} [A(s)]ds} \det \Phi(t_0),$$

for $t \in I$.

Corollarly to Liouville's Theroem Assume $\phi_1, \phi_2, \dots, \phi_n$ are *n* solutions of the vector differential equation x' = A(t)x on *I* and Φ is the matrix function with columns $\phi_1, \phi_2, \dots, \phi_n$. Then either

- (a) det $\Phi(t) = 0$ for all $t \in I$, or
- (b) det $\Phi(t) \neq 0$ for all $t \in I$.

Case (a) holds iff the solutions $\phi_1, \phi_2, cdots, \phi_n$ are linearly dependent on I, while case (b) holds iff the solutions $\phi_1, \phi_2, \dots, \phi_n$ are linearly independent on I.

Definition An $n \times n$ matrix function Φ is said to be a <u>fundamental matrix</u> for the vector differential equation x' = A(t)x provided Φ is a solution of the matrix equation X' = A(t)X on I and det $\Phi(t) \neq 0$ on I.

Theorem An $n \times n$ matrix function Φ is a fundamental matrix for the vector differential equation x' = A(t)xiff the columns of Φ are *n* linearly independent solutions of x' = A(t)x on *I*. If Φ is a fundamental matrix for the vector differential equation x' = A(t)x, then a general solution *x* of x' = A(t)x is given by

$$x(t) = \Phi(t)c, t \in I,$$

where c is an arbitrary $n \times 1$ constant vector. There are infinitely many fundamental matrices for the differential equation x' = A(t)x.