Section 2.1 Introduction to Linear Systems

A linear system of first-order ordinary differential equations is of the form

$$
\begin{aligned}
x_{1}^{\prime} & =a_{11}(t) x_{1}+a_{12}(t) x_{2}+\cdots+a_{1 n}(t) x_{n}+b_{1}(t) \\
x_{2}^{\prime} & =a_{21}(t) x_{1}+a_{22}(t) x_{2}+\cdots+a_{2 n}(t) x_{n}+b_{2}(t) \\
\vdots & \\
x_{n}^{\prime} & =a_{n 1}(t) x_{1}+a_{n 2}(t) x_{2}+\cdots+a_{n n}(t) x_{n}+b_{n}(t),
\end{aligned}
$$

where the functions $a_{i j}$ and $b_{i}, 1 \leq i, j \leq n$ are continuous real-valued functions on an interval I. This system can be written as an equivalent vector equation

$$
x^{\prime}=A(t) x+b(t)
$$

where

$$
x:=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], A(t):=\left[\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\
\vdots & \ddots & & \vdots \\
a_{n 1}(t) & a_{n 2}(t) & \cdots & a_{n n}(t)
\end{array}\right], \text { and } b(t):=\left[\begin{array}{c}
b_{1}(t) \\
b_{2}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right]
$$

for $t \in I$.
We say that an $n \times 1$ vector function x is a solution of the vector equation on I provided x is a continuously differentiable vector function on I and

$$
x^{\prime}(t)=A(t) x(t)+b(t)
$$

for all $t \in I$.

Theorem Assume that the $n \times n$ matrix function A and the $n \times 1$ vector function b are continuous on an interval I. Then the IVP

$$
x^{\prime}=A(t) x+b(t), \quad x\left(t_{0}\right)=x_{0}
$$

where $t_{0} \in I$ and x_{0} is a given constant $n \times 1$ vector, has a unique solution that exists on the whole interval I.

Definition A family of function \mathbb{A} defined on an interval I is said to be a vector space or linear space provided whenever $x, y \in \mathbb{A}$ it follows that for any constants $\alpha, \beta \in \mathbb{R}, \alpha x+\beta y \overline{\mathbb{A}}$.

If \mathbb{A} and \mathbb{B} are vector spaces of functions defined on an interval I, then $L: \mathbb{A} \rightarrow \mathbb{B}$ is called a linear operator provided

$$
L[\alpha x+\beta y]=\alpha L[x]+\beta L[y]
$$

for all $\alpha, \beta \in \mathbb{R}$ and $x, y \in \mathbb{A}$.
Since the differential equation $x^{\prime}=A x+b$ can be written in the form $L x=b$, where $L[x](t):=x^{\prime}(t)-A(t) x(t)$, we call $x^{\prime}=A x+b$ a linear vector differential equation. If b is not the trivial vector function, then the equation $L x=b$ is called a nonhomogeneous linear vector differential equation and $L x=0$ is called the corresponding homogeneous linear vector differential equation.

