Definition If $f(x_0) = 0$ we say that x_0 is an <u>equilibrium point</u> for the differential equation x' = f(x). Note that if x_0 is an equilibrium point for the differential equation x' = f(x), then the constant function $x(t) = x_0$ is a solution of x' = f(x) on \mathbb{R} .

Definition Let ϕ be a solution of x' = f(x) with maximal interval of existence (α, ω) . Then the set

$$\{\phi(t): t \in (\alpha, \omega)\}$$

is called an <u>orbit</u> for the differential equation x' = f(x).

Theorem Assume that $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable. Then two orbits of x' = f(x) are either disjoint sets or are the same set.

Logistic Growth The logistic law of population growth is

$$N' = rN\left(1 - \frac{N}{K}\right),$$

where N is the number of individuals in the population, $r\left(1-\frac{N}{K}\right)$ is the per capita growth rate that declines with increasing population, and K > 0 is the carrying capacity of the environment.

Definition Assume $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable. Then we let $\phi(\cdot, x_0)$ denote the solution of the IVP

$$x' = f(x), \ x(0) = x_0.$$

Definition We say that an equilibrium point x_0 of the differential equation x' = f(x) is <u>stable</u> provided given any $\epsilon > 0$ there is a $\delta > 0$ such that whenever $|x_1 - x_0| < \delta$ it follows that the solution $\phi(\cdot, x_1)$ exists on $[0, \infty)$ and

$$\phi(t, x_1) - x_0| < \epsilon$$

for $t \ge 0$. If, in addition, there is a $\delta_0 > 0$ such that $|x_1 - x_0| < \delta_0$ implies that

$$\lim_{t \to \infty} \phi(t, x_1) = x_0$$

then we say that the equilibrium point x_0 is <u>asymptotically stable</u>. If an equilibrium point is not stable, then we say it is <u>unstable</u>.