Section 1.1 Basic Results for First-Order Differential Equations

Definition We say that a function x is a solution of $x^{\prime}=f(t, x)$ on an interval $I \subset(a, b)$ provided $c<x(t)<d$ for $t \in I, x$ is a continuously differentiable function on I, and

$$
x^{\prime}(t)=f(t, x(t))
$$

for $t \in I$.

Definition Let $\left(t_{0}, x_{0}\right) \in(a, b) \times(c, d)$ and assume f is continuous on $(a, b) \times(c, d)$. We say that the function x is a solution of the initial value problem (IVP)

$$
x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

on an interval $I \subset(a, b)$ provided $t_{0} \in I, x$ is a solution of $x^{\prime}=f(t, x)$ on I, and

$$
x\left(t_{0}\right)=x_{0}
$$

Theorem Assume $f:(a, b) \times(c, d) \rightarrow \mathbb{R}$ is continuous, where $-\infty \leq a<b \leq \infty$ and $-\infty \leq c<d \leq \infty$. Let $\left(t_{0}, x_{0}\right) \in(a, b) \times(c, d)$, then the IVP

$$
x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

has a solution x with a maximal interval of existence $(\alpha, \omega) \subset(a, b)$, where $\alpha<t_{0}<\omega$. If $a<\alpha$, then

$$
\lim _{t \rightarrow \alpha^{+}} x(t)=c, \text { or } \lim _{t \rightarrow \alpha^{+}} x(t)=d
$$

and if $\omega<b$, then

$$
\lim _{t \rightarrow \omega^{-}} x(t)=c, \text { or } \lim _{t \rightarrow \omega^{-}} x(t)=d
$$

If, in addition, the partial derivative of f with respect to x, f_{x}, is continuous on $(a, b) \times(c, d)$, then the preceding IVP has a unique solution.

