Definition We say that a function x is a solution of x' = f(t, x) on an interval $I \subset (a, b)$ provided c < x(t) < d for $t \in I$, x is a continuously differentiable function on I, and

$$x'(t) = f(t, x(t)),$$

for $t \in I$.

Definition Let $(t_0, x_0) \in (a, b) \times (c, d)$ and assume f is continuous on $(a, b) \times (c, d)$. We say that the function x is a solution of the initial value problem (IVP)

$$x' = f(t, x), \ x(t_0) = x_0,$$

on an interval $I \subset (a, b)$ provided $t_0 \in I$, x is a solution of x' = f(t, x) on I, and

$$x(t_0) = x_0.$$

Theorem Assume $f : (a, b) \times (c, d) \to \mathbb{R}$ is continuous, where $-\infty \le a < b \le \infty$ and $-\infty \le c < d \le \infty$. Let $(t_0, x_0) \in (a, b) \times (c, d)$, then the IVP

$$x' = f(t, x), \ x(t_0) = x_0,$$

has a solution x with a maximal interval of existence $(\alpha, \omega) \subset (a, b)$, where $\alpha < t_0 < \omega$. If $a < \alpha$, then

$$\lim_{t \to \alpha^+} x(t) = c, \text{ or } \lim_{t \to \alpha^+} x(t) = d$$

and if $\omega < b$, then

$$\lim_{t \to \omega^{-}} x(t) = c, \text{ or } \lim_{t \to \omega^{-}} x(t) = d$$

If, in addition, the partial derivative of f with respect to x, f_x , is continuous on $(a, b) \times (c, d)$, then the preceding IVP has a unique solution.