Name:

\qquad

Math 509 Fall 2016

Project 2 - Due 12/5
You may work in groups, and each group need only turn in one written report, but please include a summary of each group member's contribution in addition to the written report. Be sure to write complete explanations with each computation. Have fun!

Introduction

In this project, we view a sequence $\left\{a_{n}\right\}$ as a function $a: \mathbb{Z} \rightarrow \mathbb{R}$ which associates to every integer $n \in \mathbb{Z}$ the real number $a_{n} \in \mathbb{R}$. Thus, for example, if $a_{n}=n^{3}$ then some of the values of a are:

$$
\begin{array}{cccccccccc}
n: & \cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & \cdots \\
a_{n}=n^{3}: & \cdots & -27 & -8 & -1 & 0 & 1 & 8 & 27 & \cdots
\end{array}
$$

We define the forward difference operator Δ_{+}as the function which associates to each sequence a the sequence $\Delta_{+} a$ whose nth term is

$$
\left(\Delta_{+} a\right)_{n}=a_{n+1}-a_{n},
$$

the backward difference operator Δ_{-}as the function which associates to each sequence a the sequence $\Delta_{-} a$ whose nth term is

$$
\left(\Delta_{-} a\right)_{n}=a_{n}-a_{n-1},
$$

and the sum operator Σ as the function which associates to each sequence a the sequence Σa whose nth term is

$$
(\Sigma a)_{n}=\sum_{i=1}^{n} a_{i} .
$$

Questions

1. If

$$
a_{n}=\left\{\begin{array}{cc}
0 & \text { if } n<0 \\
\frac{1}{2^{n}} & \text { if } n \geq 0
\end{array}\right.
$$

find, in simplest form: a) $\left(\Delta_{+} a\right)_{n}$,
b) $\left(\Delta_{-} a\right)_{n}$, and
c) $(\Sigma a)_{n}$.
2. Let a and b be sequences and c a constant. Prove:
a) $\Delta_{+}(a+b)=\Delta_{+}(a)+\Delta_{+}(b)$
b) $\Delta_{+}(c a)=c \Delta_{+}(a)$
c) $\Delta_{-}(a+b)=\Delta_{-}(a)+\Delta_{-}(b)$
d) $\Delta_{-}(c a)=c \Delta_{-}(a)$

Based on these assertions, what type of operator is Δ_{+}and Δ_{-}?
3. Derive and prove formulas for the following:
a) $\Sigma 1$
b) Σn
c) Σn^{2}
4. What:
a) is the composition $\Sigma \circ \Delta_{+}$? That is, what is the value of

$$
\left(\left(\Sigma \circ \Delta_{+}\right) a\right)_{n}
$$

for any sequence a, in simplest form? How about $\Sigma \circ \Delta_{-}$?
b) is the composition $\Delta_{+} \circ \Sigma$? How about $\Delta_{-} \circ \Sigma$?
c) result from Calculus I do parts (a) and (b) remind us of?
5. Use the results from \#4 to establish solutions to the following difference equations:
a) $a_{n}=a_{n-1}$ with initial condition $a_{0}=a(0)$.
b) $a_{n}=a_{n-1}+c$ with initial condition $a_{0}=a(0)$, where c is a constant.
c) $a_{n}=a_{n-1}+n$ with initial condition $a_{0}=a(0)$.

