Name:	

Math 509 Fall 2016

Project 2 - Due 12/5

You may work in groups, and each group need only turn in one written report, but please include a summary of each group member's contribution in addition to the written report. Be sure to write complete explanations with each computation. Have fun!

Introduction

In this project, we view a sequence $\{a_n\}$ as a function $a: \mathbb{Z} \to \mathbb{R}$ which associates to every integer $n \in \mathbb{Z}$ the real number $a_n \in \mathbb{R}$. Thus, for example, if $a_n = n^3$ then some of the values of a are:

$$n:$$
 \cdots -3 -2 -1 0 1 2 3 \cdots $a_n=n^3:$ \cdots -27 -8 -1 0 1 8 27 \cdots

We define the forward difference operator Δ_+ as the function which associates to each sequence a the sequence Δ_+a whose nth term is

$$(\Delta_+ a)_n = a_{n+1} - a_n,$$

the backward difference operator Δ_{-} as the function which associates to each sequence a the sequence $\Delta_{-}a$ whose nth term is

$$(\Delta_{-}a)_n = a_n - a_{n-1},$$

and the sum operator Σ as the function which associates to each sequence a the sequence Σa whose nth term is

$$(\Sigma a)_n = \sum_{i=1}^n a_i.$$

Questions

1. If

$$a_n = \begin{cases} 0 & \text{if } n < 0\\ \frac{1}{2^n} & \text{if } n \ge 0, \end{cases}$$

find, in simplest form: a) $(\Delta_+ a)_n$, b) $(\Delta_- a)_n$, and c) $(\Sigma a)_n$.

2. Let a and b be sequences and c a constant. Prove:

a)
$$\Delta_{+}(a+b) = \Delta_{+}(a) + \Delta_{+}(b)$$

b)
$$\Delta_+(ca) = c\Delta_+(a)$$

c)
$$\Delta_{-}(a+b) = \Delta_{-}(a) + \Delta_{-}(b)$$

d)
$$\Delta_{-}(ca) = c\Delta_{-}(a)$$

Based on these assertions, what type of operator is Δ_+ and Δ_- ?

- 3. Derive and prove formulas for the following:
- a) $\Sigma 1$
- b) Σn
- c) Σn^2
- 4. What:
- a) is the composition $\Sigma \circ \Delta_+$? That is, what is the value of

$$((\Sigma \circ \Delta_+)a)_n$$

for any sequence a, in simplest form? How about $\Sigma \circ \Delta_{-}$?

- b) is the composition $\Delta_+ \circ \Sigma$? How about $\Delta_- \circ \Sigma$?
- c) result from Calculus I do parts (a) and (b) remind us of?
- 5. Use the results from #4 to establish solutions to the following difference equations:
- a) $a_n = a_{n-1}$ with initial condition $a_0 = a(0)$.
- b) $a_n = a_{n-1} + c$ with initial condition $a_0 = a(0)$, where c is a constant.
- c) $a_n = a_{n-1} + n$ with initial condition $a_0 = a(0)$.