Name:_____

Math 311 Fall 2017

Project 2 - Due 12/4

Introduction

In this project, we view a sequence $\{a_n\}$ as a function $a : \mathbb{Z} \to \mathbb{R}$ which associates to every integer $n \in \mathbb{Z}$ the real number $a_n \in \mathbb{R}$. Thus, for example, if $a_n = n^3$ then some of the values of a are:

We define the *forward difference operator* Δ_+ as the function which associates to each sequence a the sequence $\Delta_+ a$ whose *n*th term is

$$(\Delta_+ a)_n = a_{n+1} - a_n$$

the backward difference operator Δ_{-} as the function which associates to each sequence a the sequence $\Delta_{-}a$ whose nth term is

$$(\Delta_-a)_n = a_n - a_{n-1},$$

and the sum operator Σ as the function which associates to each sequence a the sequence Σa whose *n*th term is

$$(\Sigma a)_n = \sum_{i=1}^n a_i.$$

Questions

1. If

$$a_n = \begin{cases} 0 & \text{if } n < 0\\ \frac{1}{2^n} & \text{if } n \ge 0, \end{cases}$$

find, in simplest form: a) $(\Delta_+ a)_n$, b) $(\Delta_- a)_n$, and c) $(\Sigma a)_n$.

2. Let a and b be sequences and c a constant. Prove:

a)
$$\Delta_+(a+b) = \Delta_+(a) + \Delta_+(b)$$

b) $\Delta_+(ca) = c\Delta_+(a)$
c) $\Delta_-(a+b) = \Delta_-(a) + \Delta_-(b)$

d)
$$\Delta_{-}(ca) = c\Delta_{-}(a)$$

Based on these assertions, what type of operator is Δ_+ and Δ_- ?

3. Derive and prove formulas for the following:

- a) $\Sigma 1$
- b) Σn

c) Σn^2

- 4. What:
- a) is the composition $\Sigma \circ \Delta_+$? That is, what is the value of

 $((\Sigma \circ \Delta_+)a)_n$

for any sequence a, in simplest form? How about $\Sigma \circ \Delta_-$?

b) is the composition $\Delta_+ \circ \Sigma$? How about $\Delta_- \circ \Sigma$?

- c) result from Calculus I do parts (a) and (b) remind us of?
- 5. Use the results from #4 to establish solutions to the following difference equations:
- a) $a_n = a_{n-1}$ with initial condition $a_0 = a(0)$.
- b) $a_n = a_{n-1} + c$ with initial condition $a_0 = a(0)$, where c is a constant.
- c) $a_n = a_{n-1} + n$ with initial condition $a_0 = a(0)$.