Section 15.2 Line Integrals

If f is defined on a smooth curve C given by

$$
C: x=x(t), \quad y=y(t), \quad a \leq t \leq b,
$$

then the line integral of f along C is

$$
\int_{C} f(x, y) d S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

if this limit exists.
If f is continuous,

$$
\int_{C} f(x, y) d S=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t .
$$

Two other line integrals are called the line integrals of f along C with respect to x and y :

$$
\begin{aligned}
\int_{C} f(x, y) d x & =\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
\int_{C} f(x, y) d y & =\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
\end{aligned}
$$

where C : $x=x(t), y=y(t), a \leq t \leq b$.
Notation: $\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y=\int_{C} P(x, y) d x+Q(x, y) d y$.

Parameterizing a curve C : We can parameterize a line segment that starts at the point $\left(x_{0}, y_{0}, z_{0}\right)$ and ends at the point $\left(x_{1}, y_{1}, z_{1}\right)$ by

$$
C:(x, y, z)=(1-t)\left(x_{0}, y_{0}, z_{0}\right)+t\left(x_{1}, y_{1}, z_{1}\right), \quad 0 \leq \text { tleq } 1 .
$$

Note that this gives

$$
x=x_{0}+\left(x_{1}-x_{0}\right) t, \quad y=y_{0}+\left(y_{1}-y_{0}\right) t, \quad z=z_{0}+\left(z_{1}-z_{0}\right) t, \quad 0 \leq t \leq 1 .
$$

In general, a given parametrization $x=x(t), y=y(t), a \leq t \leq b$, determines an orientation of a curve C, with the positive direction corresponding to increasing values of the parameter t.

Line Integrals of Vector Fields Previously: The work done by a variable force $f(x)$ in moving a particle from a to b along the x-axis is $W=\int_{a}^{b} f(x) d x$. The work done by a constant force \mathbf{F} in moving an object from a point P to another point Q in space is $W=\mathbf{F} \cdot \mathbf{D}$.
Now, we can use line integrals to compute the work done by a force field in moving a particle along a smooth curve C :

Let \mathbf{F} be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t), a \leq t \leq b$. Then the line integral of \mathbf{F} along C is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

and

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r} .
$$

