Section 15.1 Vector Fields

Let D be a set in \mathbb{R}^2 (a plane region). A <u>vector field</u> on \mathbb{R}^2 is a function **F** that assigns to each point (x, y) in D a two-dimensional vector $\mathbf{F}(x, y)$.

If f is a scalar function of two variables, recall that its gradient ∇f is defined by

$$\nabla f(x,y) = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j}.$$

Therefore, ∇f is really a vector field on \mathbb{R}^2 and is called a gradient vector field.

A vector field \mathbf{F} is called a <u>conservative vector field</u> if it is the gradient of some scalar function, that is, if there exists a function f such that $\mathbf{F} = \nabla f$. In this situation, f is called a potential function for \mathbf{F} .