Section 14.3 Double Integrals in Polar Coordinates

To change from rectangular coordinates to polar coordinates, use the equations:

$$
x=r \cos (\theta) y=r \sin (\theta)
$$

Change to Polar Coordinates in a Double Integral If $f$ is continuous on a polar rectangle $R$ given by $0 \leq$ $a \leq r \leq b, \alpha \leq \theta \leq \beta$, where $0 \leq \beta-\alpha \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

If $f$ is continuous on a polar region of the form

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

then

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

