Section 13.6 Directional Derivatives and Gradients

The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=<a, b>$ is

$$
D_{u} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

provided this limit exists.

Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=<a, b>$ and

$$
D_{u} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$
\nabla f(x, y)=<f_{x}(x, y), f_{y}(x, y)>=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

Note: $D_{u} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}$.

Maximizing the Directional Derivative Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{u} f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

Tangent Planes to Level Surfaces Suppose S is a surface with equation $F(x, y, z)=k$ and let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S. Let C be any curve that lies on S and passes through P. Then we can represent $C=\mathbf{r}(t)=<$ $x(t), y(t), z(t)>$. We assume $\mathbf{r}\left(t_{0}\right)=<x_{0}, y_{0}, z_{0}>$. With this notation, we have

$$
F(x(t), y(t), z(t))=k
$$

Applying the Chain Rule, we have

$$
\frac{\partial F}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial F}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial F}{\partial z} \cdot d z d t=0
$$

Since $\nabla F=<F_{x}, F_{y}, F_{z}>$ and $\mathbf{r}^{\prime}(t)=<x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)>$, this can also be written as

$$
\nabla F \cdot \mathbf{r}^{\prime}(t)=0
$$

In particular, when $t=t_{0}$, this says

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot \mathbf{r}^{\prime}\left(t_{0}\right)=0
$$

This says that the gradient vector at P is perpendicular to the tangent vector $\mathbf{r}^{\prime}\left(t_{0}\right)$ to any curve C on S that passes through P. Thus, we define the tangent plane to the level surface $F(x, y, z)=k$ at $P\left(x_{0}, y_{0}, z_{0}\right)$ as the plane that contains the point $P\left(x_{0}, \overline{\left.y_{0}, z_{0}\right)}\right.$ and has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$:

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

