Section 13.5 The Chain Rule

The Chain Rule (Case 1) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}.$$

The Chain Rule (Case 2) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}.$$

Case 2 of the Chain Rule contains three types of variables: s and t are independent variables, x and y are called intermediate variables, and z is the dependent variable.

**Implicit Differentiation** We suppose that an equation of the form F(x, y) = 0 defines y implicitly as a differentiable function of x. Then we can apply chain rule to obtain

$$\frac{\partial F}{\partial x} \cdot \frac{dx}{dx} + \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} = 0$$

which gives

$$\frac{dy}{dx} = -\frac{F_x}{F_y}.$$