
Section 13.5 The Chain Rule

The Chain Rule (Case 1) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t)
and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and
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.

The Chain Rule (Case 2) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t)
and y = h(s, t) are differentiable functions of s and t. Then
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Case 2 of the Chain Rule contains three types of variables: s and t are independent variables, x and y are
called intermediate variables, and z is the dependent variable.

Implicit Differentiation We suppose that an equation of the form F (x, y) = 0 defines y implicitly as a
differentiable function of x. Then we can apply chain rule to obtain
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which gives
dy

dx
= −Fx

Fy
.
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