Section 13.4 Tangent Planes and Linear Approximations

Suppose f has continuous parital derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Linear Approximations The linear function whose graph is the tangent plane

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

is called the linearization of f at (a, b) and the approximation

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

is called the linear approximation or the tangent plane approximation of f at (a, b).

Theorem If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Differentials For a differentiable function of two variables, $z=f(x, y)$, we define the differentials $d x$ and $d y$ to be independent variables; that is, they can be given any values. Then the differential $d z$, also called the total differential, is defined by

$$
\begin{aligned}
d z & =f_{x}(x, y) d x+f_{y}(x, y) d y \\
& =\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
\end{aligned}
$$

